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Abstract 

The safety of increasingly automated vehicles is of great concern to regulators, yet crash rates are 

generally reported by manufacturers with proprietary metrics. Without consistent definitions of 

crashes and exposure, comparing automated vehicle crash rates with baseline datasets becomes 

challenging. This study investigates the reported on-road crash rates of one manufacturer’s 

partially automated driving system. Their reported crash rates are adjusted based on roadway 

classification and driver demographics to allow for direct comparison with the manufacturer’s 

own advanced driver assistance systems. Recommendations for uniform crash reporting 

standards are provided.  
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1 Introduction 

The driving task is becoming increasingly automated, with computerized control not only of the 

throttle but also of brake and steering. Vehicles that can combine these functions are referred to 

as automated vehicles.   

 Establishing the safety of automated driving systems, both those conducted using on-road 

tests with trained operators as well as those being sold to the public, is of critical importance. 

California has established licensing programs for automated vehicle testing and requires 

companies to submit reports of all crashes as well as mileage both in automated and manual 

control (California Department of Motor Vehicles, 2018). Other states have various laws relating 

to automated vehicle operation, but few mandate companies report crashes or crash rates 

(National Conference of State Legislatures, 2019). The National Highway Traffic and Safety 

Administration (NHTSA) recently issued a standing general order requiring AV developers to 

report crashes within one day of occurrence (National Highway Traffic Safety Administration, 

2021a). Before this order, companies testing outside California generally reported crashes and 

autonomous miles-traveled on a voluntary basis using metrics and thresholds of their own 

choosing (National Highway Traffic Safety Administration, 2021b). 

 When data is available, it can be difficult to compare self-reported statistics to national 

crash rates. Many automated vehicle crashes reported in California, for example, fall below the 

threshold for police-reportability and cannot be compared to national-level crash data which 

relies largely on police reports. An estimated 15% of injury crashes and 24% of property 

damage-only crashes are never reported to police (M. Davis and Company, Inc., 2015), while 9% 

of injury crashes and 24% of property damage-only crashes are reported but not logged (Blincoe 

et al., 2015). Even with robust data, establishing the statistical significance of automated vehicle 

safety can be expensive. Kalra and Paddock (2016) demonstrated that establishing that an AV 

has a fatal crash rate equivalent to the national average with 95% confidence would require 

driving a fleet of 100 vehicles continuously for 12.5 years. 

 Tesla is a manufacturer of battery-powered electric vehicles. Beginning in 2014, new 

vehicles came installed with hardware allowing combined steering and throttle control. The 

automated driving system, named Autopilot, was officially introduced in 2015 and has 

undergone several updates via over-the-air software patches. Autopilot is considered an example 

of SAE Level 2 automation (SAE International, 2018) as it combines steering, brake, and throttle 

control, yet requires a human to monitor the system at all times and take control with little to no 

notice.  

 Beginning in 2018, Tesla began publishing short safety reports on a quarterly basis 

(Tesla, Inc., 2021). The reports list the average miles between observed crashes for vehicles 

using Autopilot, vehicles using active safety features only, and vehicles without Autopilot and 

active safety features. Although the reports provide a critical insight into the crash rates of 

partially automated vehicles in use by the general public, they are difficult to interpret due to the 

lack of separate crash counts and baseline mileage, as well as unclear definitions of the criteria 

for an incident to be considered a crash. Given that Autopilot until recently was recommended 
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for freeway use only, and given the demographics of their vehicle owners, crash rates of their 

vehicles may not allow a direct comparison to national rates without controlling for driver age 

and road usage.  

The objective of this study is to establish a methodology for evaluating automated vehicle 

developers’ safety reports in comparison to different samples, using the manufacturer’s safety 

reports as a case study. This evaluation is based on reports from July 2018 through March 2021, 

and results may change as the automated driving system continues to be refined.1 This is 

intended as a planning level analysis that will assist manufacturers, regulators, and researchers 

who may have access to more detailed, timely, and accurate data regarding vehicle safety and 

performance. 

 

2 Literature Review 

Several studies have investigated automated vehicle crash rates. Schoettel and Sivak (2015) 

analyzed crash records of three companies approved to test automated vehicles in California and 

required to submit crash records to the California Department of Motor Vehicles. They found 

that although automated vehicles crashed at higher rates than the national average, the crash rates 

were within the 95% confidence interval in part due to small sample sizes.  

Blanco et al. (2016) performed a more in depth study of Waymo (Google, at the time) 

automated vehicle crashes using Waymo’s own internal records. To obtain national rates of 

minor crashes that did not meet police reporting thresholds, data from the Second Strategic 

Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) (Antin et al., 2019) was 

used for comparison. When comparing crash rates of similar severities, the researchers found 

that Waymo automated vehicles crashed at lower rates than national estimates.  

Dixit et al. (2016) compared Waymo’s automated vehicle crash rate as reported to the 

California Department of Motor Vehicles from September 2014 to November 2015 with 

California Highway Patrol’s (CHP) estimated statewide crash rates. The study was limited due to 

CHP’s coverage of State, U.S., and Interstate roads when Waymo testing at the time occurred 

primarily on local roads outside CHP’s jurisdiction. 

Teoh and Kidd (2017) analyzed Waymo automated vehicle crashes in both the California 

Department of Motor Vehicle reports as well as testing performed outside California and 

discussed in Waymo’s monthly activity reports. Waymo crashes were limited to those that met 

the criteria for police reporting, but were compared to general public crashes that were actually 

reported to the police. This created some challenges as a significant number of general public 

crashes that meet the criteria for a police report are either never reported, or are reported but not 

 
1 Tesla’s most recent report as of this writing, for April through June of 2021, uses different safety metrics that 

previous reports (Kane, 2021). Previous reports provided crash rates driving with “Autopilot engaged,” “without 

Autopilot but with our active safety features,” and “without Autopilot and without our active safety features” (Tesla, 

Inc., 2021) The latest report uses different terminology, distinguishing between driving “in which drivers were using 

Autopilot technology (Autosteer and active safety features)” and “drivers who were not using Autopilot technology 

(no Autosteer and active safety features)” (Tesla, Inc., 2021) It is not clear from their wording if how the prior 

category of active safety features only maps to the new categories. Without further guidance, these new crash rates 

cannot be compared to previously reported crash rates.  
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logged into police databases (Blincoe et al., 2015; M. Davis and Company, Inc., 2015). This was 

evident in several Waymo crashes where police were called but did not respond. Waymo crash 

rates were also compared to the SHRP 2 NDS dataset, but the naturalistic data was biased 

towards higher risk drivers at both ends of the age spectrum and did not appear to be age-

weighted in the analysis. The authors found that SHRP 2 NDS crash rates were higher than 

Waymo’s at a 95% confidence interval.   

Goodall (2021) investigated struck-from-behind crashes of automated vehicles using age-

weighted crash rates from SHRP 2 NDS database as a baseline. Automated vehicles were struck 

from behind at five times the rate of human-driven vehicles, although much of the difference 

could be attributed to higher rates of urban driving experienced in automated vehicle testing. 

Other studies have used automated vehicle crash records to model crash severity (Wang 

and Li, 2019), analyze crash narratives using text mining (Alambeigi et al., 2020; Boggs et al., 

2020), and perform exploratory analysis (Das et al., 2020; Leilabadi and Schmidt, 2019; 

McCarthy, 2021).  

In independent research, Templeton (2020) compared Tesla’s stated crash rates with 

Autopilot enabled and not enabled by attempting to control for increased use of Autopilot on 

relatively safer freeways. To compare human-driven crash rates of freeways and non-freeways, 

Templeton used fatality rates, which may overestimate crash rates on freeways as higher speeds 

increase crash severity according to a fourth power law (Evans, 1994). When controlling for road 

type, the crash rate benefits of Autopilot narrowed significantly. Templeton was unable to fully 

assess their comparison of Autopilot crash rates with national estimates due to their different 

definitions of crashes. 

A review of the literature establishes a clear need for methods to isolate environmental 

and demographic factors when evaluating automated vehicle safety using raw crash statistics.  

 

3 Materials and Methods  

 

3.1 Manufacturer Data 

Tesla’s stated crash rates for vehicles with Autopilot (AP) and active safety features engaged, 

and active safety features-only (ASO) engaged, were compared with national crash rates. 

Manufacturer’s safety rates were obtained from their self-published quarterly safety reports 

(Tesla, Inc., 2021) which listed miles per crash but not specific mileages nor crash counts. Tesla 

defines a crash as an incident where “the crash alert indicated an airbag or other active restraint” 

was deployed (Tesla, Inc., 2021). According to the report, this  “correlates to nearly any crash at 

about 12 mph (20 kph) or above, depending on the crash forces generated” (Tesla, Inc., 2021). 

Crash rates when no active safety features were in use were also reported, but these are excluded 

from this analysis as active safety features are engaged as the default. The use of active safety 

only is considered as operating under manual control when comparing with other datasets.  

 The ratio of Tesla miles traveled with Autopilot and active safety only on freeways was 

obtained from an unpublished 2018 study (Fridman et al., 2018). The report discussed a 
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naturalistic driving study of 28 vehicles with automated driving features, of which 25 were Tesla 

models equipped with Autopilot. Vehicles had traveled a total of 323,384 miles at the time the 

report was written. The study focused primarily on driver attentiveness, but a breakdown of 

distances traveled on roads with various speed limits were shown in Figures 3 and 4 in that 

report (Fridman et al., 2018). Distance by speed limit from that report is reproduced here in 

Figure 1. 

 

 
Figure 1 Distance traveled on different roads by speed limit (Fridman et al., 2018). 

 

Although widely reported in the press when first posted online (della Cava, 2018; Niedermeyer, 

2019), the study was later pulled for reasons that appear related to the driver attentiveness 

portion of the study. An author has confirmed in personal correspondence that all mileages in the 

study are accurate (Reimer, 2021). The naturalistic driving study is ongoing, and has produced 

several papers (Ding et al., 2020; Morando et al., 2020; Reagan et al., 2019). 

  

3.2 National Data 

National crash rates and adjustment factors were obtained from the SHRP 2 NDS. Between 2012 

and 2014, video, audio, and kinematic data were collected from 3,500 drivers using their 

personal vehicles (Antin et al., 2019). Although data was continuously recorded and later 

deleted, it was only saved permanently when either triggered by a change of acceleration 

threshold or other crash indicator, or at random intervals to collect baseline driving data. Events 

were analyzed and categorized by a team of trained analysts.  

 SHRP 2 NDS used several tiers of crash severity. Three appear to correlate to the 

manufacturer’s crash definition. The first is any crash that results in the activation of an airbag. 

The second is referred to as Crash Severity I – Most Severe (“Severe” for short), which includes 

any airbag crashes as well as any crashes that result in physical injury, roll over, or a change in 

speed of the instrumented vehicle of greater than 20 mph (Virginia Tech Transportation Institute, 
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2015). Vehicle safety research refers to this change of speed as delta-v. The third is referred to as 

Crash Severity II – Police Reportable, and includes any crash that does not meet the definition of 

Severe but either causes an estimated minimum of $1500 in damages or reaches acceleration on 

any axis of 1.3g (Virginia Tech Transportation Institute, 2015). The combined severe/police 

reportable metric was selected for use in the analysis as part of this effort, as it appears closest 

the manufacturer’s crash definition. Airbag crashes are included in severe crashes.  

 The SHRP 2 NDS also records baseline mileage data and crash events by age of the 

driver and roadway type. Roads are classified based on observation from video rather than speed. 

Events classified as “Interstate/bypass/divided highway with no traffic signals” (Virginia Tech 

Transportation Institute, 2015) are considered freeways, while all other events are considered 

non-freeway. 

 Each entry in the database includes two separate events, as many crashes have an initial 

event (e.g., a rear-end collision) followed by a second event (e.g., a curb strike). SHRP 2 NDS 

data was queried for Crash Severity 1 = I or II OR Crash Severity 2 = I or II. Records were then 

filtered by locality and airbag deployment. 

  

3.2.1 Age-Weighting 

The sample of drivers in the SHRP 2 NDS dataset was biased towards younger and older drivers 

as they represent higher risk groups. Mileages and crash counts for all age groups were 

reweighted based on ages of United States licensed drivers in Blanco et al. (2016). Their 

calculations are reproduced in Table 1. Age-weighted SHRP 2 NDS data are used throughout the 

study.  

 

Table 1 Age Group Sample Weights for SHRP 2 Naturalistic Driving Study Data (Blanco et 

al., 2016) 

Age Weight 
Percentage in 

SHRP 2 NDS 

Percentage of US 

Licensed Drivers 

Million 

miles driven 

Weighted million 

miles driven 

16-24 0.32 37 12 12.9 4.1 

25-39 1.53 17 26 6.4 9.8 

40-54 2.33 12 28 4.6 10.7 

55-74 1.35 20 27 6.3 8.5 

75+ 0.5 14 7 3.4 1.7 

Totals - 100 100 33.6 34.8 

 

The analysis in this paper relies on the assumption that the freeway-to-non-freeway and age 

group crash ratios found in the SHRP 2 NDS are consistent with the manufacturer’s data, as 

there are no roadway specific nor age-related factors in the manufacturer safety report. Crash 

rates by severity are shown in Table 2. 
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Table 2 SHRP 2 NDS Age-Weighted Crash Rates by Severity 

  Crashes per 100 million miles 

 Severity Freeway Non-Freeway Combined 

 Airbag deployment 29 26 27 

 Severe, incl. airbags 160 293 257 

 Police-reportable, not severe 226 482 412 

 Severe and Police-reportable 386 776 668 

Minor 569 2455 1934 

All 955 3231 2602 

 

Although the ages of drivers in Tesla’s crash rate data are unknown, their ages could be 

estimated from a 2018 demographic survey of 424 Tesla owners (Hardman et al., 2019). Age 

bins were reorganized to correspond to SHRP 2 NDS bins, assigning proportional counts based 

on the cutoffs.  

 

3.3 Adjustment Methods 

Crash rates can be adjusted to account for differences in environment and demographics in 

different data sets. A sample dataset with a crash rate r is exposed to some variable i at a 

different proportion p than the comparison dataset. In the case study, for example, vehicles 

running Autopilot were driven on freeways (i) 93% of the time, resulting in pi = 0.93. In the 

SHRP 2 NDS, only 28% of vehicle mileage was recorded on freeways, i.e pi = 0.28. In the 

SHRP 2 NDS data, vehicles on non-freeways crashed 2.01 times more often per mile than 

vehicles on freeways. The observed Autopilot crash rate can be adjusted to reflect national 

driving rates to reflect the crash rate that might be observed if 28% of Autopilot mileage was on 

freeways and 72% were on non-freeways, assuming that the 2.01 ratio holds for Autopilot. 

 The first step is to find the odds ratios for freeway and non-freeway driving in the SHRP 

2 NDS data. The odds ratio is defined as the crash rate under the risk factor divided by the crash 

rate for all driving: 

 

𝑂𝑅 =
𝑟𝑖
𝑟𝑡

 

 

where ri is the crash rate for either freeway or non-freeway miles, and rt is the crash rate per mile 

of all driving. 

 The crash rate ri can be obtained by solving a system of equations. First, the sum of the 

crash rate r for each risk factor i multiplied by the proportion of exposure spent in that risk factor 

pi is equivalent to the total crash rate rt. 

 

∑𝑟𝑖𝑝𝑖 = 𝑟𝑡𝑝𝑡

𝑛

𝑖=0
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 In the second equation, the odds ratio formula is rewritten as: 

 

𝑟𝑡 =
𝑟𝑖
𝑂𝑅𝑖

 

 

Given that rt remains constant for a given sample, this yields the following equation: 

 

𝑟𝑡 =
𝑟𝑜
𝑂𝑅𝑜

=
𝑟1
𝑂𝑅1

= ⋯ =
𝑟𝑛−1
𝑂𝑅𝑛−1

=
𝑟𝑛
𝑂𝑅𝑛

 

 

The value of any crash rate ri can be expressed in terms of any other crash rate rj as: 

 

𝑟𝑖 = 𝑟𝑗
𝑂𝑅𝑖
𝑂𝑅𝑗

 

 

Inserting this equation into the crash rate summation equation yields: 

 

𝑟𝑜𝑝0 + 𝑟1𝑝1 +⋯+ 𝑟𝑛−1𝑝1+𝑟𝑛𝑝𝑛 = 𝑟𝑡𝑝𝑡 

 

𝑟𝑜𝑝𝑜 + 𝑟0 (
𝑂𝑅1
𝑂𝑅0

) + 𝑟0 (
𝑂𝑅2
𝑂𝑅0

) + ⋯+ 𝑟0 (
𝑂𝑅𝑛−1
𝑂𝑅0

) + 𝑟0 (
𝑂𝑅𝑛
𝑂𝑅0

) = 𝑟𝑡𝑝𝑡 

 

𝑟𝑖 (∑
𝑂𝑅𝑗

𝑂𝑅𝑖

𝑛

𝑖=0

𝑝𝑗) = 𝑟𝑡𝑝𝑡  

 

𝑟𝑖 =
𝑟𝑡𝑝𝑡

∑ (
𝑂𝑅𝑗
𝑂𝑅𝑖

𝑝𝑗)
𝑛
𝑖=0

 

 

 When pi is expressed as a percentage of the total, then pt = 1. In applying the methodology, the 

odds ratio should be calculated from the more detailed database. For this case study, odds ratios 

were calculated from the SHRP 2 NDS and the Autopilot NDS.   

 Once individual crash rates for each risk factor are calculated, they can be combined into 

an updated total crash rate using the formula: 

 

∑𝑟𝑖𝑝𝑖,𝑎𝑑𝑗. = 𝑟𝑡,𝑎𝑑𝑗𝑝𝑡

𝑛

𝑖=0

 

 

but replacing pi with the comparison ratios, e.g. 28% freeway miles and 72% non-freeway miles. 
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4 Results 

Crash rates using Autopilot and active safety features only were compared. In the manufacturer’s 

reports, Autopilot is consistently shown to have a higher average distance between crashes, 

ranging between 1.46 and 2.35 times greater than active safety only (Tesla, Inc., 2021). Autopilot 

is used predominately on freeways, as surface street functionality was only released recently to 

select users and remains in beta. A naturalistic driving study has shown that 93% of Autopilot 

usage is on roads with speed limits of 55 mi/hr or greater. In contrast, of the miles traveled using 

active safety only, only 30% occurred on roads with speed limits only greater than 55 mi/hr 

(Fridman et al., 2018). Because the SHRP 2 NDS dataset does not include speed limits but rather 

road classifications, roads with speed limits greater than 55 mi/hr were classified as freeways to 

allow for direct comparison with SHRP 2 NDS. 

 Combined severe and police-reportable crashes were used to calibrate the manufacturer 

data. The ratio of freeway to non-freeway crashes is 2.01. Assuming that this ratio holds for the 

manufacturer data, then the crash rates can be adjusted using the methods in the previous section. 

Variables for Q1 2021 are provided in Table 3. 

 

Table 3 Case Study Crash Adjustment Variables 

Variable Freeway Non-Freeway 

OR 0.58 1.17 

p, Autopilot 0.93 0.07 

p, Active Safety Only 0.3 0.7 

p, SHRP 2 NDS 0.28 0.72 

 

 The miles between crashes after adjusting for freeway and non-freeway use is shown in 

Table 4 and Figures 2 and 3. 
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Table 4 Autopilot and Active Safety Only Crash Rates Adjusted for Road Usage 

 Autopilot 

Crashes per 100 million miles 

Active Safety Only 

Crashes per 100 million miles 

Date Unadjusted Adjusted Unadjusted Adjusted 

Q3 2018 29.9 48.4 52.1 52.8 

Q4 2018 34.4 55.5 63.3 64.2 

Q1 2019 34.8 56.3 56.8 57.6 

Q2 2019 30.6 49.4 45.7 46.3 

Q3 2019 23.0 37.2 37.0 37.6 

Q4 2019 32.6 52.6 47.6 48.3 

Q1 2020 21.4 34.5 50.3 51.0 

Q2 2020 22.1 35.7 44.1 44.7 

Q3 2020 21.8 35.2 41.3 41.9 

Q4 2020 29.0 46.8 48.8 49.5 

Q1 2021 23.9 38.6 48.8 49.5 

 

  
Figure 2 Unadjusted crashes per 100 million miles. 

 

  
Figure 3 Crashes per 100 million miles, adjusted for road classification. 
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The same procedure was used to adjust for driver demographics. Tesla owners are 

concentrated in the 50 to 70-year-old age brackets and underrepresented among drivers ages 16–

39 and 75 and older (Hardman et al., 2019). Table 5 lists the percentage of drivers in each bin for 

both samples.  

 

Table 5 Comparison of Driver Demographics 

Age 

Tesla 

Owners1 

Percentage of 

US Licensed 

Drivers2 

Weighted Most Severe and 

Police Reportable Crashes 

per 100 million miles3 Odds Ratio 

16-24 0.7% 12% 1413 2.11 

25-39 12.1% 26% 531 0.79 

40-54 29.3% 28% 501 0.75 

55-74 47.5% 27% 604 0.90 

75+ 10.3% 7% 1059 1.58 

Totals 100.0% 100.0% 669 1.00 

1 Statistics obtained from Hardman et al. (2019). 
2 Statistics obtained from Blanco et al. (2016). 
3 Statistics obtained from Transportation Research Board of the National Academy 

of Sciences (2013). 

 

The results compare the crashes per 100 million miles for Autopilot and Active safety in 

unadjusted numbers, adjusted for road type, and adjusted for both road type and owner age. 

National statistics for airbag deployments in the SHRP 2 NDS data are adjusted for driver age. 

While the Autopilot and active safety only crashes did include airbag deployments, they also 

included activations of other restraint systems, and so airbag deployments only is probably not 

an accurate comparison to assess safety. Crash rates rated as severe in SHRP 2 NDS occurred 

257 times per 100 million miles, while combined severe and police-reportable crashes occurred 

668 times per 100 million miles. Both estimates were significantly higher than manufacturer 

reported crashes, although without more information regarding manufacturer crash thresholds, a 

direct comparison is impossible. 

 Crash rates adjusted for road classification and owner age are shown in Figure 4. 
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Figure 4 Manufacturer crash rates adjusted for road use and owner age. 

 

5 Conclusions 

By correcting for roadway usage differences between the Autopilot and active safety only data, 

much of the crash reduction seen by vehicles using Autopilot appears to be explained by lower 

crash rates experienced on freeways. Correcting for age demographics likewise produced a 10% 

increase in the estimated crash rate, although it remains well below the rate of severe crashes in 

the SHRP 2 NDS.  

 Several other factors may explain difference in safety rates of new vehicle technologies 

based on who is using them, where they are being used, and when they are being used. Some 

safety features cannot be used in rain or snow, for example, which may bias the data towards 

clear weather and lower crash rates generally. 

 

5.1 Limitations 

Comparing limited data across inconsistent samples as done in this study requires several 

assumptions that may limit the accuracy of the results. There are five main assumptions that may 

affect the results. 

 First, it is assumed that ratios between freeway and non-freeway driving found in the 

SHRP 2 NDS are maintained in the manufacturer data set. If driver crash twice as often on non-

freeways as freeways, it is assumed that drivers in the manufacturer’s data will also crash twice 

as often, although the absolute rate may be different.  
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 Second, the MIT data is assumed to be accurate and applicable. The data was collected in 

early 2018 before manufacturer safety reports were published, so it is possible that driver travel 

patterns and usage of Autopilot has changed significantly in the interim, affecting the results. 

Much of the naturalistic data was collect in and around Boston, Massachusetts. This data may 

not be applicable to the United States generally. 

 Third, it was assumed that vehicles on the same type of road were exposed to the same 

crash risk. Not only type of road but also conditions on the road may differ for Tesla drivers 

resulting in different crash rates. Congested traffic, for example, might result in more crashes per 

mile traveled. If Tesla’s are more likely to be driven along urban corridors during peak periods, 

then they will be more likely to encounter congestion. These data, while not available, could 

have a significant impact on observed crash rates.  

 Fourth, there is some uncertainty over what classifies a road as freeway. In the SHRP 2 

NDS, camera images were evaluated to determine road classification. In the MIT data, an 

assumption was made that roads with speed limits of 55 mi/hr or greater were freeways. There 

are, of course, roads with 55 mi/hr speed limits that are not freeways, although it is unclear to 

what extent these roads are prevalent in the Boston area where much of the naturalistic data was 

collected. 

 Fifth, it was assumed that the SHRP 2 NDS crash severities of severe and police-

reportable, when combined, captured the same types of crashes as those recorded by Tesla. 

While these definitions appear most similar of the choices available, it is unlikely they are a 

perfect match as SHRP 2 NDS data relied on some human judgement and the manufacturer crash 

rate definitions were dependent on active safety features with unclear thresholds. It was therefore 

difficult to directly compare manufacturer crash rates with national estimates. 

 

5.2 Best Practices 

When comparing vehicle technologies to national crash rates, some best practices may help 

facilitate evaluations. Anonymized driver or owner demographics may be used to isolate safety 

impacts, as highly educated middle-aged drivers are both more likely to purchase luxury cars and 

simultaneously crash at lower rates than the overall population. Similarly, specific details 

regarding built-in restrictions on when vehicle technologies can and cannot be used allows 

researchers to better design baseline metrics that match the technology’s operational design 

domain. Manufacturers should record additional anonymized data on vehicle driving 

environments, rates of usage of automation modes, and details on when and where the modes are 

used. Selective sampling of short segments of vehicle trips could be used to develop statistics on 

baseline behavior to compare against crash records.  

 Finally, consistent crash definitions and thresholds are becoming increasingly necessary 

in order to evaluate new safety technologies. The standard metric of police-reportable has 

different meanings in different jurisdictions—this creates confusion when crashes that meet the 

threshold for reporting are either not reported or reported but not logged into police databases. 

More consistent definitions could combine such metrics as maximum jerk, maximum 
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acceleration, changes in subject vehicle relative speed. When metrics such as airbag deployment 

or vehicle crash sensing are employed, measurements of changes in vehicle velocity over time 

can help to further refine crash classification and provide insight into a crash’s severity.  
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