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ABSTRACT
Structural measurements of subchondral and trabecular bone are of interest for
a wide variety of communities ranging from anthropology to biomechanical engi-
neering, yet continues to be a challenge partly because of the lack of automated
techniques for use with high resolution data. Here we present a structure-based
algorithm for separating cortical compartments from trabecular bone in binarized
images. Using the thickness of the cortex as a seed value, bone connected to the
cortex within a spatially local threshold value is identified and separated from the
remaining bone. The algorithm was tested on biological images from human, chim-
panzee, and gorilla datasets and compared to manual measurements. The average
error was 2-3 voxel differences in thickness and total area errors were less than ten
percent. The algorithm is repeatable, efficient, and requires few user inputs, provid-
ing a means of separating cortical from trabecular bone. The Matlab code, example
images, and datasets can be downloaded from uitbl.mechse.illinois.edu.
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1. Introduction

Micro-computed tomography (micro-CT) is a primary source of structure and compo-
sition information of mineralized tissues for analyses of bone properties (Currey 2002).
The increase in micro-CT availability and capacity, coupled with increased computa-
tional resources in research and clinical settings, has allowed for both cross-sectional
and longitudinal studies to evaluate spatially local changes in bone under a variety
of conditions. The (re)modeling response of bone to mechanical loading has been a
longstanding subject of interest and has applications spanning from anthropology to
medicine (Huiskes et al. 2000; Carlson et al. 2013; Wolff 1892; Currey 2002; Kivell
2016; Polk et al. 2008b; Su 2011; Müller-Gerbl et al. 1992; Polk et al. 2008a).

While the analysis of diaphyseal cortical properties are relatively straightforward,
analyses of the epiphyses of bone remain challenging because of the simultaneous hi-
erarchal and heterogeneous structure of bone. A rigorous assessment of cortical, sub-
chondral, and trabecular properties requires separating these regions for independent
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analyses. However, quantifying cortical bone thickness is difficult in regions where the
trabecular mesh is highly complex and closely connected to the outer shell of bone.
This is especially problematic in the epiphyses of bone, where subchondral bone, the
thin layer of cortical bone underlying the joint articular cartilage (Radin et al. 1970;
Pugh et al. 1974), is much thinner than bone at the diaphysis.

To avoid misidentifying subchondral bone as trabecular bone, volumes of interest
(VOIs) at the center of the joint geometry have been used (Ryan and Ketcham 2002;
Fajardo et al. 2007; Ryan and Walker 2010; Su et al. 2013). However, bone functional
signals may be lost within this central region, and the clearest signal is likely to be
present close to the joint surface (Fox et al. 2016; Polk et al. 2008b). Accounting for
the spatial variation in micro-structure throughout the entire bone, in contrast to
single isolated VOI-based analyses, may be a critical determinant for understanding
how bone adapts to changes in mechanical loading.

While there have been significant advances in the imaging capacity of micro-CT,
the methods needed to analyze the resulting data require further development. Several
algorithms of varying complexity have been proposed to separate the cortex from the
remaining trabecular structure. These algorithms rely on a combination of threshold-
based techniques combined with morphological closing and opening operations to gen-
erate an external and internal shell. With all micro-CT imaging, variation will exist
between scans, laboratories, and specimens, and the threshold values likely need to be
tuned for different datasets. The analysis from Buie et al. shows that a small set of dual-
threshold values could be used to reliably segment cortical bone in a variety of samples
at different resolutions (Buie et al. 2007). However, variation due to scanner drift will
require that the threshold values be periodically tuned for optimal results. There is the
inevitable need to segment bone as an initial step for the aforementioned algorithms
including the one we propose here. The use of different segmentation schemes based on
global, local, or adaptive threshold values has been widely discussed in the literature
and the reader is referred to (Pal and Pal 1993) for a review of these methods.

Once an optimal segmentation is achieved, we propose that the resulting binarized
structural information can be used to separate the cortical compartment from the
remaining bone. Here we present a simple automated approach using the BoneJ plug-
in available with ImageJ (Doube et al. 2010) and MATLAB (MathWorks, Natick, MA)
to first identify an image border of bone and then find bony components connected to
the outer shell alone.

2. Methods

2.1. Image input requirements

Two input datasets are required: (1) a binary image (Fig. 1A) and (2) a thickness map
(matrix) of the structures within the image (Fig. 1C). Thickness maps were obtained
from the binarized image stacks using the ImageJ plugin, BoneJ (Hildebrand and
Rüegsegger 1997; Doube et al. 2010). The resulting thickness image was saved as a
text file and imported into MATLAB. Voxels with no data (NaN) were assigned zero.

2.2. Image border detection

Similar to Buie (Buie et al. 2007), we assume that an external cortical shell of bone
exists as a continuous surface. However, it is not uncommon to have regions of cortical
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Figure 1.: General workflow of algorithm based on two user inputs, binarized data
and thickness matrix obtained from ImageJ plugin, BoneJ. Example images from the
human femoral head.

bone that are as thin as the surrounding trabecular bone, or are undetectable in the
initial segmentation due to image noise or partial volume effects. Similarly, gaps in cor-
tical bone may exist in pathological specimens (e.g., osteoporotic bone) or specimens
from museum collections. These image artifacts may result in errors in the detection
of a continuous border.

Therefore, we implemented an initial border check to ensure that a continuous
border exists within the image by estimating a maximum border length and comparing
it to the border within the image. The maximum border length was calculated using
the extrema points of the binarized image to calculate the maximum distance from top
to bottom, Xest, and from right to left, Yest, as seen in Figure 2. The extrema points
are connected to form triangles enclosing rough quadrants of the object border. This
evaluation of the border is based on the assumption that the external contour of bone
is convex or concave, not undulating; and therefore, the summation of the opposite and
adjacent sides of the triangle will always be larger than the border. These maximum
distances were used to calculate a maximum perimeter, Be, using Eq. 1.
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Be = 2(Xest + Yest) (1)

Figure 2.: Rectangular estimation of the border, Be, calculated from extrema points
for the lateral condyle of a chimpanzee.

The maximum rectangular perimeter value, Be, was then compared to the initial
calculation of the external border using MATLAB (function bwboundaries, version
R2017A, Mathworks, Natick, MA, USA). If the border length is larger than the rect-
angular estimate, a warning is issued that the border should be corrected to fill gaps or
holes that typically cause an overestimation of the border. These can be corrected us-
ing morphological erosion and dilation operations or other corrective options available
within image processing software packages.

2.3. Thickness-based separation

The thickness matrix, based on measurements of the thickness of all objects within an
image, was used to extract regions connected to the outer border that are of similar
local thickness values. For any given pixel, p, along the boundary, the thickness (thp)
of bone was identified from the thickness matrix (Figure 1C).

The bone border was then sectioned into quadrants (Figure 1D), and the average
of all non-zero thickness values at each quadrant was calculated, thq. The average
quadrant thickness, thq, containing the pixel of interest was then used to determine
the range of thickness values to include in the segmentation (Eq. 2). Next, a subset of
pixels, ps, to evaluate was identified by centering a window equal to 10% of the image
width and length around the pixel of interest. Within this window, half of the global
minimum thickness thmin value of each quadrants average thickness value was used as
an upper and lower threshold to identify pixels of similar local thickness to the pixel
of interest according to Eq. 2:.

pss = (thp −
thmin

2
× thq) < ps < (thp +

thmin

2
× thq) (2)

where pss is the total subset of pixels, ps, within the range associated with the pixel

4



on the border, thp, and thmin is the global minimum thickness value.
This process was then repeated for every thp, continuing clockwise to the next loca-

tion, i+1, along the entire boundary (Fig. 3). For each pixel evaluated, the connectivity
of the results was verified to ensure that the pixel of interest was included in each sub-
sequent calculation. The resulting subsets were then merged into the final segmented
image (Fig. 3D) which was then smoothed by eroding and dilating the image using
a disc structural element (Fig. 3E). The algorithm was tested using a computer with
two Xeon E5-2667 V4 Broadwell model processors with a total of 32 threads available.

Figure 3.: Using the thickness matrix visualized in (A), the first pixel on the border (red
asterisk in B) was identified and a subset of pixels within the set range (teal region) is
shown on the thickness image. (C) Consecutive border pixel with corresponding areas.
(D) The pixels identified were added to the previous cortical bone image to create a
final segmented image (E).

2.4. Evaluation: Biological images

We evaluated the accuracy of the algorithm using high-resolution micro-computed
tomography data sets: data from the human proximal femur was subdivided into
the femoral head (n= 50 slices, Fig. 4A) and neck (n = 50 slices, Fig. 4B) and the
chimpanzee lateral condyle (n = 41 slices, Fig. 4C). The human femur data was of
isotropic voxel size, 0.049 mm, and the chimpanzee data had a pixel size of width,
height = 0.05 mm and voxel depth of 1 mm. In the human femoral data, the data was
aligned to the femoral neck axis after which portions of the femoral head and neck
were analyzed separately. These species were selected to evaluate the utility of the
algorithm across specimens with broad variation in cortical and trabecular thickness
(Carlson and Patel 2006).

Figure 4.: Biological images for evaluation of algorithm accuracy. (A) Human femoral
head, (B) femoral neck, (C) chimpanzee lateral condyle, and (D) gorilla lateral condyle

We also evaluated our algorithm on a dataset without a closed border, such as those
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slices found at a mid-slice through the bone, as an example of a worst-case scenario.
To do so, we ran the algorithm on the mid-section of a lateral condyle from a set of
gorilla CT data with in-plane voxels of 0.05 mm and depth of 1 mm (Fig. 4D).

The accuracy of the segmentation was quantified by comparing the results from
our algorithm to a ”gold standard” segmentation method of hand contouring using
the segmentation editor plugin in Fiji. For manual segmentation, 11 images from each
dataset was taken at regular intervals. All data was checked for normality using a
Shapiro-Wilks test (alpha = 0.05). The mean absolute percent error in the area be-
tween measurements from our algorithm and manual contouring was calculated. We
further subdivided images into quadrants and calculated the mean error in local thick-
ness measurements. All statistical analyses were performed using R Studio (version
1.1.447, R-Studio, Inc).

3. Results

The algorithm was able to segment variably thick cortex as well as uniformly thick
and thin cortices. Representative images from all data sets demonstrate the algorithm
adjusting from thicker cortical bone to almost non-existent cortical bone within a
given slice (Fig. 5). The femoral head data was relatively thick and uniform in many
slices (Fig. 5A) while the femoral neck data reveals the thin cortices that are known
to characterize this region of the proximal femur (Fig. 5B).

Figure 5.: Resulting cortical bone segmentation and the remaining trabecular bone
are shown in sequence for (A) human femoral head, (B) femoral neck, (C) chimpanzee
lateral condyle, and (D) gorilla lateral condyle CT sample images.

The median processing time for the algorithm was 46.5 ± 12.7 seconds, and was
over ten times faster than the time required to manually segment the images (570 ±
128 seconds). The processing time for both manual and algorithm based segmentation
was dependent on the complexity of the data (Table 1). The femoral head dataset,
which was fairly uniform in thickness, took the least amount of time to segment. In
contrast, the human femoral neck was more variable in thickness within a given slice,
and took nearly twice as long to process. As a larger species, the gorilla data set also
took longer to process than the femoral head and chimpanzee data.
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Table 1.: Algorithm-based and manual segmentation time and mean absolute percent
error in area measurements in the femoral head, neck, chimpanzee, and gorilla datasets.

Dataset
Average time per slice (sec)

Error in area (%)
Algorithm Manual

Femoral head 27 420 5.64
Femoral neck 53 730 6.56
Chimpanzee 40 540 3.22
Gorilla 54 600 9.01

All data was found to be normally distributed. The mean absolute error in area
measurements across all datasets was 5.81 ± 2.17% and the largest error was in the
gorilla dataset (Table 1). The algorithm tended to overestimate the area of the femoral
head and chimp condyle while the area in the femoral neck was underestimated by our
algorithm. In general, the algorithm was successful in following increasing or decreasing
areas along a given dataset (see Fig. 6B,C).

Figure 6.: Comparison between manual and algorithm cortical bone segmentation re-
sults for chimpanzee and femoral head and neck datasets. The percentage error be-
tween the manual and algorithm segmentation are displayed in a histogram (A) femoral
head, (B) femoral neck, and (C) chimpanzee lateral condyle datasets.

With regards to thickness measurements, the average difference in femoral neck
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thickness calculations - compared to manual measurements - was less than one voxel
(50 microns). Similar results were found for the gorilla dataset with the exception
of the anterior aspect which had an average error of 100 microns. The femoral head
dataset had similar error ranges (32-90 micron differences), and finally the chimpanzee
had the highest differences in thickness with a maximum difference of 434 microns in
the superior compartment.

Table 2.: Difference between manual and algorithm-based segmentation

Dataset
Mean Difference (µm)

Posterior Inferior Superior Anterior
Head -71 ± 114 90 ± 114 -54 ± 94 32 ± 141
Neck 2 ± 58 -37 ± 137 -20 ± 39 13 ± 58

Chimpanzee -98 ± 46 -153 ± 63 434 ± 300 232 ± 192
Gorilla -17 ± 28 -29 ± 50 14 ± 67 100 ± 83
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Figure 7.: Local cortical thickness measurements within the femoral head and neck,
and chimpanzee and gorilla lateral condyle. Measurements are based on mean thickness
within each quadrant.

4. Discussion

We have presented a structure-based methodology for segmenting cortical or subchon-
dral bone from binarized micro-computed tomography images. The overestimation of
the border in the femoral head, chimp condyle and remaining sections of the gorilla
data was due to inclusion of cortical segments that extended into the trabecular re-
gion of bone (see magenta regions in Figure 8A,C, and D). The underestimation of the
border in the femoral neck was the result of gaps in our binarized images that were
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not found during the manual segmentation of the grayscale images Figure 8B). The
overestimation in the gorilla dataset was attributable to the inclusion of a section of
trabecular bone towards the open border which our algorithm included as part of the
cortical border (Figure 8D).

As expected, local thickness measurements were more variable between our algo-
rithm and manually derived measurements. The algorithm performed quite well in
datasets except for the chimpanzee condyle. Within the inferior and posterior regions,
the algorithm tended to overpredict thickness values while the superior and anterior
regions were underpredicted. Our visual inspection of the images did not reveal any
trends to explain these differences, and the qualitative results remained acceptable.

Figure 8.: Overlay of manual vs. algorithm segmentation for (A) femoral head, (B)
femoral neck, (C) chimpanzee lateral condyle, and (D) gorilla lateral condyle. White
displays the regions of overlapping segmentation, green displays manually segmented
bone not present in the algorithm segmentation, and magenta displays algorithm seg-
mented bone not present in the manual segmentation.

Previous attempts at identifying cortical boundaries were based on profiling the
Hounsfield unit (HU) values along a line passing through the cortex. However, image
noise and partial volume effects complicate the identification of a single HU threshold
for segmentation, and either a mean HU value (Kang et al. 2003) or several threshold
values must be used to create inner and outer borders (Buie et al. 2007; Lublinsky
et al. 2007). Others have proposed using the normal vectors from an outer contour,
again based on a threshold unit, in combination with morphological operations using
kernel sizes derived from the trabecular structure to minimize artificial changes in
structure (Lublinsky et al. 2007; Pahr and Zysset 2009; Gross et al. 2014).

Segmentation requires the capacity to distinguish the thicker region of cortical bone
from trabecular bone, but may not be possible at joint surfaces where subchondral
bone is thin. Morphological operations use a combination of processes such as open-
ing/closing and erosion/dilation to mask and separate cortical and trabecular bone.
The amount of bone to open/close or erode/dilate is determined by a kernel or struc-
turing element size, which may be determined iteratively or via average trabecular
thickness in the region of interest (Buie et al. 2007; Gross et al. 2014). This process
may be problematic in complex trabecular bone and thin subchondral bone such that
only a very large kernel size will work with subchondral bone, and thus will obscure
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small features and variations in the bony shell. Current methods may work well with
bony areas that have less trabeculae or bones with less complex trabecular structure
(i.e. in the bone shaft, or smaller bones like the metacarpal/tarsal). However, when
the trabecular structure is highly complex and closely connected to the subchondral
bone, such as at a joint (knee or hip), the results are sensitive to the thresholding and
morphological opening/closing operations.

Here we propose that once a binarized image is obtained, the structure itself provides
a reliable and unbiased means for separating the cortex from the remaining bone. The
results presented were obtained using the same code for all datasets, but modifications
can be made in the code to allow for greater segmentation accuracy. The user inputs
that can be changed relate to the border search parameters and the size of the section
of image to analyze at one time.

The accuracy of this algorithm is highly dependent on the thresholding process of
the initial micro-CT images and other segmentation procedures. The true bone border
can be affected by pixel-wide gaps in the bone border. Secondly, CT noise artifacts
can mar sections of the bone border, especially where the border is concave, causing
complications when identifying the bone border. Our evaluation of the initial border
provides a means of ensuring that a continuous border exists, but the quality of the
input binarized image remains a significant determinant of the resulting morphological
measurements.

However, once binarized our algorithm for separating subchondral and trabecular
bone allows for an effective analysis of isolated subchondral and trabecular properties
across joint surfaces. This information is useful for a range of questions in comparative
biology and clinical applications. For example, the spatial distribution of subchondral
density and thickness across joint surfaces has been used to identify normal and patho-
logical patterns of joint loading in human and other mammals (Müller-Gerbl et al.
1992; Carlson and Patel 2006; Pontzer et al. 2006; Su 2011; Madry et al. 2010). This
is also clinically relevant since local (re)modeling responses in subchondral bone may
be implicated in osteoarthritis.

The body of evidence suggesting that osteoarthritis is a disease that is initiated in
subchondral bone is growing. Having the capacity to repeatably identify spatially spe-
cific changes in subchondral bone is critical to understanding how subchondral bone
serves as an energy absorbing material to dissipate stresses during everyday loading
of the joint (Madry et al. 2010; Müller-Gerbl et al. 1992)(Madry, van Dijk, & Mueller-
Gerbl, 2010). Similarly, this method allows quantification of trabecular structures and
properties across joint surfaces without interference or confounding effects of corti-
cal/subchondral bone. The development of automated processing techniques - such as
the one presented here - for high resolution data will allow for more thorough analy-
ses over larger spatial regions and improve full-field characterizations of structure in
complex materials.
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