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The multi-modal formulation of Koiter’s asymptotic method provides a systematic and
efficient procedure to evaluate the initial post-buckling behaviour and to assess the nonlinear
behavior of structures. This manuscript presents a displacement-based multi-modal formu-
lation of Koiter’s method for cylindrical shells, which are structures known for their high
imperfection sensitivity and for having clustered bifurcation modes that highly interact. A
third-order interpolation is used for the in-plane and out-of-plane displacements by means of
the Bogner-Fox-Schmit-Castro (BFSC) element, with 4 nodes and 10 degrees-of-freedom per
node, aiming at an accurate representation of the second-order fields required in the initial
post-buckling analysis. The single-curvature of the shell is considered in the finite element
kinematics and the study includes nonlinear kinematics from Von Kármán and Sanders. The
mesh is obtained by closing the circumferentially oriented coordinate at the position where
the mesh completes one revolution about the shell perimeter. The proposed formulation and
implementation is verified in detail by comparing results for composite shells against estab-
lished literature for multi-mode asymptotic expansions. A fast convergence of the proposed
formulation is observed for linear buckling, pre-buckling state and the initial post-buckling
coefficients. The developed formulation enables a close relationship between formulae and the
implemented code, and is implemented using state-of-the-art collaborative software. The au-
thors made the implemented routines in a publicly available data set with the aim to popularize
Koiter’s method.

I. Introduction
The asymptotic theory originally proposed by Koiter [1] has been used within semi-analytical contexts [2, 3] and has

also been applied within finite element frameworks [4–13]. In recent years, the method has been applied in the analysis
of imperfection sensitive shells [14–17]. Particularly the multi-modal formulation of Koiter’s approach provides a
systematic and efficient procedure to assess the nonlinear behavior of the structure in cases where several buckling
modes interact, such as in structures highly optimized for buckling and imperfection-sensitive shell structures, where
small imperfections due to variations in manufacturing parameters can induce different bifurcation paths [18, 19], which
can be studied by Koiter’s perturbation analysis.

The aim of the present work is to extend the multi-modal displacement-based formulation of Castro and Jansen [13]
to cylindrical shells. The adopted formulation and notation keep a close correspondence between the theory and the
implemented algorithms, being helpful in addressing issues experienced in the past with implementations of Koiter’s
asymptotic method, as highlighted by Casciaro [9].

General-purpose functional derivatives are presented and expressions for these functional derivatives are later
obtained using von Kármán and Sanders nonlinear shell kinematics.

The developed formulation and implementation is verified against existing literature for multi-modal asymptotic
expansion of a composite cylinder. A data set containing the implemented algorithms is made publicly available.
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

II. Multi-modal asymptotic expansion
Given a total potential energy functional q[DDD, _] that depends on displacements DDD and a scalar load multiplier _, a

pre-buckling static equilibrium with solution D0D0D0 that corresponds to a load level _0 can be described as:

Xq[D0D0D0, _0] = q′[D0D0D0, _0]XDDD = 0 (1)

Note that Eq. 1 is applicable to either a linear or a nonlinear pre-buckling state, and that the notation q′XDDD is used
instead of Xq to conveniently express the functional variation as a tensor product between the Fréchet derivative q′
and the variation of the vector containing all degrees-of-freedom XDDD [20]. Assume that there exists at least one point
of equilibrium that intersects [DDD(_), _] at a bifurcation point [D2D2D2 , _2], such that D2D2D2 = _2D0D0D0. Here, _2 represents the
critical buckling load or critical bifurcation load. Koiter [1] proposed to express DDD − D2D2D2 and _ − _2 using asymptotic
expansions, representing the difference between the current displacements and the displacements at the bifurcation
point, with the corresponding load increment:

DDD − D2D2D2 = EEE = bD�D�D� + b2D� �D� �D� � + b3D� � �D� � �D� � � + · · ·
_ − _2 = 0�_2b + 1�_2b2 + · · ·

(2)

where: (1) b is a scalar parameter. (2) D�D�D� is a first-order field, taken directly from one or a linear combination of
multiple linear buckling modes. Vector D�D�D� is customarily re-scaled dividing by the maximum normal displacement
amplitude and multiplying by the plate or shell thickness. (3) D� �D� �D� � is a second-order field that provides a correction to the
first-order field. (4) The third-order field D� � �D� � �D� � � , and higher, are assumed to have a negligible contribution. (5) 0� and 1�
are respectively first- and second-order load parameters to be determined. Equation 2 is a reduced-order model (ROM)
relating the load _ and displacement DDD around the equilibrium point [D2D2D2 , _2].

The necessity of considering multiple modes in the asymptotic expansion has been demonstrated by many authors.
Madeo et al. [12] demonstrated that plates with variable stiffness and high aspect ratio required 4 modes to obtain a
satisfactory approximation of the post-buckling behavior. Imperfection sensitive structures that usually show clustered
buckling modes and clustered natural frequencies [21–23] have also been studied using the asymptotic expansion with
multiple modes [14–17]. In such structures, small imperfections due to variations in manufacturing parameters can
induce different bifurcation paths [18, 19], which can be studied by Koiter’s multi-modal perturbation analysis. The
single-mode asymptotic expansion of Eq. 2 can be generalized to a multi-modal asymptotic expansion, as shown in Eqs.
3 and 4 [13, 24]:

DDD − D2D2D2 = EEE = b8D8D8D8 + b8b 9D8 9D8 9D8 9 + · · · (3)

b� (_ − _� ) = _� 0� 9:b 9b: + _� 1� 9:ℓb 9b:bℓ + · · · (4)

where summation convention is applied for repeated indices 9 , :, ℓ = 1, 2, · · ·< is applied. Equation 4 is a reduced-order
model consisting of a system of< equations obtained for � = 1, 2, · · · , <, which has b1, b2, · · · , b< unknowns. The value
_� correspond to the � Cℎ linear buckling eigenvalue D�D�D� , always re-scaled by dividing with the maximum out-of-plane
displacement and multiplying by the plate thickness. Finding the right number of linear buckling modes < in the
multi-modal analysis is an essential question [9], and a proposed criterion is to select a number of modes that lies within
10%-20% departing from the first critical load [9]. In the present study, this rule proposed by Casciaro et al. will be
investigated and discussed in the final manuscript, given that this is still an opened question without a generally accepted
criterion.

Note that Eq. 3 consists on a reduced-order model to calculate displacements DDD based on a pre-buckled state D2D2D2 with
known linear buckling modes D8D8D8 and known second-order displacement fields D8 9D8 9D8 9 . As in the case of the single-mode
expansion, for plates and shells it is customary to re-scale D8 9D8 9D8 9 dividing by the maximum normal displacement amplitude
of D8 9D8 9D8 9 and multiplying by the plate or shell thickness. The coefficients b8 for 8 = 1, . . . , < are found for each load _ after
solving the system of < equations given by Eq. 4. Solving Eq. 4 requires the calculation of all coefficients 08 9: and
18 9:ℓ .
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

The expressions given by Eqs. 3 and 4 can be applied to the expanded total potential energy functional of Eq. 5,
adopting the notation of Castro and Jansen [13].

q′[DDD, _]XDDD =
(
q′′2 +

•
q′′2 (_ − _2) +

1
2
••
q′′2 (_ − _2)2 + · · ·

)
EEEXDDD

+ 1
2

(
q′′′2 +

•
q′′′2 (_ − _2) +

1
2
••
q′′′2 (_ − _2)2 + · · ·

)
EEE2XDDD

+ 1
6

(
q8E2 +

•
q8E2 (_ − _2) +

1
2
••
q8E2 (_ − _2)2 + · · ·

)
EEE3XDDD

+ · · ·

(5)

The resulting formula is shown in Eq. 6, where the terms multiplying b 9b: and b 9b:bℓ are collected. The collected
terms for the multi-modal expansion are shown in Eq. 6, where the following orthogonality property of the linear buckling
modes is used: 〈D8D8D8 , D 9D 9D 9〉 = 0,∀ 8 ≠ 9 ; leading to q′′2D8D8D8D 9D 9D 9 = 0,∀ 8 ≠ 9 ;

•
q′′2D8D8D8D 9D 9D 9 = 0,∀ 8 ≠ 9 ; and

••
q′′2D8D8D8D 9D 9D 9 = 0,∀ 8 ≠ 9 .

Moreover, collected terms in brackets that are multiplying any of the perturbation parameters b 9 ,:,ℓ ultimately vanish,
knowing that b 9 ,:,ℓ → 0.

b 9b:

[ (
08 9: + 08: 9

)
_8D8D8D8

•
q′′2 + q′′′2 D 9D 9D 9D:D:D: + q′′2D 9:D 9:D 9: + q′′2D: 9D: 9D: 9

]
XDDD

+ b 9b:bℓ
[
_8

•
q′′2D8D8D8

(
18 9:ℓ + 18:ℓ 9 + 18ℓ: 9

+18 9ℓ: + 18: 9ℓ + 18ℓ 9:
)
+ q8E2 D 9D 9D 9D:D:D:DℓDℓDℓ

+q′′′2
(
D 9D 9D 9D:ℓD:ℓD:ℓ + D 9D 9D 9Dℓ:Dℓ:Dℓ: + D:D:D:D 9ℓD 9ℓD 9ℓ

+D:D:D:Dℓ 9Dℓ 9Dℓ 9 + DℓDℓDℓD 9:D 9:D 9: + DℓDℓDℓD: 9D: 9D: 9
)

+
••
q′′2 _

2
8D8D8D8

(
088 908:ℓ + 08 9808:ℓ + 088 908ℓ: + 08 9808ℓ:

+088:08 9ℓ + 08:808 9ℓ + 088:08ℓ 9 + 08:808ℓ 9
+088ℓ08 9: + 08ℓ808 9: + 088ℓ08: 9 + 08ℓ808: 9

)
+
•
q′′′2 _8

(
088 9D:D:D:DℓDℓDℓ + 08 98D:D:D:DℓDℓDℓ + 088:D 9D 9D 9DℓDℓDℓ + 08:8D 9D 9D 9DℓDℓDℓ

+088ℓD 9D 9D 9D:D:D: + 08ℓ8D 9D 9D 9D:D:D: + 08 9:D8D8D8DℓDℓDℓ + 08: 9D8D8D8DℓDℓDℓ

+08 9ℓD8D8D8D:D:D: + 08ℓ 9D8D8D8D:D:D: + 08:ℓD8D8D8D 9D 9D 9 + 08ℓ:D8D8D8D 9D 9D 9
) ]
XDDD

+ · · · = 0

(6)

For the expanded equilibrium to be stationary, each term in Eq. 6 must vanish separately. Assuming XDDD = D8D8D8 in Eq.
6, the expressions for 08 9: and 18 9:ℓ of Eq. 4 can be obtained, as respectively given in Eqs. 7 and 8.

08 9: = −
1

2_8
q′′′2 D8D8D8D 9D 9D 9D:D:D:
•
q′′2D8D8D8D8D8D8

(7)

18 9:ℓ =
−1

6_8
•
q′′2D8D8D8D8D8D8

[
q8E2 D8D8D8D 9D 9D 9D:D:D:DℓDℓDℓ +3q′′′2 D8D8D8

(
D 9D 9D 9D:ℓD:ℓD:ℓ + DℓDℓDℓD 9:D 9:D 9:

)
+_8

•
q′′′2 D8D8D8

(
088 9D:D:D:DℓDℓDℓ + 08 9:DℓDℓDℓD8D8D8 + 08:ℓD8D8D8D 9D 9D 9

)
+_2

8

••
q′′2D8D8D8D8D8D8

(
088 908:ℓ + 08 9:08ℓ8 + +08:ℓ088 9

) ] (8)

Note that, in the calculation of 18 9:ℓ , the second-order fields D8 9D8 9D8 9 are needed. First, a non-orthogonal second-order
field D̄8 9D̄8 9D̄8 9 is calculated. Note that the terms in brackets multiplying b 9b: in Eq. 6 are obtained for any 8Cℎ mode. Therefore,
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Fig. 1 Single-curvature BFSC element and the global coordinate system GHI.

the contribution for all 8 = 1, . . . , < modes are added and the following equation for D̄8 9D̄8 9D̄8 9 is obtained:

D̄ 9:D̄ 9:D̄ 9: =
[
q′′2

]−1
(
−1

2
q′′′2 D 9D 9D 9D:D:D: −

1
<

8=<∑
8=1

08 9:_8D8D8D8
•
q′′2

)
(9)

The orthogonal second-order field vectors in the multi-modal asymptotic expansion can be obtained after successive
Gram-Schmidt orthogonalization [25] operations, used to remove the components of D̄ 9:D̄ 9:D̄ 9: that are parallel to all linear
buckling modes used in the multi-modal expansion D8D8D8 , with 8 = 1, 2, . . . , <. This orthogonalization procedure is
formulated in Eq. 10.

D 9:D 9:D 9: = D̄ 9:D̄ 9:D̄ 9: −
8=<∑
8=1
D8D8D8
〈D̄ 9:D̄ 9:D̄ 9: , D8D8D8〉
〈D8D8D8 , D8D8D8〉

(10)

III. Linear buckling formulation
The objective of the present formulation is to calculate the first-order buckling states D8D8D8 used in Eqs. 7 and 8. The

Bogner-Fox-Schmit-Castro (BFSC) finite element [13, 26] is a C1 contiguous confirming plate element obtained by
taking tensor products of cubic Hermite splines. With 4 nodes per element and 10 degrees-of-freedom per node, the
BFSC approximates the in-plane and out-of-plane displacements using 3A3–order polynomials. The single-curvature
BFSC element (SC–BFSC) applied by Wang et al. [27] is proposed to combine the high-order interpolation of the BFSC
with cylindrical shell kinematics. Figure 1 illustrates a SC–BFSC element and a global coordinate system GHI, where
coordinate H is curvilinear following the circumferential perimeter, such that at H = 2cA the path closes on itself. The
nodal connectivity is also indicated, and the mesh is built to keep the element edges parallel to the G, H coordinates, such
that ℓG = G2 − G1 = G3 − G4, and ℓH = H4 − H1 = H3 − H2. Figure 2 shows the mesh closing on itself at the intersection of
elements 48= with elements 481. The natural coordinates are defined as b = 2G/ℓG − 1 and [ = 2H/ℓH − 1, and with the
proposed nodal connectivity, the values of b8 , [8 at each node, for all elements, are:

#>34 b8 [8

1 −1 −1
2 +1 −1
3 +1 +1
4 −1 +1

(11)

The displacements along G, H, I are respectively D, E, F and can be approximated within each element as:

D4, E4, F4 =
∑4
8=1 (((

D,E,F
8

D4D4D48 (12)
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Fig. 2 SC–BFSC mesh for the cylindrical shells.

where (((D,E,F
8

and D4D4D48 are the shape functions and the 10 degrees-of-freedom of the 8Cℎ node of the SC–BFSC element,
being in the following order: D, mD/mG, mD/mH, E, mE/mG, mE/mH, F, mF/mG, mF/mH, m2F/mGmH . For the SC–BFSC
element, the same shape functions of the plate BFSC element [13] can be used:

(((D
8
=

[
�8 �G

8
�
H

8
0 0 0 0 0 0 0

]
(((E
8
=

[
0 0 0 �8 �G

8
�
H

8
0 0 0 0

]
(((F
8
=

[
0 0 0 0 0 0 �8 �G

8
�
H

8
�
GH

8

] (13)

with the cubic Hermite functions �8 , �G8 , �
H

8
, �GH

8
calculated using natural coordinates [28–30]:

�8 =
1
16 (b + b8)

2 (bb8 − 2) ([ + [8)2 ([[8 − 2)

�G
8
= − ℓG32 b8 (b + b8)

2 (bb8 − 1) ([ + [8)2 ([[8 − 2)

�
H

8
= − ℓH32 (b + b8)

2 (bb8 − 2)[8 ([ + [8)2 ([[8 − 1)

�
GH

8
=
ℓGℓH

64 b8 (b + b8)
2 (bb8 − 1)[8 ([ + [8)2 ([[8 − 1)

(14)

where ℓG , ℓH are respectively the finite element dimensions along G, H, as shown in Figure 1. Using the proposed nodal
connectivity for the SC–BFSC element, the nodal degrees-of-freedom D4D4D48 and the respective shape functions (((D,E,F

8
are

concatenated as:

D4D4D4 =

{
D4D4D41 D4D4D42 D4D4D43 D4D4D44

}>
(((D =

[
(((D1 (((D2 (((D3 (((D4

]
(((E =

[
(((E1 (((E2 (((E3 (((E4

]
(((F =

[
(((F1 (((F2 (((F3 (((F4

] (15)

with (((D , (((E and (((F being matrices of shape 1 × 40.
The total potential energy of the cylindrical shell under axial compression can be represented by Eq. 16, where

Ω represents the shell domain and XΩ the shell boundaries, i.e. the loaded edges. The first term represents the strain
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energy based on equivalent single-layer theories [31, 32], whereas the second term represents the work done by external
forces at the boundaries #̂̂#̂# multiplied by a scalar _, with #̂̂#̂# expressed in force per length units.

q =
1
2

∫
Ω

(###YYY +"""^̂̂) 3Ω −
∫
XΩ

_#̂̂#̂#ᵀDDD3 (XΩ) (16)

The strain energy functional of the entire shell continuum is built from the individual contributions of all finite
elements q4:

q4 =
1
2

H4∫
H=H1

G2∫
G=G1

(###YYY +"""^̂̂) 3G3H (17)

where the membrane forces are ### =
{
#GG , #HH , #GH

}> and the distributed moments are""" =
{
"GG , "HH , "GH

}>. The
integration limits G1 ≤ G ≤ G2 and H1 ≤ H ≤ H4 define the domain of one finite element Ω4. The membrane YYY and
rotational ^̂̂ strains are assumed to follow von Kármán kinematics, also referred to in the literature as Donnell-type
[33, 34] or Kirchhoff-Love non-linear equations, given by:

YYY =


YGG

YHH

WGH

 =


D,G + 1
2F,

2
G

E,H + 1
A
F + 1

2F,
2
H

D,H + E,G + F,GF,H


^̂̂ =


^GG

^HH

^GH

 =

−F,,GG
−F,HH
−2F,GH


(18)

with (·),G = m (·)/mG used as a compact notation for partial derivatives.
For Sanders-type kinematics [35], also discussed in references [36, 37] for cylindrical shells, and in references

[38–41] for conical shells:

YYY =


YGG

YHH

WGH

 =


D,G + 1
2F,

2
G

E,H + 1
A
F + 1

2F,
2
H + 1

2
1
A2 E

2 − 1
A
EF,H

D,H + E,G + F,GF,H − 1
A
EF,G


^̂̂ =


^GG

^HH

^GH

 =


−F,,GG
−F,HH + 1

A
E,H

−2F,GH + 1
A
E,G


(19)

Unless otherwise specified, all the following derivations will assume Donnell-type kinematics. At the bifurcation
point, the following state of equilibrium exists, considering all =4 elements:

Xq =

=4∑
4=1

Xq4 −
∫
XΩ

_#̂̂#̂#ᵀXDDD3 (XΩ) =
[
=4∑
4=1

∫
Ω4

(
###>XYYY +""">X^̂̂

)
3Ω4

]
−

∫
XΩ

_#̂̂#̂#ᵀXDDD3 (XΩ) = 0 (20)
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Expressing the displacements within one element in terms of nodal coordinates D4D4D4 as per Eq. 12, XYYY and X^̂̂ can be
calculated from Eq. 18 as:

XYYY =


(((D,G + F,G(((F,G

(((E,H + 1
A
(((F + F,H(((F,H

(((D,H + (((E,G + F,G(((F,H + F,H(((F,G

 XD4D4D4

X^̂̂ =


−(((F,GG
−(((F,HH
−2(((F,GH

 XD4D4D4
(21)

where the partial derivatives of (((D,E,F are directly calculated from the shape functions of Eq. 13 in terms of the natural
coordinates b, [, using the following Jacobian relations:

m
mG
=
ℓG
2
m
mb

m
mH
=
ℓH

2
m
m[

(22)

The neutral equilibrium criterion also requires that X2q4 = 0 [41], such that, from Eq. 20:

X2q =

=4∑
4=1

X2q4 =

=4∑
4=1

[∫
Ω4

(
X###>XYYY + X""">X^̂̂

)
3Ω4 +

∫
Ω4

(
###>X2YYY +""">X2^̂̂

)
3Ω4

]
= 0 (23)

The first integral of Eq. 23 becomes the constitutive stiffness matrix of the element, calculated using the constitutive
relations from classical laminated plate theory [32]:

X### = ���XYYY + ���X^̂̂
X""" = ���XYYY +���X^̂̂

Note that the geometric non-linearity appears in the constitutive stiffness matrix due to F,G , F,H in Eq. 21. Therefore,
the linear constitutive stiffness matrix of a finite element  4 4 4 is calculated by assuming F,G , F,H = 0, leading to a 40× 40
matrix:

 4 4 4 =

∬
GH

©­­­­«


(((D,G

(((E,H + 1
A
(((F

(((D,H + (((E,G


>

���


(((D,G

(((E,H + 1
A
(((F

(((D,H + (((E,G


+


(((D,G

(((E,H + 1
A
(((F

(((D,H + (((E,G


>

���


−(((F,GG
−(((F,HH
−2(((F,GH

 +

−(((F,GG
−(((F,HH
−2(((F,GH


>

���


(((D,G

(((E,H + 1
A
(((F

(((D,H + (((E,G


+


−(((F,GG
−(((F,HH
−2(((F,GH


>

���


−(((F,GG
−(((F,HH
−2(((F,GH


ª®®®®¬
3G3H

(24)
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

The second integral of Eq. 23 becomes the geometric stiffness matrix of the finite element  �04 �04 �04, capturing the
geometrically nonlinear effects of a linear pre-buckling membrane stresses #0#0#0 =

{
#0GG , #0HH , #0GH

}> on the membrane
stiffness. Noting that X2^̂̂ = 000 [13, 41], the equation for  �04 �04 �04 becomes:

 �04 �04 �04 =

∬
GH


(((F

>
,G #0GG(((

F
,G

(((F
>

,H #0HH(((
F
,H

(((F
>

,H #0GH(((
F
,G + (((F

>
,G #0GH(((

F
,H

 3G3H (25)

The contributions all =4 finite element are added to build the global constitutive stiffness matrix    and geometric
stiffness matrix  �0 �0 �0 of the system:

   =
=4∑
4=1
 4 4 4

 �0 �0 �0 =
=4∑
4=1
 �04 �04 �04

(26)

The linear pre-buckling stress field of one finite element #0GG , #0HH , #0GH is calculated from the corresponding
nodal displacements D04D04D04 as:

#0#0#0 =


#0GG

#0HH

#0GH

 = ���


(((D,G

(((E,H + 1
A
(((F

(((D,H + (((E,G

 D04D04D04 (27)

where D04D04D04 is directly extracted from the full pre-buckling displacement vector D0D0D0 that can be obtained from a linear
static analysis, derived from the equilibrium of Eq. 20:

D0D0D0 =    
−1 505050 (28)

with 505050 represents any general pre-buckling force. When applying the neutral equilibrium criterion of Eq. 23 one
assumes that at the bifurcation point there is a value of internal membrane stresses ### based on the known linear
pre-buckling stress #0#0#0 described by ### = _#0#0#0, which leads to the condition X2q = 0. Therefore, the problem consists of
finding the value of _ that leads to:

XDDD> (   + _ �0 �0 �0) XDDD = 0 (29)

which holds true for any variation XDDD, such that the required condition for the equality of Eq. 29 is:

det (   + _ �0 �0 �0) = 0 (30)

Equation 30 represents a linear buckling eigenvalue problem, where a characteristic polynomial in terms of _ can be
obtained and solved. For a system with = unknown degrees-of-freedom, there are = eigenvalues that are roots of the
characteristic polynomial. In practice, the eigenvalues and corresponding buckling modes are solved using generalized
eigenvalue solvers that are able to efficiently extract only a desired number of eigenvalues and buckling modes, and in
the present work the locally optimal block preconditioned conjugate gradient method [42] implemented in SciPy [43] is
used. We refer to the lowest eigenvalue as being the critical linear buckling load _2 .

The integration of  4 4 4 and  �04 �04 �04 over the finite element domains are performed numerically using standard
Gauss-quadrature with 4 × 4 integration points per element. The authors verified that this amount of integration points
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

leads to a converged behavior even for variable-stiffness filament-wound cylinders [27]. For each integration point, the
local shell constitutive properties are calculated, with the elements of the constitutive matrices given by �8 9 , �8 9 , �8 9 :

�8 9 =
=∑
:=1

&8 9 (I: − I:−1)

�8 9 =
=∑
:=1

&8 9
1
2
(
I2
:
− I2

:−1
)

�8 9 =
=∑
:=1

&8 9
1
3

(
I3
:
− I3

:−1

) (31)

where = is the number of plies; &8 9 is the ply stiffness expressed in laminate coordinates [32]; I: and I:−1 define
respectively the positions of the outward and inward face of the : Cℎ ply, according to the coordinate system of Figure 1.

IV. Higher-order derivatives

A. Strains using Von Kármán kinematics
The functional derivatives leading to the =Cℎ–order tensors q (=)2 ,

•
q
(=)
2 and

••
q
(=)
2 were obtained during the multi-modal

asymptotic expansions. Assuming the kinematic relations of Eq. 18, and the approximation for the displacements given
by Eq. 12, the strain variations can be represented as:

XYYY = YYY′XDDD

X^̂̂ = ^̂̂ ′XDDD
(32)

where the ′ (prime) symbol is used to denote a Fréchet’s differentiation. Ordering the strain components as
Y1 = YGG , Y2 = YHH , Y3 = WGH , ^1 = ^GG , ^2 = ^HH , ^3 = ^GH; and adopting summation convention for repeated indices,
with 0 = 1, 2, · · · , =; the first and second variations of the extensional and rotational strains become:

XY8 = Y
′
80
XD0

X^8 = ^
′
80
XD0

X(XY8) = Y′′801XD0XD1
X(X^8) = ^′′801XD0XD1

(33)

With these definitions, the first variation of the strains given by Eq. 21 can be represented by means of first Fréchet’s
differentiation as:

YYY′0 =


(D0,G + F,G(F0,G

(E0,H + 1
A
(F0 + F,H(F0,H

(D0,H + (E0,G + F,G(F0,H + F,H(F0,G


^̂̂ ′0 =


−(F0,GG
−(F0,HH
−2(F0,GH


(34)

For a linear pre-buckling state, or linear fundamental state, the nonlinear terms of Eq. 34 are ignored. For a
nonlinear pre-buckling, or nonlinear fundamental state, the values or F,G and F,H are calculated based on the nonlinear
pre-buckling state at the load level _2 [44].
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

The second Fréchet’s differentiation of the strains leads to:

YYY′′
01
=


(F0,G(

F
1,G

(F0,H(
F
1,H

(F0,H(
F
1,G
+ (F0,G(F1,H


^̂̂ ′′
01
= 000

(35)

Note in Eq. 35 that Y′′
801

represents a symmetric second-order tensor, which is an important property to be considered
while implementing the method.

For the differentiations with respect to _, we must recall that all functional expansions were calculated about the
bifurcation point [D2D2D2 , _2], such that the strains and stresses are those corresponding to the displacement D2D2D2 = _D0D0D0, with
_ = _2 . Starting with YYY and ^̂̂ , using the notation m (·)/m_ =

•
(·) and m2 (·)/m_2 =

••
(·):

•
YYY =


D0,G + _F0,

2
G

E0,H + 1
A
F0 + _F0,

2
H

D0,H + E0,G + 2_F0,GF0,H


•
^̂̂ =


−F0,GG

−F0,HH

−2F0,GH


(36)

For a linear pre-buckling state, D0D0D0 is evaluated as per Eq. 28 and the nonlinear terms in Eq. 36 can be ignored, such
that the initial post-buckling analysis is greatly simplified. Nevertheless, the formulation presented next is valid for the
more general case of a nonlinear pre-buckling state. The second differentiation with respect to _ gives:

••
YYY =


F0,

2
G

F0,
2
H

2F0,GF0,H


••
^̂̂ = 000

(37)

For YYY′0 and ^̂̂ ′0, the first differentiation with respect to _ gives:

•
YYY′0 =


F0,G(

F
0,G

F0,H(
F
0,H

F0,G(
F
0,H + F0,H(

F
0,G


•
^̂̂ ′0 = 000

(38)

For the second differentiations with respect to _, ••YYY′0 = 000 and ••^̂̂ ′0 = 000. For YYY′′
01

and ^̂̂ ′′
01

all derivatives with respect to
_ are zero.
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

B. Strains using Sanders kinematics
Assuming the kinematic relations of Eq. 19, the first Fréchet’s differentiation of the strains renders:

YYY′0 =


(D0,G + F,G(F0,G

(E0,H + 1
A
(F0 + F,H(F0,H + 1

A2 E(
E
0 − 1

A
E(F0,H − 1

A
F,H(

E
0

(D0,H + (E0,G + F,G(F0,H + F,H(F0,G − 1
A
E(F0,G − 1

A
F,G(

E
0


^̂̂ ′0 =


−(F0,GG

−(F0,HH + 1
A
(E0,H

−2(F0,GH + 1
A
(E0,G


(39)

For a linear pre-buckling state, or linear fundamental state, the nonlinear terms of Eq. 39 are ignored. For a
nonlinear pre-buckling, or nonlinear fundamental state, the values or F,G , F,H and E are calculated based on the nonlinear
pre-buckling state at the load level _2 [44].

The second Fréchet’s differentiation of the strains becomes:

YYY′′
01
=


(F0,G(

F
1,G

(F0,H(
F
1,H
+ 1
A2 (

E
0(
E
1
− 1
A
(F0,H(

E
1
− 1
A
(E0(

F
1,H

(F0,H(
F
1,G
+ (F0,G(F1,H −

1
A
(F0,G(

E
1
− 1
A
(E0(

F
1,G


^̂̂ ′′
01
= 000

(40)

Again, as for the Von Kármán strains, Y′′
801

of in Eq. 40 represents a symmetric second-order tensor.

Differentiating with respect to _, starting with YYY and ^̂̂ :

•
YYY =


D0,G + _F0,

2
G

E0,H + 1
A
F0 + _F0,

2
H + _ 1

A2 E
2
0 − 2_ 1

A
E0F0,H

D0,H + E0,G + 2_F0,GF0,H − 2_ 1
A
E0F0,G


•
^̂̂ =


−F0,GG

−F0,HH + 1
A
E0,H

−2F0,GH + 1
A
E0,G


(41)

The second differentiation with respect to _ gives:

••
YYY =


F0,

2
G

F0,
2
H + 1

A2 E
2
0 − 2 1

A
E0F0,H

2F0,GF0,H − 2 1
A
E0F0,G


••
^̂̂ = 000

(42)
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

For YYY′0 and ^̂̂ ′0, the first differentiation with respect to _ gives:

•
YYY′0 =


F0,G(

F
0,G

F0,H(
F
0,H + 1

A2 E0(
E
0 − 1

A
E0(

F
0,H − 1

A
F0,H(

E
0

F0,G(
F
0,H + F0,H(

F
0,G − 1

A
E0(

F
0,G − 1

A
F0,G(

E
0


•
^̂̂ ′0 = 000

(43)

Similarly to the case of Von Kármán strains, for the second differentiations with respect to _, ••YYY′0 = 000 and ••^̂̂ ′0 = 000.
Additionally, for YYY′′

01
and ^̂̂ ′′

01
, all derivatives with respect to _ are zero.

C. Stresses
Based on Eqs. 18 - 38 it is straightforward to compute the corresponding stresses. Using classical constitutive

relations for laminated composites [32] and adopting the index notation: #1 = #GG , #2 = #HH and #3 = #GH;
"1 = "GG , "2 = "HH and "3 = "GH; the stress-strain relations can be written as:

#8 = �8 9Y 9 + �8 9^ 9
"8 = �8 9Y 9 + �8 9^ 9

(44)

where �8 9 represents the shell membrane stiffness; �8 9 the membrane-bending coupling stiffness; and �8 9 the
bending stiffness; all for 8, 9 = 1, 2, 3. The first Fréchet derivative of the stress terms are:

# ′
80
= �8 9Y

′
90
+ �8 9^′90

" ′
80
= �8 9Y

′
90
+ �8 9^′90

(45)

Recalling from Eq. 35 that ^′′
901

= 0, the second Fréchet derivatives are:

# ′′
801

= �8 9Y
′′
901

" ′′
801

= �8 9Y
′′
901

(46)

Note that # ′′
801
, " ′′

801
are symmetric second-order tensors. The first derivatives with respect to _ can be readily

computed as:

•
#8 = �8 9

•
Y 9 + �8 9 •^ 9

•
"8 = �8 9

•
Y 9 + �8 9 •^ 9

(47)

•
# ′80 = �8 9

•
Y′90

•
" ′80 = �8 9

•
Y′90

(48)

•
# ′′801 = 0
•
" ′′801 = 0

(49)
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Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

Finally, the second derivatives about _ are:

••
#8 = �8 9

••
Y 9

••
"8 = �8 9

••
Y 9

••
# ′80 = 0
••
" ′80 = 0
••
# ′′801 = 0
••
" ′′801 = 0

(50)

D. Functional derivatives
Assuming a general loading vector with distributed forces #̂̂#̂# at the cylinder boundaries XΩ, the total potential energy

can be written as:

q =
1
2

∫
Ω

(#8Y8 + "8^8) 3Ω −
∫
XΩ

_#̂̂#̂#ᵀDDD3 (XΩ) (51)

where 3Ω = 3G3H and summation convention is adopted for terms with repeated index 8 with 8 = 1, 2, 3. The
stationary total potential energy at [D2D2D2 , _2] is defined as q′2 = q′[D2D2D2 , _2], calculated using the first variation of
q2 = q[D2D2D2 , _2]:

q′2XDDD =

[
1
2

∫
Ω

(
X#8Y8 + #8XY8 + X"8^8 + "8X^8

)
3Ω −

∫
XΩ

_#̂̂#̂#ᵀXDDD3 (XΩ)
]

(52)

The variation XDDD is defined as XDDD = D0D0D0 = {· · · , D0, · · · }ᵀ, and the loaded boundaries are located at G = 0 and G = !;
such that the first Fréchet derivative of the total potential energy becomes:

q′2D0D0D0 =

[
1
2

∫
Ω

(
# ′80Y8 + #8Y′80 + " ′80^8 + "8^′80

)
3Ω −

∫
XΩ

_#̂̂#̂#ᵀ(DDD0G=03 (XΩ) −
∫
XΩ

_#̂̂#̂#ᵀ(DDD0G=!3 (XΩ)
]
D0 (53)

Resuming with the second Fréchet derivative, now replacing XDDD with XDDD = D1D1D1 = {· · · , D1 , · · · }ᵀ:

q′′2D0D0D0D1D1D1 =

[
1
2

∫
Ω

(
# ′′801Y8 + #

′
80Y
′
81 + #

′
81Y
′
80 + #8Y′′801 + "

′′
801^8 + "

′
80^
′
81 + "

′
81^
′
80 + "8�

��>
0

^′′801

)
3Ω

]
D0D1

=

[
1
2

∫
Ω

(
# ′′801Y8 + #

′
80Y
′
81 + #

′
81Y
′
80 + #8Y′′801 + "

′′
801^8 + "

′
80^
′
81 + "

′
81^
′
80

)
3Ω

]
D0D1

(54)

Note that q′′2 in Eq. 54 represents a second-order tensor with all geometrically non-linear terms present. If a linear
pre-buckling state is assumed, q′′2 =    + _ �0 �0 �0, with    and  �0 �0 �0 defined in Eq. 26. For a nonlinear pre-buckling, or
nonlinear fundamental state, q′′2 becomes the tangent stiffness matrix of a system in the case with no follower forces.
Continuing with the third Fréchet derivative, now using XDDD = D2D2D2 = {· · · , D2 , · · · }ᵀ:

q′′′2 D0D0D0D1D1D1D2D2D2 =

[
1
2

∫
Ω

(
��
�*0

# ′′′8012Y8 + #
′′
801Y

′
82 + # ′′802Y′81 + #

′
80Y
′′
812 + #

′′
812Y

′
80 + # ′81Y

′′
802 + # ′82Y′′801

+ #8��
�*0

Y′′′8012 +��
��*0

" ′′′8012^8 + "
′′
801^

′
82 + " ′′802^′81 + "

′
80�
��>

0
^′′812 + "

′′
812^

′
80 + " ′81�

��>
0

^′′802

)
3Ω

]
D0D1D2

=

[
1
2

∫
Ω

(
# ′′801Y

′
82+# ′′802Y′81+#

′
80Y
′′
812+#

′′
812Y

′
80+# ′81Y

′′
802+# ′82Y′′801+"

′′
801^

′
82+" ′′802^′81+"

′′
812^

′
80

)
3Ω

]
D0D1D2

(55)
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Lastly, using XDDD = D3D3D3 = {· · · , D3 , · · · }ᵀ, the fourth Fréchet derivative gives:

q8E2 D0D0D0D1D1D1D2D2D2D3D3D3 =

[
1
2

∫
Ω

(
��
�*0

# ′′′8013Y
′
82 + # ′′801Y

′′
823 +��

�*0
# ′′′8023Y

′
81 + #

′′
802Y

′′
813 + #

′′
803Y

′′
812 + #

′
80��

�*0
Y′′′8123 +��

�*0
# ′′′8123Y

′
80

+ # ′′812Y
′′
803 + #

′′
813Y

′′
802 + # ′81��

�*0
Y′′′8023 + #

′′
823Y

′′
801 + #

′
82��

�*0
Y′′′8013 +��

��*0
" ′′′8013^

′
82 + " ′′801�

��>
0

^′′823 +��
��*0

" ′′′8023^
′
81

+ " ′′802�
��>

0
^′′813 +��

��*0
" ′′′8123^

′
80 + " ′′812�

��>
0

^′′803

)
3Ω

]
D0D1D2D3

=

[
1
2

∫
Ω

(
# ′′801Y

′′
823 + #

′′
802Y

′′
813 + #

′′
803Y

′′
812 + #

′′
812Y

′′
803 + #

′′
813Y

′′
802 + # ′′823Y

′′
801

)
3Ω

]
D0D1D2D3

(56)

It is now possible to compute the functional differentiations corresponding to the second expansion of the total
potential energy functional, about _. From Eq. 54, the first differentiation about _ becomes:
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The second differentiation of q′′2 about _ becomes:
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The first differentiation of q′′′2 can be calculated based on Eq. 55 as:

•
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The second differentiation of q′′′2 about _ can be calculated from Eq. 59:
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The first and second differentiation of q8E2 with respect to _ can be calculated based on Eq. 56:
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••
q8E2 D0D0D0D1D1D1D2D2D2D3D3D3 = 0 (62)

V. Results
All the results herein presented were generated using the scripts provided in a publicly available data set [45]. The

data set also includes the implementation of the SC-BFSC element previously presented.

A. Verification
Water’s composite cylindrical shell is used as the first verification case. This shell has been investigated by Arbocz

and Starnes [46], and used as a verification case by Rahman [44]. Water’s shell is made of an 8-ply [±45/0/90]s laminate
and its geometry and laminate data is shown in Table 1. The ply angles are measured with respect to the G axis, rotating
about the I axis, with the axes defined according to Figure 1. Boundary conditions: the cylindrical shell is axially
loaded and both ends have the classical simply supported boundary condition SS-3 [46], whereby the out-of-plane and
circumferential displacements are fixed, whereas the axial displacements are kept free. The axial displacement is fixed
at only one node located at the middle cross section of the cylinder. All rotations are kept free.

Table 1 Geometric and material properties of the composite cylindrical shell investigated by Water [46]

Lay-up Total thickness [mm] Cylinder length [mm] Cylinder radius [mm]
[±45/0/90]BH< 1.01539 335.6 203.18603

�11 [�%0] �22 [�%0] �12 [�%0] a12

127.629 11.3074 6.00257 0.300235

B. Convergence analysis of the SC-BFSC
A convergence analysis is performed using element aspect ratios of ℓH/ℓG = 1, 2, 3, according to Figure 1. Tables 2

and 3 respectively show the results for Von Kármán and Sanders nonlinear kinematics. The number of nodes along the
circumferential direction =H is changed from 40 to 240, and the number of nodes along the axial direction =G is calculated
with =G = =H!/(2c'(ℓH/ℓG)). The mesh generator guarantees =G mod 2 = 1 to always create a row of nodes in the

SGP Castro, EL Jansen Preprint for AIAA Scitech 2022 paper
Copyright © 2022 by SGP Castro and EL Jansen. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Page 15 of 23



Displacement-based multi-modal formulation of Koiter’s method applied to cylindrical shells

Table 2 Convergence of critical linear buckling load for Water’s cylinder using SC-BFSC with Von Kármán
kinematics

Aspect ratio ℓH/ℓG = 1 Aspect ratio ℓH/ℓG = 2 Aspect ratio ℓH/ℓG = 3
=H =G DOF Load =G DOF Load =G DOF Load
40 11 4400 127.32745 23 9200 123.39947 33 13200 122.70039
60 17 10200 143.71740 33 19800 142.92665 51 30600 142.68585
80 23 18400 143.66714 45 36000 143.29293 67 53600 143.20413
100 27 27000 143.52886 55 55000 143.27813 83 83000 143.22877
120 33 39600 143.38488 67 80400 143.23133 101 121200 143.20075
140 39 54600 143.30871 77 107800 143.20703 117 163800 143.18490
160 45 72000 143.26379 89 142400 143.19030 133 212800 143.17476
180 51 91800 143.23497 101 181800 143.17930 151 271800 143.16756
200 55 110000 143.21967 111 222000 143.17221 167 334000 143.16266
220 61 134200 143.20441 123 270600 143.16649 183 402600 143.15900
240 67 160800 143.19321 133 319200 143.16252 201 482400 143.15608

middle cross section. An asymptotic convergence is observed, and the mesh =H = 80 and =G = 45 is selected for all the
studies presented in this manuscript, corresponding to a model with 3600 nodes and 36000 degrees-of-freedom.

Using a linear pre-buckling state, the convergence of 11−1−1−1 obtained with Sanders kinematics is presented in
Table 4. To compare with the implementation available in DIANA [47], it is assumed that for a linear pre-buckling
state, q′′2 of Eq. 54 is calculated with q′′2 =    + _2A �0 �0 �0, where _2A is the first linear buckling eigenvalue,    is the
linear constitutive stiffness matrix and  �0 �0 �0 the geometric stiffness matrix as defined per Eq. 26. Furthermore, all
nonlinear terms are ignored in the calculation of •YYY, as per Eq. 36 in the case of Von Kármán kinematics, or Eq. 41 for
Sanders-type kinematics. Additionally, all nonlinear terms are ignored in the calculation of YYY′0, as given in Eq. 34 for
Von Kármán kinematics, and in Eq. 39 for Sanders kinematics. A good convergence of 11−1−1−1 is also observed with
the mesh =H = 80 and =G = 45, corresponding to a model with 3600 nodes and 36000 degrees-of-freedom.

C. Linear buckling analysis
The first 24 linear buckling modes of Water’s composite cylindrical obtained with the SC-BFSC element, using

the selected mesh size, are compared against DIANA CQ40L element. The results presented in Table 5 show that the
SC-BFSC element with Sanders kinematics is able to approach the reference results closer than with Von Kármán
kinematics, as expected. The attempt to force classical plate kinematics in Abaqus by using transverse stiffnesses of
1000 ×�13 and 1000 ×�23 produced results that are closer to the SC-BFSC with Von Kármán and Sanders kinematics,
both based on classic shell kinematics. Figure 3 shows that the first linear buckling mode for Water’s shell has 14
half-waves. The simplified shell kinematics obtained with Von Kármán nonlinear equations is not able to describe
the first linear buckling mode shapes, as shown by Figure 4-a. On the other hand, Sanders kinematics are able to also
capure 14 half-waves for the first linear buckling mode, as shown in Figure 4-b.

D. Perturbation analysis
A perturbation analysis with linear pre-buckling state is performed and the results for the diagonal terms 18−8−8−8 ,

for 8 = 1, 2, · · · , 10 are presented on Table 6. There is a close match with DIANA CQ40L elements up to mode 8, and it
was observed that modes 9 and 10 from the SC-BFSC mesh correspond to modes 11 and 12 from DIANA CQ40L mesh.
This mode switch is expected, especially observing in Table 5 the small proximity of the linear buckling eigenvalues.

In order to evaluate the off-diagonal terms for the 18− 9−:−ℓ factors, a perturbation analysis considering the interaction
between modes 1, 3, and 5 of Table 5 is performed. Again, a linear pre-buckling state is assumed. The results presented
in Table 7 show a close agreement between the SC-BFSC element using Sanders kinematics and DIANA CQ40L
element.
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Table 3 Convergence of critical linear buckling load for Water’s cylinder using SC-BFSC with Sanders-type
kinematics

Aspect ratio ℓH/ℓG = 1 Aspect ratio ℓH/ℓG = 2 Aspect ratio ℓH/ℓG = 3
=H =G DOF Load =G DOF Load =G DOF Load
40 11 4400 126.95431 23 9200 123.08702 33 13200 122.39329
60 17 10200 140.83009 33 19800 140.22962 51 30600 140.10289
80 23 18400 140.78053 45 36000 140.49394 67 53600 140.43742
100 27 27000 140.70037 55 55000 140.49747 83 83000 140.46084
120 33 39600 140.60686 67 80400 140.47566 101 121200 140.45166
140 39 54600 140.54983 77 107800 140.45943 117 163800 140.44140
160 45 72000 140.51293 89 142400 140.44582 133 212800 140.43284
180 51 91800 140.48780 101 181800 140.43597 151 271800 140.42598
200 55 110000 140.47408 111 222000 140.42922 167 334000 140.42093
220 61 134200 140.45986 123 270600 140.42360 183 402600 140.41701
240 67 160800 140.44921 133 319200 140.41959 201 482400 140.41383

Fig. 3 Water’s cylinder first linear buckling mode, obtained with Abaqus.

VI. Concluding remarks and future research
The displacement-based formulation for the multi-modal Koiter approach was successfully extended from the work

of Castro and Jansen [13] and applied for the case of cylindrical shells. A verification using the commercial finite
element software DIANA [47] was performed, showing that only Sanders nonlinear kinematics was able to accurately
capture the first linear buckling shape of Water’s cylindrical shell. Therefore, the authors recommend Sanders kinematics
for future analyses using the methodology herein presented. The implemented algorithms are based on state-of-the-art
open source packages and are made publicly available in a data set [45].

The present methodology is applicable for the case a nonlinear pre-buckling state, or fundamental state. Future
studies will focus on the formulation and nonlinear algorithm for the nonlinear fundamental state. Moreover, the
influence of the pre-buckling load level on the calculated 18− 9−:−ℓ coefficients will be investigated, with the aim to
achieve a fast method to accurately predict the post-buckling behavior of imperfection-sensitive shells.

Future research will focus on the direct application of the methodology herein proposed, implemented as provided
in the publicly available data set [45]. The investigation will aim at finding imperfection-insensitive shell designs
[48, 49]. The authors will develop design parameterization schemes enabled by novel manufacturing techniques, such
as automated fibre placement [50, 51], continuous tow shearing [52], and variable-angle filament winding [27, 53, 54].
These novel designs should focus on nonlinear stiffness constraints constraints and explore the effect of overlaps that are
created by the nonlinear coupling between the steering angle and the laminate thickness, as already investigated by
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Table 4 Convergence of 11−1−1−1 using linear pre-buckling state for Water’s cylinder using SC-BFSC with
Sanders-type kinematics

Aspect ratio ℓH/ℓG = 1 Aspect ratio ℓH/ℓG = 2 Aspect ratio ℓH/ℓG = 3
=H =G DOF 11−1−1−1 =G DOF 11−1−1−1 =G DOF 11−1−1−1

40 11 4400 -0.00850561 23 9200 -0.23054820 33 13200 -0.25462784
50 13 6500 -0.04331440 27 13500 -0.04445266 41 20500 -0.18060378
60 17 10200 -0.04501454 33 19800 -0.04539179 51 30600 -0.04536920
70 19 13300 -0.04595095 39 27300 -0.04854888 59 41300 -0.04664120
80 23 18400 -0.04574508 45 36000 -0.04589748 67 53600 -0.04592220
90 25 22500 -0.04587003 51 45900 -0.04599877 75 67500 -0.04598445
100 27 27000 -0.04596100 55 55000 -0.04602548 83 83000 -0.04603055
120 33 39600 -0.04603133 67 80400 -0.04607434 101 121200 -0.04608576
140 39 54600 -0.04643624 77 107800 -0.04642807 117 163800 -0.04687716
160 45 72000 -0.04609398 89 142400 -0.04610874 133 212800 -0.04609925
180 51 91800 -0.04609431 101 181800 -0.04610630 151 271800 -0.04609760
200 55 110000 -0.04609543 111 222000 -0.04610086 167 334000 -0.04609990
220 61 134200 -0.04610482 123 270600 -0.04610675 183 402600 -0.04610172
240 67 160800 -0.04610227 133 319200 -0.04610134 201 482400 -0.04610653

Castro and collaborators [55, 56] in the design of plates, Machado et al. in the design of wing panels [57], Lincoln et al.
in the design of cylindrical shells [49].
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(a) Von Kármán kinematics (b) Sanders kinematics

Fig. 4 Water’s cylinder first linear buckling mode, obtained with the SC-BFSC element.
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