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Abstract 

The safety of increasingly automated vehicles is of great concern to regulators, yet crash 

rates are generally reported by manufacturers using proprietary metrics with limited 

source data. Without consistent definitions of crashes and exposure, automated vehicle 

crash rates cannot be meaningfully compared with baseline datasets. The objective of 

this study was to establish methods to normalize automated vehicle crash rates using 

one manufacturer’s crash reports as a case study. The manufacturer’s quarterly crash 

rates for vehicles using SAE Level 2 and Level 3 automation were compared. Road type 

was controlled for using data from a naturalistic driving study with the same model 

vehicles, while driver age was controlled for using demographic ownership surveys. 

Although Level 3 vehicles were claimed to have a 43% lower crash rate than Level 2 

vehicles, their improved was only 10% after controlling for different rates of freeway 

driving. Direct comparison with general public driving was impossible due to unclear 

crash severity thresholds in the manufacturer’s reports, but analysis showed that 

controlling for driver age would increase reported crash rates by 11%. These results 

establish the need for detailed crash data, crash definitions, and exposure and 

demographic data in order to accurately assess automated vehicle safety. 
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1 Introduction 

The driving task is becoming increasingly automated, with computerized control not 

only of the throttle but also of brake and steering. Vehicles that can combine these 

functions are referred to as automated vehicles. 

Establishing the safety of automated driving systems, both those conducted 

using on-road tests with trained operators as well as those being sold to the public, is of 

critical importance. California has established licensing programs for automated vehicle 

testing and requires companies to submit reports of all crashes as well as mileage both 

in automated and manual control (California Department of Motor Vehicles, 2018). 

Other states have various laws relating to automated vehicle operation, but few mandate 

companies report crashes or crash rates (National Conference of State Legislatures, 

2019). The National Highway Traffic and Safety Administration (NHTSA) recently 

issued a standing general order requiring AV developers to report crashes within one 

day of occurrence (National Highway Traffic Safety Administration, 2021b). Before 

this order, companies testing outside California generally reported crashes and 

autonomous miles-traveled on a voluntary basis using metrics and thresholds of their 

own choosing (National Highway Traffic Safety Administration, 2021a). 

When data is available, it can be difficult to compare self-reported statistics to baseline 

crash rates. Many automated vehicle crashes reported in California, for example, fall 

below the threshold for police-reportability and cannot be compared to national-level 

crash data which relies largely on police reports. An estimated 15% of injury crashes 

and 24% of property damage-only crashes are never reported to police (M. Davis and 

Company, Inc., 2015), while 9% of injury crashes and 24% of property damage-only 

crashes are reported but not logged (Blincoe et al., 2015). Even with robust data, 

establishing the statistical significance of automated vehicle safety can be expensive. 

Kalra and Paddock (2016) demonstrated that establishing that an AV has a fatal crash 

rate equivalent to the national average with 95% confidence would require driving a 

fleet of 100 vehicles continuously for 12.5 years. Considering that surveys suggest 

customers may require automated vehicles that crash four to five times less often than 

human-driven vehicles (Liu et al., 2019), the ability to directly compare the safety of 

different vehicle technologies quickly and accurately is essential to building public 

trust.  

Tesla is a manufacturer of battery-powered electric vehicles. Beginning in 2014, 

new vehicles came installed with hardware allowing combined steering and throttle 

control. The automated driving system, named Autopilot, was officially introduced in 

2015 and has undergone several updates via over-the-air software patches. Autopilot is 

considered an example of SAE Level 2 automation (SAE International, 2018) as it 

combines steering, brake, and throttle control, yet requires a human to monitor the 

system at all times and take control with little to no notice. In addition to Autopilot, 

many Tesla vehicles are equipped with active safety features such as automatic 

emergency braking, forward collision warning, blind spot warning, and lane departure 

assistance (Tesla, Inc., 2022). Active safety features remain active when Autopilot is 

not engaged, unless directly deactivated by the driver. As each of these features control 
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a single aspect of vehicle control, they are generally classified as SAE Level 1 

automation. 

Beginning in 2018, Tesla began publishing short safety reports on a quarterly 

basis (Tesla, Inc., 2021). The reports list the average miles between observed crashes 

for vehicles using Autopilot, vehicles using active safety features only, and vehicles 

using neither Autopilot nor using safety features. Although the reports provide a critical 

insight into the crash rates of partially automated vehicles in use by the general public, 

they are difficult to interpret due to the lack of separate crash counts and baseline 

mileages, as well as unclear definitions of the criteria for incidents to be considered 

crashes. Given that Autopilot until recently was recommended for freeway use only, 

and given the demographics of their vehicle owners, crash rates of their vehicles may 

not allow a direct comparison to baseline crash rates without controlling for driver age 

and road usage.  

The objective of this study is to establish a methodology for evaluating 

automated vehicle developers’ safety reports in comparison to different samples, using 

the manufacturer’s safety reports as a case study. This evaluation is based on Tesla 

crash reports from July 2018 through March 2021, and results may change as the 

automated driving system continues to be refined.1 This is intended as a planning level 

analysis that will assist manufacturers, regulators, and researchers who may have access 

to more detailed, timely, and accurate data regarding vehicle safety and performance. 

2 Literature review 

Several studies have investigated automated vehicle crash rates. Schoettel and Sivak 

(2015) analyzed crash records of three companies approved to test automated vehicles 

in California and required to submit crash records to the California Department of 

Motor Vehicles. They found that although automated vehicles crashed at higher rates 

than the national average, the crash rates were within the 95% confidence interval in 

part due to small sample sizes.  

Blanco et al. (2016) performed a more in depth study of Waymo (Google, at the 

time) automated vehicle crashes using Waymo’s own internal records. To obtain 

national rates of minor crashes that did not meet police reporting thresholds, data from 

the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 

 

1 Tesla’s most recent report as of this writing, for April through June of 2021, uses different 

safety metrics that previous reports (Kane, 2021). Previous reports provided crash rates 

driving with “Autopilot engaged,” “without Autopilot but with our active safety features,” 

and “without Autopilot and without our active safety features” (Tesla, Inc., 2021) The 

latest report uses different terminology, distinguishing between driving “in which drivers 

were using Autopilot technology (Autosteer and active safety features)” and “drivers who 

were not using Autopilot technology (no Autosteer and active safety features)” (Tesla, 

Inc., 2021) It is not clear from their wording if how the prior category of active safety 

features only maps to the new categories. Without further guidance, these new crash rates 

cannot be compared to previously reported crash rates.  
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NDS) (Antin et al., 2019) was used for comparison. When comparing crash rates of 

similar severities, the researchers found that Waymo automated vehicles crashed at 

lower rates than national estimates.  

Dixit et al. (2016) compared Waymo’s automated vehicle crash rate as reported 

to the California Department of Motor Vehicles from September 2014 to November 

2015 with California Highway Patrol’s (CHP) estimated statewide crash rates. The 

study was limited due to CHP’s coverage of State, U.S., and Interstate roads when 

Waymo testing at the time occurred primarily on local roads outside CHP’s jurisdiction. 

Teoh and Kidd (2017) analyzed Waymo automated vehicle crashes in both the 

California Department of Motor Vehicle reports as well as testing performed outside 

California and discussed in Waymo’s monthly activity reports. Waymo crashes were 

limited to those that met the criteria for police reporting, but were compared to general 

public crashes that were actually reported to the police. This created some challenges as 

a significant number of general public crashes that meet the criteria for a police report 

are either never reported, or are reported but not logged into police databases (Blincoe 

et al., 2015; M. Davis and Company, Inc., 2015). This was evident in several Waymo 

crashes where police were called but did not respond. Waymo crash rates were also 

compared to the SHRP 2 NDS dataset, but the naturalistic data was biased towards 

higher risk drivers at both ends of the age spectrum and did not appear to be age-

weighted in the analysis. The authors found that SHRP 2 NDS crash rates were higher 

than Waymo’s at a 95% confidence interval.   

Goodall (2021) investigated struck-from-behind crashes of automated vehicles 

using age-weighted crash rates from SHRP 2 NDS database as a baseline. Automated 

vehicles were struck from behind at five times the rate of human-driven vehicles, 

although much of the difference could be attributed to higher rates of urban driving 

experienced in automated vehicle testing. 

Other studies have used automated vehicle crash records to model crash severity 

(Wang & Li, 2019), analyze crash narratives using text mining (Alambeigi et al., 2020; 

Boggs et al., 2020), and perform exploratory analysis (Das et al., 2020; Leilabadi & 

Schmidt, 2019; McCarthy, 2021).  

In independent research, Templeton (2020) compared Tesla’s stated crash rates 

with Autopilot enabled and not enabled by attempting to control for increased use of 

Autopilot on relatively safer freeways. To compare human-driven crash rates of 

freeways and non-freeways, Templeton used fatality rates, which may overestimate 

crash rates on freeways as higher speeds increase crash severity according to a fourth 

power law (Evans, 1994). When controlling for road type, the crash rate benefits of 

Autopilot narrowed substantially. Templeton, however, normalized based on national 

fatal crash rates rather than Tesla’s metric of total crash rates. 

A review of the literature establishes a clear need for methods to isolate 

environmental and demographic factors when evaluating automated vehicle safety using 

raw crash statistics.  
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3 Materials and methods 

Data sources and normalization procedures are discussed in the following sections. 

Table 1 provides a summary of data and sources used in this study. 

Table 1. Summary of normalization data and sources. 

Data Tesla National 

Unadjusted Crash Rates Tesla Safety Reports a SHRP 2 NDS c 

Road Use Ratio, Freeway vs. Non-Freeway MIT AVT b SHRP 2 NDS c 

Crash Rates adjusted for Road Type Calculated in this study SHRP 2 NDS c 

a (Tesla, Inc., 2021) 
b Massachusetts Institute of Technology Advanced Vehicle Technology Tesla naturalistic 

driving study (Fridman et al., 2018), with ratios supported by studies of other SAE Level 1 

and 2 systems (Gershon et al., 2021; Reagan et al., 2019) 
c Strategic Highway Research Program 2 Naturalistic Driving Study (Antin et al., 2019) 

- 

3.1 Manufacturer data 

Tesla’s stated crash rates for vehicles with Autopilot (AP) and active safety features 

engaged were compared to Tesla’s stated crash rates with active safety features-only 

(ASO) engaged. Manufacturer’s safety rates were obtained from their self-published 

quarterly safety reports (Tesla, Inc., 2021) which list crash rates in terms of miles per 

crash but do not specify total mileages nor total crash count as separate values. Tesla 

defines a crash as an incident where “the crash alert indicated an airbag or other active 

restraint” was deployed (Tesla, Inc., 2021). According to the report, this  “correlates to 

nearly any crash at about 12 mph (20 kph) or above, depending on the crash forces 

generated” (Tesla, Inc., 2021). Crash rates when no active safety features were in use 

were also reported, but these are excluded from this analysis as active safety features are 

engaged as the default. The use of ASO is considered as operating under manual control 

when comparing with other datasets.  

The ratio of Tesla miles traveled with Autopilot and active safety only on 

freeways was obtained from an unpublished 2018 study (Fridman et al., 2018). The 

report discussed a naturalistic driving study of 28 vehicles with automated driving 

features, of which 25 were Tesla models equipped with Autopilot. Vehicles had traveled 

a total of 323,384 miles at the time the report was written. The study focused primarily 

on driver attentiveness, but a breakdown of distances traveled on roads with various 

speed limits were shown in Figures 3 and 4 in that report (Fridman et al., 2018). 

Distance by speed limit from that report is reproduced here in Error! Reference source 

not found.. 
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Figure 1. Distance traveled on different roads by speed limit (Fridman et al., 2018). 

 

An author has confirmed in personal correspondence that all mileages in the 

study are accurate (Reimer, 2021). Data from the same naturalistic driving study has 

been used in several other papers (Ding et al., 2020; Morando et al., 2020; Reagan et al., 

2019). Furthermore, the ratios of freeway-to-non-freeway mileages are similar to those 

found in other studies of ACC and SAE Level 2 automation  in different model vehicles 

(Morando et al., 2020; Reagan et al., 2019). 

3.2 National data 

National crash rates and adjustment factors were obtained from the SHRP 2 NDS. 

Between 2012 and 2014, video, audio, and kinematic data were collected from 3,500 

drivers using their personal vehicles (Antin et al., 2019). Although data was 

continuously recorded and later deleted, it was only saved permanently when either 

triggered by a change of acceleration threshold or other crash indicator, or at random 

intervals to collect baseline driving data. Events were analyzed and categorized by a 

team of trained analysts.  

SHRP 2 NDS used several tiers of crash severity, of which three appear to 

correlate to the manufacturer’s crash definition. The first is any crash that results in the 

activation of an airbag. The second is referred to as Crash Severity I – Most Severe 

(“Severe” for short), which includes any airbag crashes as well as any crashes that result 

in physical injury, roll over, or a change in speed of the instrumented vehicle of greater 

than 20 mph (Virginia Tech Transportation Institute, 2015). Vehicle safety research 

refers to this change of speed as delta-v. The third is referred to as Crash Severity II – 

Police Reportable, and includes any crash that does not meet the definition of Severe 

but either causes an estimated minimum of $1500 in damages or reaches acceleration on 

any axis of 1.3g (Virginia Tech Transportation Institute, 2015). The combined 

severe/police reportable (Crash Severities I and II) metric was selected for use in the 
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analysis as part of this effort, as it appears closest the manufacturer’s crash definition. 

Airbag crashes are included in severe crashes.  

The SHRP 2 NDS also records baseline mileage data and crash events by age of 

the driver and roadway type. Roads are classified based on observation from video 

rather than speed. Events classified as “Interstate/bypass/divided highway with no 

traffic signals” (Virginia Tech Transportation Institute, 2015) are considered freeways, 

while all other events are considered non-freeway. 

Each entry in the database includes two separate events, as many crashes have 

an initial event (e.g., a rear-end collision) followed by a second event (e.g., a curb 

strike). SHRP 2 NDS data was queried for Crash Severity 1 = I or II OR Crash Severity 

2 = I or II. Records were then filtered by locality and airbag deployment. 

3.2.1 Age-weighting 

The sample of drivers in the SHRP 2 NDS dataset was biased towards younger and 

older drivers as they represent higher risk groups. Mileages and crash counts for all age 

groups were reweighted based on ages of United States licensed drivers in Blanco et al. 

(2016). Their calculations are reproduced in Table 2. Age-weighted SHRP 2 NDS data 

are used throughout the study.  

Table 2. Age group sample weights for SHRP 2 Naturalistic Driving Study data (Blanco et al., 

2016). 

Age Weight 
Percentage in 

SHRP 2 NDS 

Percentage of US 

Licensed Drivers 

Million 

miles driven 

Weighted million 

miles driven 

16-24 0.32 37 12 12.9 4.1 

25-39 1.53 17 26 6.4 9.8 

40-54 2.33 12 28 4.6 10.7 

55-74 1.35 20 27 6.3 8.5 

75+ 0.5 14 7 3.4 1.7 

Totals - 100 100 33.6 34.8 

 

The analysis in this paper relies on the assumption that the freeway-to-non-

freeway and age group crash ratios found in the SHRP 2 NDS are consistent with the 

manufacturer’s data, as there are no roadway-specific nor age-related factors in the 

manufacturer safety reports. Crash rates by severity are shown in Table 3. Although the 

ages of drivers in Tesla’s crash rate data are unknown, their ages could be estimated 

from a 2018 demographic survey of 424 Tesla owners (Hardman et al., 2019).  
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Table 3. SHRP 2 NDS age-weighted crash rates by severity. 

  Crashes per 100 million miles 

 Severity Freeway Non-Freeway Combined 

 Airbag deployment 29 26 27 

 Severe, incl. airbags 160 293 257 

 Police-reportable, not severe 226 482 412 

 Severe and Police-reportable 386 776 668 

Minor 569 2455 1934 

All 955 3231 2602 

3.3 Adjustment methods 

Crash rates can be adjusted to account for differences in environment and demographics 

in different data sets. A sample dataset with a crash rate r is exposed to some variable i 

at a different proportion p than the comparison dataset. In the case study, for example, 

vehicles running Autopilot were driven on freeways (i) 93% of the time, resulting in pi 

= 0.93. In the SHRP 2 NDS, only 28% of vehicle mileage was recorded on freeways, i.e 

pi = 0.28. In the SHRP 2 NDS data, vehicles on non-freeways crashed 2.01 times more 

often per mile than vehicles on freeways. The observed Autopilot crash rate can be 

adjusted to reflect national driving rates to reflect the crash rate that might be observed 

if 28% of Autopilot mileage was on freeways and 72% were on non-freeways, assuming 

that the 2.01 ratio holds for Autopilot. 

 The first step is to find the odds ratios for freeway and non-freeway driving in 

the SHRP 2 NDS data. The odds ratio is defined as the crash rate under the risk factor 

divided by the crash rate for all driving: 

 𝑂𝑅 =
𝑟𝑖
𝑟𝑡

 (1) 

where ri is the crash rate for either freeway or non-freeway miles, and rt is the crash rate 

per mile of all driving. 

The crash rate ri can be obtained by solving a system of equations. First, the sum 

of the crash rate r for each risk factor i multiplied by the proportion of exposure spent in 

that risk factor pi is equivalent to the total crash rate rt. 

 ∑𝑟𝑖𝑝𝑖 = 𝑟𝑡𝑝𝑡

𝑛

𝑖=0

 (2) 

In the second equation, the odds ratio formula is rewritten as: 

 𝑟𝑡 =
𝑟𝑖
𝑂𝑅𝑖

 (3) 

Given that rt remains constant for a given sample, this yields the following 

equation: 
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 𝑟𝑡 =
𝑟𝑜
𝑂𝑅𝑜

=
𝑟1
𝑂𝑅1

= ⋯ =
𝑟𝑛−1
𝑂𝑅𝑛−1

=
𝑟𝑛
𝑂𝑅𝑛

 (4) 

The value of any crash rate ri can be expressed in terms of any other crash rate rj 

as: 

 𝑟𝑖 = 𝑟𝑗
𝑂𝑅𝑖
𝑂𝑅𝑗

 (5) 

Inserting this equation into the crash rate summation equation yields: 

 𝑟𝑜𝑝0 + 𝑟1𝑝1 +⋯+ 𝑟𝑛−1𝑝1+𝑟𝑛𝑝𝑛 = 𝑟𝑡𝑝𝑡 (6) 

 𝑟𝑜𝑝𝑜 + 𝑟0 (
𝑂𝑅1
𝑂𝑅0

) + 𝑟0 (
𝑂𝑅2
𝑂𝑅0

) + ⋯+ 𝑟0 (
𝑂𝑅𝑛−1
𝑂𝑅0

) + 𝑟0 (
𝑂𝑅𝑛
𝑂𝑅0

) = 𝑟𝑡𝑝𝑡 (7) 

 𝑟𝑖 (∑
𝑂𝑅𝑗

𝑂𝑅𝑖

𝑛

𝑖=0

𝑝𝑗) = 𝑟𝑡𝑝𝑡  (8) 

 
𝑟𝑖 =

𝑟𝑡𝑝𝑡

∑ (
𝑂𝑅𝑗
𝑂𝑅𝑖

𝑝𝑗)
𝑛
𝑖=0

 
(9) 

 When pi is expressed as a percentage of the total, then pt = 1. In applying the 

methodology, the odds ratio should be calculated from the more detailed database. For 

this case study, odds ratios were calculated from the SHRP 2 NDS and the Autopilot 

NDS.   

Once individual crash rates for each risk factor are calculated, they can be 

combined into an updated total crash rate using the formula: 

 ∑𝑟𝑖𝑝𝑖,𝑎𝑑𝑗. = 𝑟𝑡,𝑎𝑑𝑗𝑝𝑡

𝑛

𝑖=0

 (10) 

but replacing pi with the comparison ratios, e.g. 28% freeway miles and 72% non-

freeway miles. 

4 Results 

Crash rates using Autopilot and active safety features only were compared. In the 

manufacturer’s reports, Autopilot had higher average distances between crashes, 

ranging between 1.46 and 2.35 times greater average miles between crashes than active 

safety only (Tesla, Inc., 2021). Autopilot is used predominately on freeways, as surface 
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street functionality was only released recently to select users and remains in beta. A 

naturalistic driving study has shown that 93% of Autopilot usage is on roads with speed 

limits of 55 mi/hr or greater. In contrast, of the miles traveled using active safety only, 

only 30% occurred on roads with speed limits only greater than 55 mi/hr (Fridman et 

al., 2018).  

Because the SHRP 2 NDS dataset does not include speed limits but rather road 

classifications, roads with speed limits greater than 55 mi/hr were classified as freeways 

to allow for direct comparison with SHRP 2 NDS. Although this classification is not 

ideal, as some non-freeways have posted speed limits of 55 mi/hr, other studies have 

investigated usage of SAE Levels 1 and 2 technologies on different road types and 

found similar ratios. Drivers of Cadillac CT6 vehicles used Super Cruise SAE Level 2 

automation mostly on freeways, with 99% of all Super Cruise usage occurring on 

freeways and 1% on non-freeways (Gershon et al., 2021). Similarly, combined usage of 

adaptive cruise control and Super Cruise was also predominantly freeway, at 93% 

freeway usage and 7% non-freeway usage.2 Another naturalistic driving study of the 

Range Rover Evoque and Volvo S90 found that ACC (SAE Level 1) and Pilot Assist 

(SAE Level 2) saw between 81% and 93% of their usage on freeways (Reagan et al., 

2019). These ratios are similar to MIT’s Tesla Autopilot usage rates of 93% freeway 

and 7% non-freeway. 

Combined severe and police-reportable crashes were used to calibrate the 

manufacturer data. From the SHRP 2 NDS, the observed ratio of freeway to non-

freeway crashes was 2.01. Assuming that this ratio holds for the manufacturer data, then 

the crash rates can be adjusted using the methods in the previous section. Variables for 

Q1 2021 are provided in Table 4. The crash rate after adjusting for freeway and non-

freeway use is shown in Table 5 and Figures 2 and 3. Although Autopilot was claimed 

to have a 43% lower crash rate than active safety only, this improvement reduces to 

10% (average of all quarterly reports) after controlling for different rates of freeway 

driving.  

Table 4. Case study crash adjustment variables. 

Variable Freeway Non-Freeway 

OR 0.58 1.17 

p, Autopilot 0.93 0.07 

p, Active Safety Only 0.30 0.70 

p, SHRP 2 NDS 0.28 0.72 

 

2 These figures were reconstructed from (Gershon et al., 2021) as follows. There were 22,108 

total miles, of which 62% (13,707 miles) were on freeways (“limited access highways”). 

Of freeway miles, 40% (5,483 miles) used Super Cruise, 10% ( 1,371 miles) used adaptive 

cruise control, and 50% (6,853 miles) were under manual control. The non-freeways miles 

were calculated by subtracting freeway miles from total miles, with total mileage reported 

in the paper as 5,514 miles using Super Cruise, 1,891 miles using adaptive cruise control, 

and 14,702 miles under manual control.   
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Table 5. Autopilot and active safety only crash rates adjusted for road usage. 

 Autopilot 

Crashes per 100 million miles 

Active Safety Only 

Crashes per 100 million miles 

Date Unadjusted Adjusted Unadjusted Adjusted 

Q3 2018 29.9 48.4 52.1 52.8 

Q4 2018 34.4 55.5 63.3 64.2 

Q1 2019 34.8 56.3 56.8 57.6 

Q2 2019 30.6 49.4 45.7 46.3 

Q3 2019 23.0 37.2 37.0 37.6 

Q4 2019 32.6 52.6 47.6 48.3 

Q1 2020 21.4 34.5 50.3 51.0 

Q2 2020 22.1 35.7 44.1 44.7 

Q3 2020 21.8 35.2 41.3 41.9 

Q4 2020 29.0 46.8 48.8 49.5 

Q1 2021 23.9 38.6 48.8 49.5 

 

 
Figure 2. Unadjusted Tesla crashes per 100 million miles. 

 
Figure 3. Tesla crashes per 100 million miles, adjusted for road classification. 
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The same procedure was used to adjust for driver demographics. Tesla owners 

are concentrated in the 50 to 70-year-old age brackets and underrepresented among 

drivers ages 16–39 and 75 and older (Hardman et al., 2019). Error! Reference source 

not found. lists the percentage of drivers in each bin for both samples. The results 

compare the crashes per 100 million miles for Autopilot and active safety in unadjusted 

numbers, adjusted for road type, and adjusted for both road type and owner age. Crash 

rates adjusted for road classification and owner age are shown in Error! Reference 

source not found.. Averaging over each quarter, controlling for driver age increased the 

reported crash rates by approximately 11%. 

Table 6. Comparison of driver demographics. 

Age 

Tesla 

Owners1 

Percentage of 

US Licensed 

Drivers2 

Weighted Most Severe and 

Police Reportable Crashes 

per 100 million miles3 Odds Ratio 

16-24 0.7% 12% 1413 2.11 

25-39 12.1% 26% 531 0.79 

40-54 29.3% 28% 501 0.75 

55-74 47.5% 27% 604 0.90 

75+ 10.3% 7% 1059 1.58 

Totals 100.0% 100.0% 669 1.00 

1 Statistics obtained from Hardman et al. (2019). 
2 Statistics obtained from Blanco et al. (2016). 
3 Statistics obtained from Transportation Research Board of the National Academy 

of Sciences (2013). 
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Figure 4. Manufacturer crash rates adjusted for road use and owner age. 

5 Discussion 

By correcting for roadway usage differences between the Autopilot and active safety 

only data, much of the crash reduction seen by vehicles using Autopilot appears to be 

explained by lower crash rates experienced on freeways. While the raw crash rate shows 

an average 43% reduction in crash rate for Autopilot compared to active safety only, 

this improvement is only 10% after controlling for different rates of freeway driving. 

Correcting for age demographics likewise produced an 11% increase in the estimated 

crash rate.  

Several other factors may explain difference in safety rates of new vehicle 

technologies based on who is using them, where they are being used, and when they are 

being used. Some safety features cannot be used in rain or snow, for example, which 

may bias the data towards clear weather and lower crash rates generally. In another 

example, drivers often disengage Autopilot to change lanes or prepare to exit a freeway 

(Morando et al., 2020), both areas of increased crash risk. While Tesla includes crashes 

where Autopilot was deactivated less than five seconds prior to impact, there remains a 

potential for Autopilot use to be biased towards safer, within-lane driving. With more 

data regarding not only the crashes but also the use of vehicle technologies can allow 

for more accurate and thorough assessments of vehicle safety benefits. 
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several assumptions that may limit the accuracy of the results. There are five main 

assumptions that may affect the results. 

First, it is assumed that ratios between freeway and non-freeway driving found 

in the SHRP 2 NDS are maintained in the manufacturer data set. If drivers crash twice 

as often on non-freeways as freeways, it is assumed that drivers in the manufacturer’s 

data will also crash twice as often, although the absolute rate may be different.  

Second, the MIT data is assumed to be accurate and applicable. The data was 

collected in early 2018 before manufacturer safety reports were published, so it is 

possible that driver travel patterns and usage of Autopilot has changed significantly in 

the interim, thereby affecting the results. Much of the naturalistic data was collected in 

and around Boston, Massachusetts. This data may not be applicable to the United States 

generally. 

Third, it was assumed that vehicles on the same type of road were exposed to the 

same crash risk. Not only type of road but also conditions on the road may differ for 

Tesla drivers resulting in different crash rates. Congested traffic, for example, might 

result in more crashes per mile traveled. If Tesla vehicles were more likely to be driven 

along urban corridors during peak periods, then they would likely have encountered 

more congestion. These data, while not available, could have a significant impact on 

observed crash rates.  

Fourth, there is some uncertainty over what classifies a road as freeway. In the 

SHRP 2 NDS, camera images were evaluated to determine road classification. In the 

MIT data, an assumption was made that roads with speed limits of 55 mi/hr or greater 

were freeways. There are, of course, roads with 55 mi/hr speed limits that are not 

freeways, although it is unclear to what extent these roads are prevalent in the Boston 

area where much of the naturalistic data was collected. A similar naturalistic study of 

drivers using Cadillac CT6 vehicles with Super Cruise SAE Level 2 automation in the 

Boston area reported usage by road type and found similar rates of freeway vs. non-

freeway driving (Gershon et al., 2021). In the study, researchers found that 99% of 

Super Cruise mileage was on freeways, and 93% of combined Super Cruise and 

adaptive cruise control mileage was on freeways. This suggests that the MIT data usage 

figures are accurate, although these ratios should be updated as more data becomes 

available. 

Fifth, it was assumed that the SHRP 2 NDS crash severities of severe and 

police-reportable, when combined, captured the same types of crashes as those recorded 

by Tesla. While these definitions appear most similar of the choices available, it is 

unlikely they are a perfect match as SHRP 2 NDS data relied on some human 

judgement and the manufacturer crash rate definitions were dependent on active safety 

features with unclear thresholds. Because of uncertainty of crash definitions, it was 

impossible to directly compare manufacturer crash rates with national estimates. The 

use of SHRP 2 NDS crash rates to calibrate freeway vs. non-freeway driving, however, 

can be updated with clearer crash definitions. 
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5.2 Best practices 

When comparing crash rates among different vehicles with different driver 

demographic and usage patterns, some best practices may help facilitate evaluations. 

Anonymized driver or owner demographics may be used to isolate safety impacts, as 

highly educated middle-aged drivers are both more likely to purchase luxury cars and 

simultaneously crash at lower rates than the overall population. Similarly, specific 

details regarding built-in restrictions on when vehicle technologies can and cannot be 

used allows researchers to better design baseline metrics that match the technology’s 

operational design domain. Manufacturers should record additional anonymized data on 

vehicle driving environments, rates of usage of automation modes, and details on when 

and where the modes are used. Selective sampling of short segments of vehicle trips 

could be used to develop statistics on baseline behavior to compare against crash 

records.  

Finally, consistent crash definitions and thresholds are becoming increasingly 

necessary in order to evaluate new safety technologies. The standard metric of police-

reportable has different meanings in different jurisdictions—this creates confusion when 

crashes that meet the threshold for reporting are either not reported or reported but not 

logged into police databases. More consistent definitions could combine such metrics as 

maximum jerk, maximum acceleration, changes in subject vehicle relative speed. When 

metrics such as airbag deployment or vehicle crash sensing are employed, 

measurements of changes in vehicle velocity over time can help to further refine crash 

classification and provide insight into a crash’s severity.  
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