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Abstract5

In this work, we have brought to light the effect of material orientation on void growth. For that purpose, we have6

performed finite element calculations using a cubic unit-cell model with a spherical void at its center and subjected to7

periodic boundary conditions. The behavior of the material is described with an elastic isotropic, plastic orthotropic8

constitutive model with yielding defined by Yld2004-18p criterion (Barlat et al., 2005). We have used the multi-point9

constraint subroutine developed by Dakshinamurthy et al. (2021) to enforce constant values of macroscopic stress10

triaxiality T and Lode parameter L in calculations that have been carried out for different stress states resulting from11

the combination of T = 0.33, 1 and 2, with L = −1, 0 and 1 (axisymmetric tension, generalized shear and axisymmetric12

compression, respectively). Firstly, we have performed numerical simulations in which the loading directions are collinear13

with the orthotropy axes of the material, so that the principal directions of macroscopic stress and strain are parallel.14

Investigation of the cases for which the minor loading axis coincides either with the rolling, the transverse or the15

normal direction, has shown that the initially spherical void turns into an ellipsoid whose rate of growth and eccentricity16

depend on both stress state and material orientation. A key result is that for specific material orientations the anisotropy17

switches the effect of Lode parameter on void growth, reversing the trends obtained for isotropic von Mises materials.18

Secondly, we have carried out calculations using a novel strategy which consists of including angular misalignments19

within the range 0◦ ≤ θ ≤ 90◦, so that one loading direction is parallel to one of the symmetry axes of the material,20

and θ is the angle formed between the other two loading directions and the second and third orthotropy axes. In fact,21

to the authors’ knowledge, these are the first unit-cell calculations ever reported in which the material is modeled using22

a macroscopic anisotropic yield function with prescribed misalignment between loading and material axes and, at the23

same time, the macroscopic stress triaxiality and the Lode parameter are controlled to be constant during loading.24

The finite element calculations have shown that the misalignment between loading and material axes makes the void25

and the faces of the unit-cell to rotate and twist during loading. Moreover, the main contribution of this work is the26

identification of an intermediate value of the angle θ for which the growth rate of the void reaches an extreme value27

(minimum or maximum), so that the numerical results indicate that material orientation and angular misalignment can28

be strategically exploited to control void growth, and thus promote or delay localization and fracture of anisotropic29
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metal products. The conclusions of this research have been shown to be valid for three different materials (aluminum30

alloys 2090-T3, 6111-T4 and 6013) and selected comparisons have also been performed using two additional yield criteria31

(CPB06ex2 and Yld2011-27p).32

Keywords:33

Anisotropy, Material orientation, Void growth, Stress triaxiality, Lode parameter, Unit-cell calculations.34

1. Introduction35

Most structural metallic alloys display plastic anisotropy. Experimental evidence of the anisotropic behavior of metals36

was extensively discussed by Benzerga et al. (2004a), Fourmeau et al. (2013), Khadyko et al. (2019) and Benzerga et al.37

(2019), among others. Generally, the main sources of anisotropic behavior and failure in metals are considered to be:38

(1) plastic anisotropy resulting from the crystallographic texture, (2) topological anisotropy originated from the spatial39

distribution of voids and second phase particles and (3) morphological anisotropy, coming from the shape and orientation40

of voids and particles. Non-random distribution of crystal orientations (texture) is developed, for instance, in extruded41

profiles and rolled plates. In order to model the plastic behavior of these components, the assumption of isotropy is42

inadequate and the use of suitable anisotropic constitutive models is essential (Banabic et al., 2000; Abedrabbo et al.,43

2007). At the continuum scale, plastic anisotropy is the result of the distortion of the yield surface shape due to the44

material micro-structural state.45

Significant efforts have been made over the years to describe the plastic behavior of isotropic and anisotropic metallic46

materials via different kinds of yield functions. For isotropic materials, von Mises (1913, 1928) established a quadratic47

yield function, which is still widely used today in industry and academia. However, many face-centered-cubic materials,48

such as some aluminum alloys, while may be isotropic, display a constitutive behavior which is better described by49

non-quadratic yield surfaces. For instance, Hershey (1954) and Hosford (1972) proposed non-quadratic isotropic yield50

functions with a variable exponent that considers the material’s crystallographic structure. On the other hand, one of51

the first anisotropic yield functions for orthotropic materials was proposed by Hill (1948). The criterion of Hill (1948),52

which is quadratic in stresses and contains six independent parameters to describe the state of anisotropy, was later53

revisited by himself (Hill, 1979, 1993) to correct what he referred to as inevitable limitations in the range of validity54

of the 1948 prototype. Nevertheless, the popularity of the Hill48 model persists nowadays due to its simplicity and55

extensive implementation in commercial finite element codes.56

Many yield functions have been developed over the years to improve the formulations of Hill (1948, 1979, 1993).57

For instance, Barlat and Lian (1989) modified the isotropic model of Hosford (1972) to include in-plane anisotropy.58

Later, Barlat et al. (1991, 1997, 2003, 2005) introduced a family of non-quadratic yield functions which use fourth59
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order tensors as linear multiplicative operators acting on the stress tensor to introduce material anisotropy. The linear60

transformation approach provides extended flexibility to the yield functions to capture the behaviour of materials with61

complex anisotropic response by tailoring the number of anisotropy coefficients, while ensuring the convexity of the62

yield surface (Barlat et al., 1991; Karafillis and Boyce, 1993; Barlat et al., 1997, 2003; Bron and Besson, 2004). For63

instance, using two linear transformations, Barlat et al. (2005) formulated the so-called Yld2004-13p and Yld2004-64

18p yield criteria. These two anisotropic models were derived from different isotropic criteria and contain 13 and 1865

anisotropic parameters, respectively. In particular, the Yld2004-18p criterion has been widely used to describe the66

main features of the anisotropic behaviour of different grades of aluminum alloys (Yoon et al., 2006; Achani et al.,67

2009; Fourmeau et al., 2011; Achani et al., 2011; Tardif and Kyriakides, 2012). Years later, Aretz and Barlat (2013)68

derived the so-called Yld2011-18p and Yld2011-27p criteria, which use two and three linear transformations of the stress69

deviator, respectively, and involve a total of 18 and 27 anisotropic parameters. However, while using multiple linear70

transformations enables to construct more flexible and accurate yield functions, the increase in the number of material71

parameters requires a larger number of experiments for the calibration of the yield criteria, and the implementation in72

finite element codes becomes more laborious and generally less efficient.73

Ductile fracture of metals and alloys has been subject to many studies over the past decades and is known to occur74

by nucleation, growth or enlargement of voids and final void coalescence. The voids in the material either preexist75

(Toda et al., 2004), or nucleate at material second phase particles due to decohesion of the particle-matrix interface,76

or by particle fracture (Maire et al., 2011). Once the voids nucleate, further plastic deformation enlarges the void size77

and distorts its shape. During the course of stable deformation, as voids evolve, plastic strain is more or less uniformly78

distributed in the material. At some point, deformation localizes in a narrow region of the material and adjacent voids79

ultimately connect or coalesce with each other.80

The field of porous plasticity has attracted the attention of many investigators. As recent examples, Torki et al.81

(2017) developed a micromechanics-based constitutive model to describe plasticity in solids with relatively high levels of82

porosity. The developed model was obtained by limit analysis considering a cylindrical voided cell loaded under combined83

tension and shear. Brünig et al. (2018) performed numerical analysis and shear-compression experiments to study the84

effect of stress state on damage criteria, with special emphasis on negative stress triaxialities. Torki (2019) proposed85

a closed-form yield criterion for void growth and coalescence under combined tension and shear stress conditions and86

validated the analytical results using cell-model finite element calculations. Becker and Callaghan (2020) examined a87

large population of voids nucleated from randomly distributed spherical particles in order to assess the dependence of88

load path and mean stress of void growth behavior. Very recently, Shen et al. (2020) developed a new macroscopic yield89

criterion for a porous Drucker-Prager matrix material and validated the obtained analytical results with numerical finite90
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element simulations.91

Finite element void cell simulations have been widely used for almost the last 50 years (Needleman, 1972; Tvergaard,92

1982, 1990; Koplik and Needleman, 1988; Worswick and Pick, 1990; Becker and Smelser, 1994; Kuna and Sun, 1994;93

Pardoen and Hutchinson, 2000) to provide useful information about the effect of porous microstructure (void shape,94

void volume fraction, relative void spacing), flow properties of the matrix material, and stress state on the physics of95

ductile damage. In addition, finite element void cell simulations can offer a basis for assessing the predictive ability of96

different constitutive models before applying them to more complex real-world problems. Most void cell calculations97

reported in the literature have been performed for isotropic matrix materials and spheroidal voids, where the matrix98

material is governed by von Mises yield function (e.g., Faleskog et al. (2000), Pardoen and Hutchinson (2003), Kim et al.99

(2004), Benzerga et al. (2004b), Danas and Ponte Castañeda (2012)). Studies dealing with unit-cell simulations involving100

plastically anisotropic matrix descriptions have been also reported in the literature, but less often than for isotropic101

ductile materials. A notable exception is the work of Benzerga and Besson (2001), who carried out simulations using102

axisymmetric unit-cells with Hill (1948) criterion representing the matrix material. On the other hand, three-dimensional103

unit-cell simulations with a matrix material obeying Hill (1948) plasticity were conducted by Chien et al. (2001) and104

Wang et al. (2004). Steglich et al. (2010) performed 3D unit-cell calculations for an anisotropic matrix material following105

the yield criterion developed by Bron and Besson (2004). The influence of void shape and anisotropy on void growth in106

different materials was analyzed by Keralavarma and Benzerga (2010) and Keralavarma et al. (2011) using axisymmetric107

unit-cells with the matrix material being defined by the Hill48 yield criterion. Very recently, Legarth and Tvergaard108

(2018) also employed the Hill48 criterion in 3D unit-cell simulations that aimed at studying the interaction between109

initial void spacing, void shape, and plastic anisotropy in void growth evolution in porous media. All these studies110

noticed the important effect of the matrix anisotropy in the unit-cell response. Note that the influence of anisotropy111

on void growth has been also investigated within the framework of crystal plasticity elsewhere (Wan et al., 2005; Yerra112

et al., 2010; Lebensohn and Cazacu, 2012; Han et al., 2013; Srivastava and Needleman, 2015; Dakshinamurthy et al.,113

2021).114

Ductile fracture properties have shown marked dependence on the stress state. The deep influence of stress triaxiality115

in the mechanisms of damage and in the failure strain of most metals is known since the pioneering works of Rice and116

Tracey (1969) and Gurson (1977). In addition, the third invariant of the stress deviator, generally represented by the117

Lode parameter, has been shown to play an important role on ductile fracture, notably for low values of the stress118

triaxiality. For large values of the stress triaxiality, the micro-voids contained in the material tend to grow fast and119

ductile failure occurs by the large increase of void volume fraction which leads to the coalescence of neighboring voids120

(see the reviews by Garrison and Moody (1987), Tvergaard (1990) and Benzerga and Leblond (2010)). On the other121



5

hand, for low values of the stress triaxiality, voids tend to flatten, and the void volume fraction decreases as the voids122

become microcracks, which rotate and elongate (with significant changes in shape) until the final interaction between123

neighboring microcracks leads to material fracture. Moreover, several authors performed unit-cell analyses for shear124

dominated loadings and showed that the voids quickly change their orientation and shape while they start to deform,125

which is influencing the overall behavior of the porous aggregate, as well as the final failure of the material (McVeigh126

et al., 2007; Leblond and Mottet, 2008; Scheyvaerts et al., 2011; Nielsen et al., 2012; Tvergaard, 2015).127

For isotropic materials, the effect of triaxiality, Lode parameter and void shape can be readily analyzed in 3D cell128

simulations under prescribed loading conditions where the principal directions of the macro stress are aligned with the129

axes of the cell and the void. However, for anisotropic matrix materials, the response of the cell also depends on the130

orientation of the anisotropy axes. Recently, Bryhni Dæhli et al. (2017a) performed 3D unit-cell analyses imposing the131

external stress state of the cubic cell (macroscopic triaxiality and Lode parameter) and considering that the matrix132

material is governed by the anisotropic yield criterion Yld2004-18p (Barlat et al., 2005). For the sake of simplicity, and133

to preclude shear effects in the unit-cell model, the material orthotropy directions were imposed to be collinear with134

the prescribed loading conditions and with the edges of the cell (i.e., material axes parallel to both the applied stress135

and cell axes), so that the voids initially spherical turned to be ellipsoidal during loading with semi-axes parallel to136

the loading directions. The calculations of Bryhni Dæhli et al. (2017a) showed that both the exponent of the yield137

criterion (exponent that governs the curvature of the yield surface) and the directionality of the plastic properties have138

an important impact on the mechanical response of the unit-cell. In this paper, we extend the analysis of Bryhni Dæhli139

et al. (2017a) performing unit-cell simulations (with three different sets of material parameters) in which one loading140

direction is parallel to one of the symmetry axis of the material while the other two loading directions form an angle141

θ with the second and third orthotropy axes, so that the principal directions of macroscopic stress and strain are not142

aligned. We have investigated angular misalignments within the range 0◦ ≤ θ ≤ 90◦, and showed that the growth rate143

of the void reaches and extreme value (minimum or maximum) for an intermediate value of the angle θ. This conclusion144

is an original outcome of this paper and it has been substantiated for different values of the stress triaxiality T = 0.33, 1145

and 2, and the Lode parameter L = −1, 0 and 1, and for different orientations of the unit-cell in which the major or the146

minor loading direction coincides either with the rolling, the transverse or the normal direction of orthotropy. Note that,147

while there are not specific experimental results in the literature to perform a quantitative comparison with the unit-cell148

finite element calculations presented in this work, some authors have already provided indications on the interplay149

between plastic anisotropy, material orientation and ductility. The idea is to harness directionality of plastic properties150

in material design, representing a paradigmatic shift in the way of thinking about the use of plastically anisotropic151

materials in structural applications. For instance, the influence of plastic anisotropy, yield strength and work hardening152
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on ductile failure was studied by Frodal et al. (2020) using finite element simulations and strain localization analyses of153

tensile tests in different material orientations. Finite element calculations were performed in seven in-plane directions,154

i.e., 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ to the reference direction. The material behavior of the specimen was defined by155

the Yld2004-18p yield criterion. Plastic anisotropy was found to have a marked influence on the tensile ductility, leading156

to an important variation in the failure strain with the material orientation, in agreement with the trends observed in157

the experiments of Khadyko et al. (2014, 2019) and Frodal et al. (2019). Moreover, Basu et al. (2017) determined158

ductility of Mg alloys using smooth and round notched experimental tensile bars. A simple micromechanical model was159

proposed to rationalize the tests results, showing that plastic anisotropy could be exploited to aid ductility. Nasim et al.160

(2019) used an invariant parameter called the Anisotropy Effect on Ductility (AED), earlier proposed by Basu et al.161

(2017), to tailor the formability of Mg alloys. This invariant parameter, which was proven to correctly portray physical162

formability measurements, was calculated using tension and compression experimental tests of rolled Mg AZ31 alloy.163

In order to create a particular AED parameter or formability, an automated inverse optimization strategy was used to164

predict the routes needed to attain target amount of formability.165

The numerical calculations presented in this paper corroborate the results obtained in the works discussed in the166

paragraph above, and reinforce the idea that material orientation and angular misalignment can be strategically ex-167

ploited to control void growth, and thus promote or delay localization and fracture of anisotropic metal products. The168

manuscript is organized as follows. Section 2 presents the elasto-plastic constitutive model used to describe the mechan-169

ical behavior of the matrix material. Material yielding is modeled with the Yld2004-18p criterion (Barlat et al., 2005)170

with parameters corresponding to aluminum alloys 2090-T3, 6111-T4 and 6013. Moreover, Section 3 shows the unit-cell171

finite element model developed in ABAQUS/Standard (2016), and Section 4 shows calculations in which the principal172

directions of macroscopic stress and strain are collinear (Section 4.1), and also calculations with prescribed misaligment173

between the loading and material axes (Section 4.2). A summary of the main findings of the paper is given in Section 5.174

2. Constitutive framework175

We consider an elastic isotropic, plastic orthotropic constitutive model with yielding described by Yld2004-18p176

criterion (Barlat et al., 2005). This advanced yield criterion is able to successfully describe the main features of the177

anisotropic behaviour of different grades of aluminum alloys (Fourmeau et al., 2011; Achani et al., 2011; Tardif and178

Kyriakides, 2012).179

180

The rate of deformation tensor d is assumed to be the sum of an elastic part de and a plastic part dp:181
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d = de + dp (1)

where the elastic part is related to the rate of the stress by the following linear hypo-elastic law:182

O
σ = L : de (2)

where
O
σ is an objective derivative of the Cauchy stress tensor (which corresponds to the Jaumann derivative in183

ABAQUS/Standard), and L is the tensor of isotropic elastic moduli given by:184

L =
E

1 + ν
I′ +

E

3(1− 2ν)
1⊗ 1 (3)

with E being the Young’s modulus, ν the Poisson’s ratio, 1 the unit second-order tensor and I′ the unit deviatoric185

fourth-order tensor.186

187

The yield function is defined as:188

φ =
III∑
i=I

III∑
j=I

∣∣s̃′i − s̃′′j ∣∣a (4)

where s̃′i and s̃′′j are the principal values of the second order deviatoric tensors s̃′ and s̃′′, which are defined by two linear189

transformations:190

s̃′ = C′s (5a)

s̃′′ = C′′s (5b)

191

where s is the deviatoric part of the Cauchy stress tensor σ, and C′ and C′′ are the matrices which contain the anisotropy192

coefficients:193
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C′ =



0 −c′12 −c′13 0 0 0

−c′21 0 −c′23 0 0 0

−c′31 −c′32 0 0 0 0

0 0 0 c′44 0 0

0 0 0 0 c′55 0

0 0 0 0 0 c′66


(6a)

C′′ =



0 −c′′12 −c′′13 0 0 0

−c′′21 0 −c′′23 0 0 0

−c′′31 −c′′32 0 0 0 0

0 0 0 c′′44 0 0

0 0 0 0 c′′55 0

0 0 0 0 0 c′′66


(6b)

194

with c′ij and c′′ij being material parameters. Note that in equation (5) we have taken the order of the components195

of the column vector representing the deviatoric stress tensor to be s = {sxx syy szz syz szx sxy}, with the Cartesian196

coordinate system (x, y, z) being associated to the orthotropy axes of the material (x, y and z axes correspond to the197

rolling, transverse and normal directions, respectively).198

199

The ordered principal values of the tensor s̃′ are:200

s̃′I = 2

√
(H ′1)2 +H ′2 cos

(
θ

3

)
+H ′1 (7a)

s̃′II = 2

√
(H ′1)2 +H ′2 cos

(
θ + 4π

3

)
+H ′1 (7b)

s̃′III = 2

√
(H ′1)2 +H ′2 cos

(
θ + 2π

3

)
+H ′1 (7c)

201

with θ = arccos

(
q

p3/2

)
, p = (H ′1)2 + H ′2 and q =

2 (H ′1)3 + 3H ′1H
′
2 + 2H ′3

2
, where H ′1, H ′2 and H ′3 are the 1st, 2nd and202

3rd invariant of s̃′ (Barlat et al., 2005). The same procedure is followed to obtain the principal values of the tensor s̃′′.203

204
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The effective stress associated to this yield criterion is:205

σ̄ =

(
φ

ξ

)1/a

(8)

with ξ = 4, so that σ̄ reduces to the yield stress in the rolling direction (see equation (9)).206

207

Moreover, the yield condition is expressed as:208

f = σ̄ − σY = 0 (9)

where σY is the yield stress of the material in the rolling direction (direction x), which is considered to evolve following209

a power-type relation:210

σY = σ0 (ε0 + ε̄p)
n (10)

where ε̄p =
∫ t

0
˙̄εpdτ is the effective plastic strain and ˙̄εp is the effective plastic strain rate. Moreover, σ0, ε0, and n are211

material parameters.212

213

Assuming an associated plastic flow rule, the plastic part of the rate of deformation tensor is:214

dp = λ̇
∂σ̄

∂σ
(11)

where λ̇ is the rate of plastic multiplier.215

216

In addition, the work conjugacy relation:217

σ : dp = σ̄ ˙̄εp (12)
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Symbol Property and units Value

ρ0 Initial density (kg/m3) 2700
G Elastic shear modulus (GPa), Eq. (3) 26.92
K Bulk modulus (GPa), Eq. (3) 58.33

Table 1: Initial density and elastic constants for the three aluminium alloys considered in this work: 2090-T3, 6111-T4 and 6013.

leads to the identity:218

˙̄εp = λ̇ (13)

The formulation of the constitutive model is completed with the Kuhn-Tucker loading-unloading conditions:219

λ̇ > 0, f 6 0, λ̇f = 0 (14)

and the consistency condition during plastic loading:220

ḟ = 0 (15)

221

The parameters values of the constitutive model corresponding to aluminium alloys 2090-T3, 6111-T4 and 6013 are222

shown in Tables 1-7. Fig. 1 shows the projections in the deviatoric π-plane of the yield loci, where σI , σII and σIII are223

the principal values of the tensor σ corresponding to the rolling, transverse and normal directions, respectively. This224

representation of the yield loci makes apparent the anisotropy and the dependence of yielding on material orientation.225

For instance, note that for aluminium alloy 2090-T3 the minimum and maximum yield stresses correspond to uniaxial226

tension in the transverse and normal directions, respectively. On the other hand, notice that the Yld2004-18p criterion227

reduces to isotropic von Mises (1928) plasticity when c′ij = c′′ij = 1 and a = 2 (Barlat et al., 2005).228
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Aluminium alloy 2090-T3

Strain hardening parameters

σ0 Material parameter (MPa), Eq. (10) 646
ε0 Material parameter, Eq. (10) 0.025
n Material parameter, Eq. (10) 0.227

Table 2: Strain hardening parameters for aluminium alloy 2090-T3. Data after Yoon et al. (2006) and Cvitanić et al. (2008).

Aluminium alloy 2090-T3

Anisotropy parameters

c′12 c′13 c′21 c′23 c′31 c′32 c′44 c′55 c′66

−0.06989 0.93640 0.07914 1.00306 0.524741 1.36318 1.02377 1.06906 0.95432
c′′12 c′′13 c′′21 c′′23 c′′31 c′′32 c′′44 c′′55 c′′66

0.98117 0.47674 0.57531 0.86682 1.14501 −0.07929 1.05166 1.14700 1.40462

Degree of homogeneity of the yield function

a
8

Table 3: Yld2004-18p yield criterion. Parameters values for aluminium alloy 2090-T3. Data after Barlat et al. (2005).

Aluminium alloy 6111-T4

Strain hardening parameters

σ0 Material parameter (MPa), Eq. (10) 503.7
ε0 Material parameter, Eq. (10) 0
n Material parameter, Eq. (10) 0.233

Table 4: Strain hardening parameters for aluminium alloy 6111-T4. Data after Kim et al. (2010).

Aluminium alloy 6111-T4

Anisotropy parameters

c′12 c′13 c′21 c′23 c′31 c′32 c′44 c′55 c′66

0.637630 0.941853 0.693134 1.009620 0.608808 0.730685 1.004578 0.818717 0.616609
c′′12 c′′13 c′′21 c′′23 c′′31 c′′32 c′′44 c′′55 c′′66

1.281632 1.529747 1.184135 1.476191 −0.67124 −0.96936 1.005348 1.018549 1.245460

Degree of homogeneity of the yield function

a
8

Table 5: Yld2004-18p yield criterion. Parameters values for aluminium alloy 6111-T4. Data after Kim et al. (2010).
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Figure 1: Yld2004-18p yield criterion. Projection in the deviatoric π-plane of the yield locus for aluminium alloys: (a) 2090-T3, (b) 6111-T4
and (c) 6013.
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Aluminium alloy 6013

Strain hardening parameters

σ0 Material parameter (MPa), Eq. (10) 556.06
ε0 Material parameter, Eq. (10) 0.0062
n Material parameter, Eq. (10) 0.201

Table 6: Strain hardening parameters for aluminium alloy 6013. Data after Ha et al. (2018).

Aluminium alloy 6013

Anisotropy parameters

c′12 c′13 c′21 c′23 c′31 c′32 c′44 c′55 c′66

1.0717 1.1541 1.1746 1.1832 0.8482 1.0672 0.9543 1.0142 1.2007
c′′12 c′′13 c′′21 c′′23 c′′31 c′′32 c′′44 c′′55 c′′66

0.8119 0.6928 0.7644 0.6693 1.0239 0.9485 1.0467 0.9846 0.7331

Degree of homogeneity of the yield function

a
8

Table 7: Yld2004-18p yield criterion. Parameters values for aluminium alloy 6013. Data after Ha et al. (2018).

3. Finite element model229

We consider a porous material with periodic microstructure modeled by an array of representative volume elements230

idealized as cubic unit-cells with a spherical void of initial radius R0 = a0 = b0 = c0 located at their center, see Fig.231

2, where a0, b0 and c0 denote the initial radius of the void along the axes x1, x2 and x3 (see Section 4.1). The initial232

size of the cubic cell is L0 × L0 × L0, so that the initial void volume fraction, defined as the ratio between the initial233

volume of the void and the initial volume of the cell, is f0 = V void
0 /V cell

0 = 0.0042. Moreover, the current volumes of234

the void and the cell are denoted by V void and V cell, respectively, so that the current volume of the matrix material is235

V matrix = V cell−V void. The finite element model has been implemented in ABAQUS/Standard (2016), with the initial236

configuration of the unit cell being defined by the domain 0 ≤ x1 ≤ L0, 0 ≤ x2 ≤ L0 and 0 ≤ x3 ≤ L0. The origin of237

the Lagrangian Cartesian coordinate system (x1, x2, x3) is located at the bottom left rear corner of the cell, see Fig. 2.238

The loading directions are determined by the axes x1, x2 and x3 (see below). The behavior of the matrix material is239

defined with the constitutive framework presented in Section 2.240

We have used the multi-point constraint subroutine developed by Dakshinamurthy et al. (2021) to enforce constant241

and controlled values of the macroscopic stress triaxiality T and the macroscopic Lode parameter L during the calcu-242

lations. Note that the approach of imposing T and L throughout the deformation for the analysis of void growth in243
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Figure 2: (a) Unit-cell finite element model and (b) cut-view for x3 =
L0

2
with ΣI , ΣII and ΣIII being the principal values of the macroscopic

stress tensor. The loading directions are aligned with the principal directions of the macroscopic stress tensor, so that the major loading
direction corresponds to the principal stress direction associated to ΣI , and the minor loading direction corresponds to the principal stress
direction associated to ΣIII .

unit-cell calculations follows from the earlier works of Zhang et al. (2001), Kim et al. (2004), Srivastava and Needleman244

(2015) and Vadillo et al. (2016), among others. We introduce the macroscopic stress tensor Σ through the following245

relation with the microscopic (local) Cauchy stress tensor σ:246

Σ =
1

V cell

∫
V cell

σ dV cell (16)

Moreover, the macroscopic effective stress Σ̄, the macroscopic stress triaxiality T and the macroscopic Lode parameter247

L are defined as:248

Σ̄ =

√
3

2
Σ′ : Σ′, T =

Σh

Σ̄
, L =

2ΣII − ΣI − ΣIII

ΣI − ΣIII

(17)

where:249

Σ′ = Σ− Σh1, Σh =
ΣI + ΣII + ΣIII

3
(18)

with ΣI , ΣII and ΣIII being the principal values of the macroscopic stress tensor with ΣI ≥ ΣII ≥ ΣIII (i.e., ΣI , ΣII250

and ΣIII are the major, intermediate and minor principal values of the macroscopic stress tensor, respectively). The251
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loading directions are aligned with the principal directions of the macroscopic stress tensor, so that the major loading252

direction corresponds to the principal stress direction associated to ΣI (parallel to x1), and the minor loading direction253

corresponds to the principal stress direction associated to ΣIII (parallel to x3), see Fig. 2.254

255

The volume average of the microscopic (local) logarithmic strain tensor ε, expressed as:256

ε =
1

V matrix

∫
Vmatrix

ε dV matrix (19)

leads to the macroscopic effective strain ε̄, as defined by Srivastava and Needleman (2015):257

ε̄ =

√
2

3
ε′ : ε′, ε′ = ε− εh1, εh =

εI + εII + εIII
3

(20)

where εI , εII and εIII are the principal values of the tensor ε. Expressions (17) and (20) are scalar measures of258

macroscopic stress and macroscopic strain, respectively, consistent with the definitions used, for instance, by Srivastava259

and Needleman (2015), Bryhni Dæhli et al. (2017a) and Dakshinamurthy et al. (2021), in unit-cell calculations analyses260

with different anisotropic plasticity theories. Note that expressions (17) and (20) do not determine the specific effective261

stress and strain in a material point for this yield criterion —these are given by equations (8) and (12)—, but they are262

rather used for the definition of macroscopic stress scalars (macroscopic Lode and macroscopic triaxiality) and for the263

graphical representation and interpretation of results.264

265

In Section 4, we carry out calculations for three different values of macroscopic triaxiality T = 0.33, 1 and 2, and266

macroscopic Lode parameter L = −1, 0 and 1, and for macroscopic effective strains ε̄ up to 0.6. Similar range of values of267

macroscopic triaxiality and Lode parameter has been studied elsewhere (e.g., Bryhni Dæhli et al. (2017a,b)). Moreover,268

recall that L = −1, 0 and 1 represent states of axisymmetric tension, generalized shear and axisymmetric compression,269

respectively. Note that for L = −1 we have that ΣI > ΣII = ΣIII , for L = 0 the principal values of the macroscopic270

stress tensor are such that ΣI > ΣII =
ΣI + ΣIII

2
> ΣIII , and for L = 1 we have that ΣI = ΣII > ΣIII . We are271

aware that the mechanical behavior of anisotropic materials depends on both the principal stresses and the principal272

stress directions, so that when presenting the results in Section 4 we always indicate the orientation of the loading axes273

(x1, x2, x3) with respect to the material orthotropy directions (x, y, z). Note that providing information about the stress274

eigenvalues and eigenvectors amounts to giving the six independent stress components in arbitrary basis, namely, the275

basis related to the material orthotropy axes. In this regard, note that in all the calculations performed in this work the276
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major and minor loading directions are parallel to the x1 and x3 axes, respectively. We will further elaborate on this277

issue in Section 4. In addition, following the procedure described in Appendix A of Dakshinamurthy et al. (2021), we278

have applied periodic boundary conditions to the unit-cell, ensuring that the relative displacement between opposing279

nodes is the same (i.e., the displacement of opposing nodes is coupled, e.g., see Fig. 24 in Section 4.2). Moreover, a280

mesh convergence study showed that a discretization consisting of 86096 eight-node tri-linear elements with reduced281

integration and hourglass control (C3D8R in ABAQUS notation) yields numerical results for the evolution of the void282

growth which are virtually mesh independent (for the range of macroscopic effective strains and void volume fractions283

investigated in this paper). This spatial discretization was used in all the unit-cell simulations performed in this work.284

Moreover, the elastic-plastic constitutive model presented in Section 2 has been implemented in ABAQUS/Standard285

(2016) through a UMAT subroutine, using the integration algorithm based on numerical approximation of the yield286

function gradients developed by Hosseini and Rodŕıguez-Mart́ınez (2021).287

4. Results288

In Section 4.1, we consider that the loading directions are aligned with the orthotropy axes of the material and289

investigate the cases for which the minor loading axis x3 coincides either with the rolling, the transverse or the normal290

direction (recall that the minor loading direction corresponds to the principal direction associated to ΣIII). The results291

correspond to AA 2090-T3. Similar calculations were performed by Bryhni Dæhli et al. (2017a) using the Yld2004-18p292

criterion with parameters corresponding to six generic crystallographic textures representative of different anisotropic293

face-centered-cubic metals, including brass and copper. In Section 4.2, we investigate the influence of the misalignment294

between loading and orthotropy axes on void growth, exploring different material orientations. Results are presented295

for different aluminium alloys: 2090-T3, 6111-T4 and 6013. The main contribution of this paper to the field of finite296

element void cell calculations is to consider anisotropic materials modeled with a macroscopic yield criterion in which297

loading and materials axes are not aligned. In addition, for the sake of completeness, Appendix A presents calculations298

performed with two additional yield criteria, CPB06ex2 (Plunkett et al., 2008) and Yld2011-27p (Aretz and Barlat,299

2013), calibrated to model the behavior of AA 2090-T3.300

301

Recall that the loading directions are fixed relative to the Lagrangian coordinate system (x1, x2, x3) associated to302

the undeformed cell (see Fig. 2). Moreover, the orthotropy axes (x, y, z) are associated to the material (locally), with303

prescribed directions in the undeformed configuration that can rotate if the material rotates during loading (as in the304

calculations in which loading and material axes are not aligned). The orientation of the orthotropy axes given in the305

paper corresponds to the undeformed configuration. Moreover, note that we have not included any failure criterion in306
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the simulations, and we have not analyzed localization of plastic deformation leading to coalescence and subsequent307

material fracture (the reader is referred to the works of Tekoğlu et al. (2015) and Reboul et al. (2020) where localization308

and coalescence are analyzed for isotropic materials using unit-cell finite element calculations). The specific influence of309

plastic anisotropy and material orientation on localization of deformation near the void, coalescence and fracture will310

be investigated in a future work.311

4.1. Alignment between loading and material axes312

We perform a parametric analysis on the influence of macroscopic stress triaxiality (Section 4.1.1), Lode parameter313

(Section 4.1.2) and material orientation (Section 4.1.3) on void growth, paying specific attention to the evolution of314

the volume and the geometry of the void during loading. Note that, following Bryhni Dæhli et al. (2017a), we could315

have exploited the symmetry of the problem and performed the calculations modeling 1/8 of the unit-cell. However,316

we have considered the whole unit-cell in order to be consistent with the calculations performed in Section 4.2 in which317

the misalignment between the principal directions of stress and strain breaks the symmetry of the problem, preventing318

the use of a simplified geometric model. As mentioned before, all the results reported in this section correspond to319

aluminium alloy 2090-T3. The notation for the material orientations investigated in the calculations performed in this320

section is xΣIIIyΣIzΣII , yΣIIIzΣIxΣII and zΣIIIxΣIyΣII , where the first, second and third letters indicate the orthotropy321

axes corresponding to the minor, major and intermediate loading directions, respectively, see Fig. 3.322

Figure 3: Schematic representation for the material orientations investigated in the calculations reported in this section, xΣIII yΣI zΣII ,
yΣIII zΣIxΣII and zΣIIIxΣI yΣII , where the first, second and third letters indicate the orthotropy axes corresponding to the minor, major and
intermediate loading directions, respectively.

4.1.1. The influence of stress triaxiality323

Fig. 4 shows the evolution of the normalized void volume fraction f/f0 with the macroscopic effective strain ε̄ for324

three values of the macroscopic stress triaxiality T = 0.33, 1 and 2. The Lode parameter is L = −1 so that the loading325
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in directions x2 and x3 is the same. The void volume fraction, f , is calculated using the Quickhull algorithm (Barber326

et al., 1996) to compute the smallest convex set containing the coordinates of the nodes that form the surface of the327

void. The convex hull is determined at each time increment, thus obtaining the evolution of the void volume fraction328

during loading. Results are shown for the von Mises material, Fig. 4(a), and for the material modeled with Yld2004-18p329

yield criterion with orientation xΣIIIyΣIzΣII , Fig. 4(b), so that the minor loading direction x3 is parallel to the rolling330

direction x. Recall from Section 2 that the results for the isotropic von Mises (1928) material are obtained imposing331

c′ij = c′′ij = 1 and a = 2 in the Yld2004-18p criterion, see equations (6) and (8). For both yield functions the volume332

of the void increases with the effective strain and the triaxiality. Note that, while for T = 1 and 2 the void volume333

fraction increases slightly faster for the von Mises material (check the intersection of the red and green dashed curves334

with the axis f/f0 = 1.7), for T = 0.33 the increase of porosity is slightly greater for the Yld2004-18p criterion (check the335

intersection of the solid black curves with the axis ε̄ = 0.4), bringing out that the quantitative effect of the triaxiality336

on void growth depends on the plastic anisotropy. Note that we have also checked that the rate of growth of the337

void depends on the material orientation, i.e., quantitative differences are obtained for the simulations performed with338

yΣIIIzΣIxΣII and zΣIIIxΣIyΣII . Nevertheless, these results are not shown here for the sake of brevity.339
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Figure 4: Influence of the macroscopic stress triaxiality on void growth for AA 2090-T3. Unit-cell finite element calculations for L = −1
(axisymmetric tension) and three values of stress triaxiality T = 0.33, 1 and 2. Evolution of the normalized void volume fraction f/f0 with the
macroscopic effective strain ε̄ for: (a) von Mises (1928) yield criterion and (b) Yld2004-18p yield criterion (Barlat et al., 2005) with material
orientation xΣIII yΣI zΣII . The dashed yellow line corresponds to the macroscopic effective strain ε̄ = 0.2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

340

The interplay between the shape of the void, the macroscopic triaxiality and the plastic anisotropy is illustrated in341

Fig. 5, which shows contours of effective plastic strain in the matrix material ε̄p for the same calculations presented342

in Fig. 4, and the loading time corresponding to the macroscopic effective strain ε̄ = 0.2 (vertical yellow dashed line343
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in Fig. 4). The contour plots correspond to the cut-view x2 = L0
2 (mid-plane of the unit-cell), and the color coding344

is such that effective plastic strains ranging from 0 to 0.4 correlate with a color scale that goes from blue to red. If345

the value of the effective plastic strain is above 0.4, it remains red. The contour plots show that the plastic strain346

fields are symmetric with respect to the loading axes and that the size of the plastically deformed zone is greater for347

the calculations performed with von Mises plasticity (check the extension of the red area). The shape of the void is348

ellipsoidal and approaches sphericity as the triaxiality increases for both constitutive models. However, while for the349

calculations performed with von Mises plasticity the void turns out to be a spheroid, for the anisotropic matrix the350

three semi-axes of the ellipsoid are different, as further illustrated in Fig. 6, which shows the evolution of the ratios b
a351

and c
a with the macroscopic effective strain ε̄, where a, b and c refer to the semi-axes of the void parallel to the loading352

directions x1 (major loading direction), x2 and x3 (minor loading direction), respectively (notice in Fig. 2 that in the353

undeformed configuration, a, b and c where denoted by a0, b0 and c0, respectively). In the calculations performed with354

von Mises plasticity, Fig. 5(a), we have that b
a = c

a for the three triaxialities. For T = 0.33 and 1, the ratios b
a = c

a355

decrease with the macroscopic effective strain due to the elongation of the void. In contrast, for T = 2 the semi-axes356

relation is ≈ 1 until ε̄ ≈ 0.2 (the void remains spherical during loading) and then increases, indicating that the void357

starts to grow faster in directions x2 and x3 than in the main loading direction. Moreover, Fig. 6(b) shows that in the358

calculations with Yld2004-18p criterion c
a >

b
a , i.e., the void grows more in the rolling than in the normal direction of359

anisotropy (rolling and normal directions are parallel to x3 and x2, respectively). This seems to be consistent with the360

results of Fig. 1(a) which showed that the material yields earlier in the rolling direction, favoring faster void expansion361

along x3. Notice that the greatest difference between the ratios b
a and c

a , for the range of macroscopic effective strains362

shown in Fig. 6(b), corresponds to T = 2.363

4.1.2. The influence of Lode parameter364

Fig. 7 illustrates the influence of the Lode parameter on the evolution of the normalized void volume fraction f/f0365

with the macroscopic effective strain ε̄. Calculations are shown for L = −1, 0 and 1, using von Mises and Yld2004-18p366

yield criteria, and for two different values of the macroscopic triaxiality T = 0.33 and 1. Recall that L = −1, 0 and 1367

represent states of axisymmetric tension, generalized shear, and axisymmetric compression, respectively.368

The results obtained for T = 0.33 are included in Figs. 7(a) and 7(b). For the von Mises material, Fig. 7(a), the369

f/f0 − ε̄ curve is shifted upwards as the Lode parameter goes from 1 to −1, with the normalized void volume fraction370

for L = 0 and L = 1 displaying a maximum for an intermediate value of the macroscopic effective strain (the maximum371

of f/f0 for L = −1 is attained for a larger strain ε̄ > 0.6). For the Yld2004-18p yield criterion, Fig. 7(b), the results372

correspond to the material orientation zΣIIIxΣIyΣII , so that the minor loading direction x3 is collinear to the normal373

orthotropy axis z. As the loading process starts, the void grows faster for L = 1 than for L = 0 and −1, i.e., the effect374
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Figure 5: Influence of the macroscopic stress triaxiality on void growth for AA 2090-T3. Contours of effective plastic strain in the matrix
material ε̄p for unit-cell finite element calculations performed with Lode parameter L = −1 (axisymmetric tension). Cut-view for x2 = L0/2.
The macroscopic effective strain is ε̄ = 0.2. Calculations performed with von Mises (1928) yield criterion and three values of stress triaxiality:
(a) T = 0.33, (b) T = 1 and (c) T = 2. Calculations performed with Yld2004-18p yield criterion (Barlat et al., 2005) with material orientation
xΣIII yΣI zΣII and three values of stress triaxiality: (d) T = 0.33, (e) T = 1 and (f) T = 2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Figure 6: Influence of the macroscopic stress triaxiality on void growth for AA 2090-T3. Unit-cell finite element calculations with Lode
parameter L = −1 (axisymmetric tension) and three values of stress triaxiality T = 0.33, 1 and 2. Evolution of the void semi-axes ratios, b/a
and c/a, with the macroscopic effective strain ε̄ for: (a) von Mises (1928) yield criterion and (b) Yld2004-18p yield criterion (Barlat et al., 2005)
with material orientation xΣIII yΣI zΣII . The dashed yellow line corresponds to the macroscopic effective strain ε̄ = 0.2. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the Lode parameter on the relative order of the f/f0 − ε̄ curves is different than for the von Mises material. These375

results bring out that the effect of Lode parameter on void growth depends on the material anisotropy. Nevertheless,376

this change in the effect of the Lode parameter is specific of the zΣIIIxΣIyΣII orientation, since for xΣIIIyΣIzΣII and377

yΣIIIzΣIxΣII the arrangement of the f/f0 − ε̄ curves is the same obtained for the von Mises material (these results are378

not shown here for the sake of brevity).379

Figs. 7(c) and 7(d) display the results for T = 1. For the von Mises material, Fig. 7(c), the f/f0 − ε̄ curve is shifted380

downwards as the L goes from −1 to 1, with small differences between the results obtained with different values of the381

Lode parameter. Nevertheless, the Lode parameter affects the geometry of the void, that turns from a spheroid elongated382

along the x1 direction for L = −1 to a penny shape spheroid flattened along the x3 direction for L = 1, as illustrated383

in the 3D reconstructions of the voids shown in Figs. 8(a) and 8(b). The void geometry is reconstructed plotting the384

surface defined by the convex hull that forms the surface of the void. The initial diameter of the void is 1. Specifically,385

Fig. 9(a) shows that for the von Mises yield criterion with L = −1 the ratios of the ellipsoid semi-axes are b
a = c

a , while386

for L = 1 the ratio c
a decreases with the macroscopic effective strain and b

a = 1, indicating that the void grows the same387

in directions x1 (major loading direction) and x2 (because L = 1 corresponds to axisymmetric compression). Similar388

results were reported for von Mises materials by Cao et al. (2015) among others. For the anisotropic material, Fig.389

7(d), the orientation of the uni-cell is yΣIIIzΣIxΣII , so that the minor loading direction x3 is parallel to the transverse390

orthotropy axis y. The arrangement of the f/f0 − ε̄ curves is such that, as opposed to the isotropic case, the results for391

L = 1 lie slightly above the results for L = 0. In addition, the void grows significantly faster for the Lode parameter392

L = −1, as it is apparent from the 3D reconstructions of the voids shown in Figs. 8(c) and 8(d) which illustrate that,393

for a fixed macroscopic strain ε̄ = 0.2, the volume of the void is greater for L = −1 than for L = 1. It is evident that the394

Lode parameter influences the shape of the void in the calculations performed with the anisotropic material differently395

than it does for the von Mises material. Specifically, Fig. 9(b) shows that for the anisotropic material and L = −1 the396

void is no longer a spheroid since b
a 6=

c
a , and for L = 1 the elongation of the void in directions x1 and x2 is different,397

so that b
a 6= 1.398

4.1.3. The influence of material orientation399

Fig. 10 pictures the normalized void volume fraction f/f0 versus the macroscopic effective strain ε̄ for macroscopic400

stress triaxiality T = 2 and two different values of the Lode parameter, L = 0 and L = 1. Results corresponding to von401

Mises plasticity are compared with calculations performed with Yld2004-18p criterion for three material orientations402

xΣIIIyΣIzΣII , yΣIIIzΣIxΣII and zΣIIIxΣIyΣII (i.e., the minor loading direction is collinear to the rolling, the transverse403

and the normal orthotropy axis, respectively).404

The calculations corresponding to the Lode parameter L = 0 are shown in Fig. 10(a). The relative order of the405
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Figure 7: Influence of the macroscopic Lode parameter on void growth for AA 2090-T3. Unit-cell finite element calculations for three different
values of the Lode parameter L = −1, 0 and 1 (axisymmetric tension, generalized shear and axisymmetric compression). Evolution of the
normalized void volume fraction f/f0 with the macroscopic effective strain ε̄. Macroscopic stress triaxiality T = 0.33: (a) von Mises (1928)
yield criterion and (b) Yld2004-18p yield criterion (Barlat et al., 2005) with material orientation zΣIIIxΣI yΣII . Macroscopic stress triaxiality
T = 1: (c) von Mises yield criterion and (d) Yld2004-18p yield criterion (Barlat et al., 2005) with material orientation yΣIII zΣIxΣII .
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(a) (b)

(c) (d)

Figure 8: 3D reconstruction of the surface of the voids for AA 2090-T3. The macroscopic stress triaxiality and the effective strain are T = 1
and ε̄ = 0.2, respectively. Results for von Mises (1928) yield criterion: (a) L = −1 (axisymmetric tension) and (c) L = 1 (axisymmetric
compression). Results for Yld2004-18p yield criterion (Barlat et al., 2005) with material orientation yΣIII zΣIxΣII : (c) L = −1 (axisymmetric
tension) and (d) L = 1 (axisymmetric compression). The origin of the Cartesian coordinate system (x′1, x

′
2, x
′
3) is located at the center of

mass of the void, with x′1, x′2 and x′3 being parallel to the loading axes x1, x2 and x3. The initial diameter of the void is 1.



24

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4

B

C

E

F

Macroscopic effective strain, ε

V
o

id
 s

e
m

i-
a

x
e

s
 r

a
ti
o

s
, 

b
/a

, 
c
/a

Material: AA 2090-T3

T=1

von Mises criterion

L=-1 - Ratio: b/a
L=-1 - Ratio: c/a
L=1 - Ratio: b/a
L=1 - Ratio: c/a

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4

B

C

E

F

Macroscopic effective strain, ε

V
o

id
 s

e
m

i-
a

x
e

s
 r

a
ti
o

s
, 

b
/a

, 
c
/a

Material: AA 2090-T3

T=1

L=-1 - Ratio: b/a
L=-1 - Ratio: c/a
L=1 - Ratio: b/a
L=1 - Ratio: c/a

Material orientation: y
Σ
  z

Σ
 x
ΣIII I II

Yld2004-18p criterion

(b)

Figure 9: Influence of the macroscopic Lode parameter on void growth for AA 2090-T3. Unit-cell finite element calculations for T = 1 and
two different values of the macroscopic Lode parameter L = −1 and 1 (axisymmetric tension and axisymmetric compression, respectively).
Evolution of the void semi-axes ratios, b/a and c/a, with the macroscopic effective strain ε̄ for: (a) von Mises (1928) yield criterion and
(b) Yld2004-18p yield criterion (Barlat et al., 2005) with material orientation yΣIII zΣIxΣII . The dashed yellow line corresponds to the
macroscopic effective strain ε̄ = 0.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

f/f0−ε̄ curves obtained with the anisotropic model is such that the porosity grows faster for the orientation xΣIIIyΣIzΣII ,406

whereas the curves for yΣIIIzΣIxΣII and zΣIIIxΣIyΣII virtually overlap each other for most of the range of macroscopic407

strains considered in the plot. On the other hand, the f/f0 − ε̄ curve obtained with the von Mises yield criterion lies408

between the results corresponding to xΣIIIyΣIzΣII and the other two material orientations. The geometry of the voids for409

a fixed value of the macroscopic strain ε̄ = 0.15 is shown in Fig. 11. While the shape of the void for von Mises plasticity,410

Fig. 11(a), is roughly spherical with b
a ≈ 1.01 and c

a ≈ 0.92, the anisotropy leads to important variations in the void411

geometry, which is shown to be dependent on the material orientation. Specifically, for the orientation xΣIIIyΣIzΣII the412

semi-axes aspect ratios are c
a ≈ 1.06 and b

a ≈ 0.93, so that the void grows more rapidly in the x3 direction than in the413

major loading direction (which corresponds to x1). In contrast, for the orientations yΣIIIzΣIxΣII and zΣIIIxΣIyΣII , we414

have that c
a < 1 and b

a > 1, so that the voids are stretched out along direction x2. Specifically, for the case yΣIIIzΣIxΣII415

we have that c
a ≈ 0.88 and b

a ≈ 1.06, and for the orientation zΣIIIxΣIyΣII the ratios are c
a ≈ 0.96 and b

a ≈ 1.06,416

i.e., in the latter case the void is comparatively more elongated along the x3 direction. The finite element simulations417

performed for L = 1 are reported in Fig. 10(b). The arrangement of the f/f0 − ε̄ curves is different than in the case418

of L = 0, and the fastest growth rate is obtained for the anisotropic material with zΣIIIxΣIyΣII orientation, followed419

by the orientation xΣIIIyΣIzΣII , the von Mises material and the anisotropic material with orientation yΣIIIzΣIxΣII ,420

respectively. In agreement with the conclusions derived from the analysis of Bryhni Dæhli et al. (2017a) for different421

textured face-centered-cubic metals, these numerical results demonstrate that the anisotropy of the matrix has a marked422

effect on the growth and geometry evolution of the void.423
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Figure 10: Influence of the material orientation on void growth for AA 2090-T3. Unit-cell finite element calculations for von Mises (1928)
criterion and Yld2004-18p criterion (Barlat et al., 2005) with three material orientations xΣIII yΣI zΣII , yΣIII zΣIxΣII and zΣIIIxΣI yΣII .
Evolution of the normalized void volume fraction f/f0 with the macroscopic effective strain ε̄. Macroscopic stress triaxiality T = 2 and Lode
parameter: (a) L = 0 (generalized shear) and (b) L = 1 (axisymmetric compression). The dashed yellow line corresponds to the macroscopic
effective strain ε̄ = 0.15. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

424

Moreover, note that we have not observed the void to coalesce for the range of macroscopic effective strains and425

void volume fractions considered in these calculations. Recall that the main objective of the paper is to identify the role426

of anisotropy and material orientation on void growth, so that the analysis is limited to moderate levels of ε̄ and f/f0.427

However, we have checked that for greater macroscopic effective strains, and larger void volume fraction, coalescence may428

occur, and for some loading cases and material orientations, a pair of localization bands is formed inside the inter-void429

ligament. Nevertheless, large void growth is accompanied by important mesh distortion, so that alternative procedures,430

e.g. Eulerian analysis, are needed to provide a complete description of localization and failure.431

4.2. Misalignment between loading and material axes432

Following the same scheme of Section 4.1, we carry out a parametric study on the influence of macroscopic stress433

triaxiality (Section 4.2.1), Lode parameter (Section 4.2.2) and material orientation (Section 4.2.3) on the evolution434

of the size and the shape of the void. Recall that in the calculations in which loading and material axes are not435

parallel, the material orthotropy axes rotate relative to the loading directions during loading. We investigate angular436

misalignments within the range 0◦ ≤ θ ≤ 90◦ –calculations performed in eight intervals of 11.25◦–, so that one loading437

direction is collinear to one of the symmetry axes of the material, and θ is the angle formed between the other two438

loading directions and the second and third orthotropy axes. The notation for the material orientations investigated439
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(a) (b)

(c) (d)

Figure 11: 3D reconstruction of the surface of the voids for AA 2090-T3. The macroscopic stress triaxiality, the macroscopic Lode parameter
and the macroscopic effective strain are T = 2, L = 0 (generalized shear), and ε̄ = 0.15, respectively. Results for: (a) von Mises (1928) yield
criterion and Yld2004-18p yield criterion (Barlat et al., 2005) for (b) xΣI yΣI zΣIII , (c) yΣIII zΣIxΣII and (d) zΣIIIxΣI yΣII orientations. The
origin of the Cartesian coordinate system (x′1, x

′
2, x
′
3) is located at the center of mass of the void, with x′1, x′2 and x′3 being parallel to the

loading axes x1, x2 and x3. The initial diameter of the void is 1.

in the calculations performed in this section is xΣIIIyθzθ, yΣIIIzθxθ and zΣIIIxθyθ, where the first letter indicates the440

orthotropy axis corresponding to the minor loading direction, and θ is the angle formed between the other two loading441
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directions and orthotropy axes. An schematic representation for the specific orientations xΣIIIy22.5◦z22.5◦ , xΣIIIy45◦z45◦
442

and xΣIIIy67.5◦z67.5◦ , where θ = 22.5◦, 45◦ and 67.5◦, respectively, is shown in Fig. 12. We also perform calculations for443

material orientations xΣIyθzθ, yΣIzθxθ and zΣIxθyθ, so that the first letter indicates the orthotropy axis corresponding444

to the major loading direction (see Fig. 26). Despite the misaligment between loading and orthotropy axes, which445

promotes the development of shear stresses near the void, macroscopic triaxiality and Lode parameter –prescribed using446

the multi-point constraint subroutine developed by Dakshinamurthy et al. (2021)– do not deviate more than 3% from447

the prescribed values during the entire loading process, for the range of macroscopic effective strains considered, and448

for all the calculations shown in this section. Note that the symmetry of the material with respect to the orthotropy449

axes makes the response of the cell the same for ±θ. Note also that due to the misalignment between loading and450

material axes, the faces of the unit-cell twist during loading, see Fig. 24, so that it is essential the application of periodic451

boundary conditions to the finite element model to allow the unit-cell to deform freely without constraints, see Section 3452

and Dakshinamurthy et al. (2021). In addition, note that the deformed voids are not ellipsoidal (recall that the deformed453

voids in the calculations shown in Section 3 were ellipsoidal). In this section, results are presented for three aluminum454

alloys: 2090-T3, 6111-T4 and 6013. While a large number of works has been published so far to study void growth455

using unit-cell calculations, to the authors’ knowledge, this is the first paper which includes simulations for anisotropic456

materials modeled with a macroscopic anisotropic yield function in which loading and materials axes are not aligned.457

Figure 12: Schematic representation of material orientations investigated in the calculations reported in this section, xΣIII y22.5◦
z22.5◦

,
xΣIII y45◦

z45◦
and xΣIII y67.5◦

z67.5◦
, so that the minor loading direction x3 is parallel to the rolling direction x, and the transverse and normal

orthotropy axes, y and z, form 22.5◦, 45◦ and 67.5◦, respectively, with the other two loading directions.

4.2.1. The influence of stress triaxiality458

Fig. 13 shows the evolution of the normalized void volume fraction f/f0 with the macroscopic effective strain ε̄459

for L = −1 and three different values of the stress triaxiality T = 0.33, 1 and 2. Results correspond to Yld2004-460

18p criterion and aluminium alloy 2090-T3 for three different material orientations, xΣIIIy22.5◦z22.5◦ , xΣIIIy45◦z45◦ and461
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xΣIIIy67.5◦z67.5◦ , so that the minor loading direction x3 is parallel to the rolling direction x, and the transverse and462

normal orthotropy axes, y and z, form 22.5◦, 45◦ and 67.5◦, respectively, with the other two loading directions. The463

increase of triaxiality boosts the porosity growth for the three values of θ considered, with the f/f0 − ε̄ curves obtained464

for T = 0.33 displaying a concave-downwards shape, and the curves for T = 1 and T = 2 a concave-upwards shape,465

just like in the calculations shown in Section 4.1, in which loading directions and material axes were parallel. On the466

other hand, there is an important effect of the angular misalignment θ on the void volume fraction so that the void467

grows faster for 67.5◦ than for 45◦ and 22.5◦, for the three values of macroscopic triaxiality considered. The differences468

in the size and shape of the void with the angle θ become apparent in Fig. 14 which pictures 3D reconstructions of469

the voids corresponding to the three orientations, xΣIIIy22.5◦z22.5◦ , xΣIIIy45◦z45◦ and xΣIIIy67.5◦z67.5◦ , for T = 2 and470

macroscopic effective strain ε̄ = 0.15 (yellow markers in the green dashed curves of Figs. 13(a), 13(b) and 13(c)). The471

void for xΣIIIy67.5◦z67.5◦ is bigger, and it is more elongated along the x2 direction, notably in comparison with the void472

corresponding to xΣIIIy22.5◦z22.5◦ , which is flattened along the second loading axis. Notice that, as mentioned before,473

the voids are not ellipsoidal. Nevertheless, unlike what it could be deduced from the results presented in Figs. 13 and 14,474

the relationship between void volume fraction and angular misalignment is strongly nonlinear (f/f0 is not an increasing475

function of θ), and it depends on the material orientation.476

477

Fig. 15 shows the evolution of f/f0 with the angular misalignment θ for the same macroscopic Lode parameter and478

the same values of the stress triaxiality considered in Fig. 13, and different material orientations: xΣIIIyθzθ (as in479

Fig. 13), yΣIIIzθxθ and zΣIIIxθyθ. Recall that the notation is such that in the case of xΣIIIyθzθ the minor loading480

direction x3 is parallel to the rolling direction x, and the transverse and normal orthotropy axes, y and z, form an481

angle θ with the other two loading directions. The same reasoning is applied for yΣIIIzθxθ and zΣIIIxθyθ, for which482

the minor loading direction x3 is parallel to the orthotropy axes y and z, respectively. Notice that the void volume483

fraction, for the three material orientations, and the three values of triaxiality considered, first decreases with the angle484

θ, reaches a minimum, and then increases. The minimum is shallow for T = 0.33, and much stronger for T = 2, so that485

the nonlinearity of the f/f0 − θ curves becomes more important as the triaxiality increases, bringing out the interplay486

between angular misaligment and stress triaxiality on void growth. To the authors’ knowledge, this is an original487

outcome of this paper. The angle θ for which the minimum occurs, while hardly dependent on the value of T , depends488

on the material orientation. Specifically, the results pictured in Fig. 15(a) show that for the orientation xΣIIIyθzθ the489

minimum occurs at θ ≈ 25◦, while in the cases of yΣIIIzθxθ and zΣIIIxθyθ shown in Figs. 15(b) and 15(c), the minimum490

occurs for greater angular misalignment, namely θ ≈ 45◦ and ≈ 50◦, respectively. Moreover, notice that the slope of the491

f/f0 − θ curves also depends on the material orientation. For example, the greatest decrease of f/f0 for small angular492
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Figure 13: Influence of the macroscopic stress triaxiality on void growth for AA 2090-T3. Unit-cell finite element calculations for L = −1
(axisymmetric tension) and three values of the stress triaxiality T = 0.33, 1 and 2. Evolution of the normalized void volume fraction f/f0
with the macroscopic effective strain ε̄ for Yld2004-18p criterion (Barlat et al., 2005) with material orientation: (a) xΣIII y22.5◦

z22.5◦
, (b)

xΣIII y45◦
z45◦

and (c) xΣIII y67.5◦
z67.5◦

. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)



30

(a) (b)

(c)

Figure 14: 3D reconstruction of the surface of the voids for AA 2090-T3. The Lode parameter is L = −1 (axisymmetric tension) and the
macroscopic triaxiality is T = 2. Results correspond to ε̄ = 0.15 for Yld2004-18p criterion (Barlat et al., 2005) with material orientation:

(a) xΣIII y22.5◦
z22.5◦

, (b) xΣIII y45◦
z45◦

and (c) xΣIII y67.5◦
z67.5◦

. The origin of the Cartesian coordinate system (x′1, x
′
2, x
′
3) is located at the

center of mass of the void, with x′1, x′2 and x′3 being parallel to the loading axes x1, x2 and x3, and also to the orthotropy axes x, y and z.
The initial diameter of the void is 1.



31

misalignments corresponds to yΣIIIzθxθ, and the greatest increase of f/f0 for large values of θ to xΣIIIyθzθ. While the493

scale of the y-axis in the plots is bounded for the sake of clarity in the presentation of results, we have checked that the494

maximum value of normalized void volume fraction reached for xΣIIIyθzθ is f/f0 ≈ 12 and it corresponds to θ = 90◦,495

while in the cases of yΣIIIzθxθ and zΣIIIxθyθ it is f/f0 ≈ 12 and ≈ 10, respectively, and it corresponds to θ = 0◦.496
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Figure 15: Influence of the macroscopic stress triaxiality on void growth for AA 2090-T3. Unit-cell finite element calculations for L = −1
(axisymmetric tension) and three values of the stress triaxiality T = 0.33, 1 and 2. Evolution of the normalized void volume fraction f/f0 with
the angular misalignment θ for Yld2004-18p criterion (Barlat et al., 2005) and different material orientations: (a) xΣIII yθzθ, (b) yΣIII zθxθ

and (c) zΣIIIxθyθ. The macroscopic effective strain is ε̄ = 0.15.

497

Fig. 16 shows that for aluminum alloys 6111-T4 and 6013 the void growth is also strongly dependent of the angle498

θ. In the case of the AA 6111-T4, the f/f0 − θ curve shows a local maximum for θ ≈ 45◦ and two minima for θ ≈ 23◦499

and 68◦, respectively. In the case of the AA 6013, the shape of the f/f0 − θ curve is different, such that the normalized500

void volume fraction first decreases, reaches a minimum, and then increases monotonically. Notice that the void volume501
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fraction is greater for aluminum alloy 6013 except for a small range of values of θ spanning from ≈ 36◦ to ≈ 52◦. These502

results make apparent that the influence of angular misalignment on void growth is large and general, as it occurs for503

different materials (compare also with the green dashed line in Fig. 15(a) which corresponds to AA 2090-T3 for the504

same material orientation xΣIIIyθzθ, and the sames values of effective strain, triaxiality and Lode parameter).505
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Figure 16: Comparison between results obtained for aluminum alloys 6111-T4 and 6013. Unit-cell finite element calculations for L = −1
(axisymmetric tension) and T = 2. Evolution of the normalized void volume fraction f/f0 with the angular misalignment θ for Yld2004-18p
criterion (Barlat et al., 2005) and material orientation xΣIII yθzθ. The macroscopic effective strain is ε̄ = 0.15.

4.2.2. The influence of Lode parameter506

Fig. 17 shows the evolution of the normalized void volume fraction f/f0 with the macroscopic effective strain ε̄ for507

aluminium alloy 2090-T3, macroscopic triaxiality T = 1 and two different values of the Lode parameter L = −1 and 0,508

which correspond to axisymmetric tension and generalized shear, respectively. Results are presented for Yld2004-18p509

criterion for two different material orientations, xΣIIIy22.5◦z22.5◦ and xΣIIIy67.5◦z67.5◦ . While for xΣIIIy22.5◦z22.5◦ the510

void grows faster for L = 0 than for L = −1, the opposite behavior is obtained for xΣIIIy67.5◦z67.5◦ , making apparent the511

interplay between the angular misalignment and the Lode parameter on void growth. Fig. 18 shows f/f0 − ε̄ curves for512

the same macroscopic triaxiality and Lode parameter values, but different material orientations, namely yΣIIIz22.5◦x22.5◦
513

and yΣIIIz67.5◦x67.5◦ . The void grows faster for L = 0 than for L = −1. However, while the results obtained for both514

values of the Lode parameter are very similar for yΣIIIz22.5◦x22.5◦ , the differences increase for yΣIIIz67.5◦x67.5◦ , which515

shows that the effect of the Lode parameter and the angular misalignment on the void volume fraction depends on the516

material orientation.517

518
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Figure 17: Influence of the macroscopic Lode parameter on void growth for AA 2090-T3. Unit-cell finite element calculations for two values
of the Lode parameter L = −1 and 0 (axisymmetric tension and generalized shear). Evolution of the normalized void volume fraction f/f0
with the macroscopic effective strain ε̄. The macroscopic triaxiality is T = 1. Results corresponding to Yld2004-18p yield criterion (Barlat

et al., 2005) with material orientation: (a) xΣIII y22.5◦
z22.5◦

and (b) xΣIII y67.5◦
z67.5◦

. The dashed yellow line corresponds to the macroscopic
effective strain ε̄ = 0.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Figure 18: Influence of the macroscopic Lode parameter on void growth for AA 2090-T3. Unit-cell finite element calculations for two vales
of the Lode parameter L = −1 and 0 (axisymmetric tension and generalized shear). Evolution of the normalized void volume fraction f/f0
with the macroscopic effective strain ε̄. The macroscopic triaxiality is T = 1. Results corresponding to Yld2004-18p yield criterion (Barlat

et al., 2005) with material orientation: (a) yΣIII z22.5◦
x22.5◦

and (b) yΣIII z67.5◦
x67.5◦

. The dashed yellow line corresponds to the macroscopic
effective strain ε̄ = 0.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 19 shows f/f0 − θ curves obtained for AA 2090-T3 and T = 1 with different material orientations, xΣIIIyθzθ519

and yΣIIIzθxθ. As in Figs. 17 and 18, results are compared for two values of the Lode parameter, L = −1 and L = 0.520

The macroscopic effective strain is ε̄ = 0.3 (for this value of triaxiality the growth rate of the void is relatively low, so521

we select a high value of strain for the presentation of results). As in Fig. 15, the f/f0 − θ curves display a minimum522

void volume fraction for an intermediate value of θ. The Lode parameter has an important impact on the evolution523

of the void volume fraction with the angular misalignment. Fig. 19(a) pictures the results for the material orientation524

xΣIIIyθzθ. The f/f0 − θ curves for L = −1 and L = 0 intersect at θ ≈ 45◦, so that for θ < 45◦ the greater void525

volume fraction corresponds to L = 0, and for θ > 45◦ to L = −1. The angular misalignment corresponding to the526

minimum void volume fraction also depends on the value of the Lode parameter, being ≈ 22.5◦ for L = −1 and ≈ 40◦527

for L = 0. Fig. 19(b) shows the results for yΣIIIzθxθ. The f/f0−θ curves for L = −1 and L = 0 intersect at intermediate528

values of the angular misalignment, so that the void volume fraction corresponding to L = 0 is greater within the range529

22.5◦ < θ < 80◦. These results stand in contrast with the calculations corresponding to xΣIIIyθzθ presented in Fig.530

19(a), for which the void volume fraction for small values of θ was greater for L = 0, and provide an example of the531

combined effect of Lode parameter, material orientation and angular misalignment on void growth.532
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Figure 19: Influence of the macroscopic Lode parameter on void growth for AA 2090-T3. Unit-cell finite element calculations for T = 1 and
two values of the Lode parameter L = −1 and 0 (axisymmetric tension and generalized shear). Evolution of the normalized void volume
fraction f/f0 with the angular misalignment θ for Yld2004-18p criterion (Barlat et al., 2005) and different material orientations: (a) xΣIII yθzθ

and (b) yΣIII zθxθ. The macroscopic effective strain is ε̄ = 0.3.

533

Fig. 20 shows the same f/f0 − θ curves corresponding to aluminium alloy 6013. The void volume fraction displays a534

minimum for an intermediate value of the angular misalignment for both material orientations, xΣIIIyθzθ in Fig. 20(a)535

and yΣIIIzθxθ in Fig. 20(b), and for the two values of the Lode parameter considered. However, unlike in the case of536

AA 2090-T3, the void volume fraction is greater for axisymmetric tension (L = −1) than for generalized shear (L = 0)537
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for the whole range of angular misalignments. These results show that the specific influence of the Lode parameter on538

the f/f0− θ curves depends on both the material orientation and the angular misalignment, and varies from material to539

material.540
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Figure 20: Influence of the macroscopic Lode parameter on void growth for AA 6013. Unit-cell finite element calculations for T = 1 and two
values of the Lode parameter L = −1 and 0 (axisymmetric tension and generalized shear). Evolution of the normalized void volume fraction
f/f0 with the angular misalignment θ for Yld2004-18p criterion (Barlat et al., 2005) and different material orientations: (a) xΣIII yθzθ and (b)
yΣIII zθxθ. The macroscopic effective strain is ε̄ = 0.3.

4.2.3. The influence of material orientation541

Fig. 21 presents the normalized void volume fraction f/f0 versus the macroscopic effective strain ε̄ for calculations542

performed for AA 2090-T3 with the Yld2004-18p yield criterion, for stress triaxiality T = 2, Lode parameter L = −1 and543

different material orientations. The results pictured in Fig. 21(a) for xΣIIIy22.5◦z22.5◦ , xΣIIIy45◦z45◦ and xΣIIIy67.5◦z67.5◦
544

show that within this range of angular misalignments the void grows faster as the angle θ increases. However, the effect545

of θ on void growth is different for the orientations zΣIIIx22.5◦y22.5◦ , zΣIIIx45◦y45◦ and zΣIIIx67.5◦y67.5◦ shown in Fig.546

21(b). Specifically, the curve corresponding to zΣIIIx67.5◦y67.5◦ lies between the results obtained for zΣIIIx22.5◦y22.5◦
547

and zΣIIIx45◦y45◦ , with the latter orientation displaying the lower growth rate of the void. Consistent with the results548

shown in Section 4.2.2, these calculations reinforce the idea that the effect of the angular misalignment on void growth549

depends on the material orientation.550

Moreover, the influence of the material orientation on the evolution of the shape and the size of the void during551

loading is illustrated in Figs. 22 and 23, which picture 3D reconstructions of the voids for the orientations xΣIIIy45◦z45◦
552

and zΣIIIx45◦y45◦ , respectively, for different values of the macroscopic effective strain ε̄ = 0.03, 0.13, 0.23 and 0.35553

(indicated with yellow markers in Figs. 21(a) and 21(b)). As the loading progresses, the voids, initially spherical, grow554

and twist, evolving towards a deformed shape that is not ellipsoidal (as anticipated in the first paragraph of Section555
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4.2). In addition, the comparison of Figs. 22 and 23 makes apparent that the void grows faster for the orientation556

xΣIIIy45◦z45◦ (as also shown in Fig. 21). Twisting and rotation of void and unit-cell (anticipated in the first paragraph557

of Section 4.2) is further illustrated in Fig. 24, which shows contours of effective plastic strain for the calculations558

presented in Figs. 22 and 23 for a macroscopic effective strain of 0.35. The contour plots correspond to the cut-view559

x3 = L0
2 (mid-plane of the unit-cell) and the color coding is such that effective plastic strains ranging from 0 to 0.5560

correlate with a color scale that goes from blue to red. If the value of the effective plastic strain is above 0.5, it remains561

red. The plots bring out the non-planar profile of the faces of the uni-cell (initially straight sides become curved), and562

the fact that the effective plastic strain fields are not symmetric with respect to the loading axes (recall that the effective563

plastic strain fields in the calculations shown in Fig. 5 were symmetric with respect to the loading axes). The deformed564

shape of the unit-cell also makes apparent the effect of the periodic boundary conditions enforcing coupled displacement565

of material points belonging to opposed faces.566
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Figure 21: Influence of the material orientation on void growth for AA 2090-T3. Evolution of the normalized void volume fraction f/f0
with the macroscopic effective strain ε̄. Unit-cell finite element calculations for Yld2004-18p yield criterion (Barlat et al., 2005) with stress

triaxiality T = 2, Lode parameter L = −1 (axisymmetric tension), and different material orientations. (a) xΣIII y22.5◦
z22.5◦

, xΣIII y45◦
z45◦

,

and xΣIII y67.5◦
z67.5◦

, (b) zΣIIIx22.5◦
y22.5◦

, zΣIIIx45◦
y45◦

and zΣIIIx67.5◦
y67.5◦

. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Figure 24: Influence of the material orientation on void growth for AA 2090-T3. Contours of effective plastic strain in the matrix material
ε̄p for unit-cell finite element calculations performed with macroscopic triaxiality T = 2 and Lode parameter L = −1 (axisymmetric tension).
Cut-view for x3 = L0/2. The macroscopic effective strain is ε̄ = 0.35. Results corresponding to Yld2004-18p criterion (Barlat et al., 2005)

with material orientation: (a) xΣIII y45◦
z45◦

and (b) zΣIIIx45◦
y45◦

.

567

Fig. 25 compares the evolution of the normalized void volume fraction f/f0 with the angular misalignment θ for568

calculations performed for AA 2090-T3 with different material orientations, xΣIIIyθzθ, yΣIIIzθxθ and zΣIIIxθyθ. Results569

are shown for two values of the stress triaxiality, T = 1 and T = 2, in Figs. 25(a) and 25(b), respectively. Notice that in570

Fig. 25(b) the scale of the ordinate axis is three times greater than in the case of T = 1 due to faster void growth with571

increasing triaxiality. The Lode parameter is L = 0, and the macroscopic effective strain is 0.3 in Fig. 25(a) and 0.15 in572

Fig. 25(b), respectively. The evolution of the void volume fraction f/f0 with θ displays a minimum for an intermediate573

value of the angular misalignment (just like in Figs. 15 and 19 for different values of the Lode parameter and stress574
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triaxiality). The f/f0 − θ curves obtained for different orientations intersect each other, with the smallest value of f/f0575

corresponding to zΣIIIxθyθ, illustrating that the specific effect of material orientation on void growth depends on both576

stress state and angular misalignment.577
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Figure 25: Influence of the material orientation on void growth for AA 2090-T3. Unit-cell finite element calculations for Yld2004-18p criterion
(Barlat et al., 2005) with material orientations xΣIII yθzθ, yΣIII zθxθ and zΣIIIxθyθ. Evolution of the normalized void volume fraction f/f0
with the angular misalignment θ. The value of the Lode parameter is L = 0 (generalized shear). Macroscopic stress triaxiality and macroscopic
effective strain: (a) T = 1 and ε̄ = 0.3, (b) T = 2 and ε̄ = 0.15.

578

Fig. 26 shows f/f0− θ curves for AA 2090-T3 corresponding to material orientations xΣIyθzθ, yΣIzθxθ and zΣIxθyθ,579

so that the major loading direction x1 is aligned with one anisotropy axis (x, y and z, respectively), and the other580

two loading directions form an angle θ with the second and third anisotropy axes. The macroscopic stress triaxiality is581

T = 2.582

Fig. 26(a) pictures results for L = −1 (axisymmetric tension) and ε̄ = 0.1. Unlike the results shown in Figs. 15,583

16, 19, 20 and 25, the normalized void volume fraction for xΣIyθzθ shows a maximum, instead of a minimum, for an584

intermediate value of the angular misalignment. On the other hand, for yΣIzθxθ and zΣIxθyθ, the f/f0 − θ curves are585

nearly horizontal, i.e., the angular misalignment has an small effect on the void volume fraction. The shape of the586

f/f0 − θ curves is different for the results presented in Fig. 26(b) for the Lode parameter L = 0 (generalized shear)587

and the effective strain ε̄ = 0.15, such that the void volume fraction shows a minimum for an intermediate value of588

the angular misalignment, as in Figs. 15, 16, 19, 20 and 25. The lowest void growth corresponds to the orientation589

xΣIyθzθ. These results show the influence of the orientation of the minor and major loading directions with respect to590

the anisotropy axes of the material, bringing to light that it is possible to find both a minimum and a maximum of f/f0591

for angular misalignments within the range 0◦ < θ < 90◦.592
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Figure 26: Influence of the material orientation on void growth for AA 2090-T3. Unit-cell finite element calculations for Yld2004-18p yield
criterion (Barlat et al., 2005) with material orientations xΣI yθzθ, yΣI zθxθ and zΣIxθyθ. Evolution of the normalized void volume fraction
f/f0 with the angular misalignment θ. The macroscopic stress triaxiality is T = 2. The Lode parameter and the macroscopic effective strain
are: (a) L = −1 (axisymmetric tension) and ε̄ = 0.1, (b) L = 0 (generalized shear) and ε̄ = 0.15.

5. Summary and concluding remarks593

In this paper, we have performed a finite element analysis to identify the role of plastic anisotropy on void growth594

in three aluminium alloys: 2090-T3, 6111-T4 and 6013. For that task, we have assumed that the material displays a595

periodic porous microstructure that can be approximated by an array of representative volume elements idealized as596

cubic unit-cells with a spherical void located at their center and subjected to periodic boundary conditions. The unit-cell597

model has been implemented in ABAQUS/Standard (2016), with the behavior of the matrix material being described598

with an elastic isotropic, plastic orthotropic constitutive model with yielding defined by the Yld2004-18p criterion599

(Barlat et al., 2005) in which anisotropy is introduced through 2 linear transformations of the stress deviator which600

provide 18 anisotropy coefficients. The constitutive model has been included in the environment of ABAQUS/Standard601

(2016) through a UMAT subroutine, using the stress integration algorithm based on the numerical approximation of the602

yield function gradients developed by Hosseini and Rodŕıguez-Mart́ınez (2021). Moreover, the multi-point constraint603

subroutine developed by Dakshinamurthy et al. (2021) has been used to enforce constant values of macroscopic stress604

triaxiality T and Lode parameter L in unit-cell calculations that have been carried out for T = 0.33, 1 and 2, and605

L = −1, 0 and 1.606

607

Firstly, following the recent work of Bryhni Dæhli et al. (2017a), we have considered the loading directions being608

parallel to the orthotropy axes of the material, so that the principal directions of macroscopic stress and macroscopic609

strain coincide. A key feature of the analysis is that we have rotated the Cartesian coordinate system formed by the610
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material orthotropy axes to perform calculations in which the minor loading axis of the unit-cell corresponds either with611

the rolling, the transverse or the normal direction. In addition, the finite element results obtained for the anisotropic612

material have been systematically compared with simulations carried out using isotropic von Mises (1928) plasticity.613

The main outcomes of this analysis are as follows:614

� As expected, the general trend is that the increase of triaxiality speeds up the growth rate of the void. However,615

the void volume evolution depends on the material anisotropy, so that the void grows faster or slower than in the616

isotropic case depending on the triaxiality and the orientation of the material orthotropy axes.617

� The numerical results have shown that for specific material orientations, the anisotropy switches the effect of the618

Lode parameter on void growth, reversing the trends obtained for the isotropic von Mises material.619

� 3D reconstruction of the voids geometry during loading using a Quickhull algorithm has revealed that the initially620

spherical void turns into an ellipsoid whose rate of growth and eccentricity depend on stress triaxiality, Lode621

parameter and material orientation. In fact, consistent with the results of Bryhni Dæhli et al. (2017a), we have622

shown that the void shape evolves quite differently depending upon the orientation of the minor loading direction623

relative to the material axes.624

Secondly, we have devised a novel strategy to perform calculations considering angular misalignments within the625

range 0◦ ≤ θ ≤ 90◦, so that one loading direction is parallel to one of the symmetry axes of the material, and θ is626

the angle formed between the other two loading directions and the second and third orthotropy axes. Note that the627

symmetry of the material with respect to the orthotropy axes makes the response of the cell the same for ±θ. These628

numerical results constitute the main original contribution of this work. In fact, to the authors’ knowledge, these are629

the first unit-cell calculations ever reported in which the material is modeled using a macroscopic anisotropic yield630

function with prescribed misalignment between loading and material axes and, at the same time, the macroscopic stress631

triaxiality and the Lode parameter are controlled to be constant during loading. The main outcomes of this analysis632

are as follows:633

� The calculations performed for the three aluminium alloys –2090-T3, 6111-T4 and 6013– bring out that the634

evolution of the growth rate of the void with the angular misalignment is generally strongly nonlinear, so that635

there is an intermediate value of the angle θ for which the growth rate of the void reaches an extreme value636

(minimum or maximum) which depends on the material orientation and on the Lode parameter.637

� The greater the stress triaxiality, the greater the influence of the angular misalignment on void growth, with the638

specific influence of the Lode parameter being dependent on the material orientation.639
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� The misalignment between loading and material axes makes that the initially straight sides of the unit-cell become640

curved, and the voids are no longer ellipsoidal, and rotate and twist during loading.641

These results suggest that material orientation can be exploited to control void growth and thus promote or delay642

localization and fracture of anisotropic metal products.643

644

In addition, we have performed selected calculations for AA 2090-T3 with two other advanced yield criteria,645

CPB06ex2 (Plunkett et al., 2008) and Yld2011-27p (Aretz and Barlat, 2013), specifically calibrated to model the646

behavior of AA 2090-T3. The comparison carried out in Appendix A with the results obtained with the Yld2004-18p647

criterion has brought out that different constitutive models, while calibrated for the same specific material, lead to648

different predictions for the evolution of the shape and the size of the void, and also for the distribution of plastic649

strains near the void. Nevertheless, we are aware that a more thorough analysis should be performed in future work to650

substantiate this conclusion. We also leave for future work to extend the range of triaxiality values investigated in this651

paper, with the aim of studying void evolution in anisotropic materials under shear dominated loadings.652
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Appendix A. The influence of constitutive model659

We compare calculations for aluminium alloy 2090-T3 performed using the constitutive framework presented in660

Section 2 with finite element results obtained with the yield criteria CPB06ex2 (Plunkett et al., 2008) and Yld2011-27p661

(Aretz and Barlat, 2013). The CPB06ex2 model accounts for both the anisotropy and tension-compression asymmetry of662

the material, which are introduced using 2 linear transformations of the stress deviator. The CPB06ex2 yield criterion663

contains 18 parameters to describe the anisotropy and 2 for the tension-compression asymmetry. The Yld2011-27p664

model does not consider the tension-compression assymetry of the material, and the anisotropy is introduced using 3665

linear transformations of the stress deviator, which results in 27 anisotropy coefficients, thereby providing extended666

flexibility to capture the mechanical response of materials with complex anisotropic behaviour. We have implemented667
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both CPB06ex2 and Yld2011-27p yield criteria in ABAQUS/Standard (2016) through a UMAT subroutine using the668

integration scheme reported in Hosseini and Rodŕıguez-Mart́ınez (2021). In the finite element calculations we use the669

material parameters reported by Plunkett et al. (2008) and Aretz and Barlat (2013).670

671

Fig. A.27 compares f/f0− ε̄ curves obtained with Yld2004-18p, CPB06ex2 and Yld2011-27p yield criteria, for stress672

triaxiality T = 2 and Lode parameter L = 1. Loading and orthotropy axes are parallel. Results are shown for different673

material orientations: xΣIIIyΣIzΣII , yΣIIIzΣIxΣII and zΣIIIxΣIyΣII . The rate of growth of the void is significantly674

affected by the specific constitutive model used to describe the behavior of the matrix material, so that for any given675

value of the macroscopic strain, the greatest void volume fraction corresponds to the Yld2004-18p criterion, and the676

smallest to the CPB06ex2 model. Notice also that the differences in the predictions obtained with the three constitutive677

models depend on the material orientation, e.g., the rate of growth of the void is more sensitive to the constitutive678

model for xΣIIIyΣIzΣII than for yΣIIIzΣIxΣII and zΣIIIxΣIyΣII .679

680

Fig. A.28 shows the evolution of the void volume fraction f/f0 with the macroscopic effective strain ε̄ for calculations681

performed with Yld2004-18p, CPB06ex2 and Yld2011-27p yield criteria. The stress triaxiality is T = 2 and the682

Lode parameter L = −1. Results are shown for zΣIIIx22.5◦y22.5◦ , zΣIIIx45◦y45◦ and zΣIIIx67.5◦y67.5◦ . The results are683

qualitatively the same presented in Fig. A.27, with the greatest and the smallest growth rate of the void corresponding684

to Yld2004-18p and CPB06ex2 models, respectively. These results bring out that the influence of the constitutive model685

on the evolution of the void is general, as long as it is observed for different loading conditions and material orientations.686

Moreover, Fig. A.29 shows contours of effective plastic strain for the calculations presented in Fig. 28(b) corresponding687

to CPB06ex2 and Yld2011-27p yield criteria. The macroscopic effective strain is 0.35. The contour plots correspond to688

the cut-view x3 = L0
2 (mid-plane of the unit-cell) and the color coding is the same used in Fig. 24 so that the results689

can be directly compared with the contour plots shown therein for the orientation zΣIIIx45◦y45◦ . The yield criterion is690

shown to affect the size and the shape of the void, and also the fields of equivalent plastic strain that develop near the691

void. Notice that the greatest plastically deformed zone corresponds to the model Yld2004-18p (see Fig. 24) and the692

smallest to the CPB06ex2 yield function (check the extension of the red area).693

694

While the general trends obtained with the three constitutive models are the same for the loading cases considered,695

this Appendix brings to light that using different yield criteria, despite they are calibrated for the same material, lead696

to important quantitative differences in the results for the void evolution obtained with the unit-cell model, and thus697

to different predictions for the development of plastic localization and damage in the material.698
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Figure A.27: Influence of the constitutive model on void growth for AA 2090-T3. Evolution of the normalized void volume fraction f/f0 with
the macroscopic effective strain ε̄. Stress triaxiality T = 2 and Lode parameter L = 1 (axisymmetric compression). Comparison of unit-cell
finite element calculations performed with Yld2004-18p (Barlat et al., 2005), CPB06ex2 (Plunkett et al., 2008) and Yld2011-27p (Aretz and
Barlat, 2013) yield criteria for different material orientations: (a) xΣIII yΣI zΣII , (b) yΣIII zΣIxΣII and (c) zΣIIIxΣI yΣII .
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Figure A.28: Influence of the constitutive model on void growth for AA 2090-T3. Evolution of the normalized void volume fraction f/f0 with
the macroscopic effective strain ε̄. Stress triaxiality T = 2 and Lode parameter L = −1 (axisymmetric tension). Comparison of unit-cell finite
element calculations performed with Yld2004-18p (Barlat et al., 2005), CPB06ex2 (Plunkett et al., 2008) and Yld2011-27p (Aretz and Barlat,

2013) yield criteria for different material orientations: (a) zΣIIIx22.5◦
y22.5◦

, (b) zΣIIIx45◦
y45◦

and (c) zΣIIIx67.5◦
y67.5◦

.
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Figure A.29: Influence of the constitutive model on void growth for AA 2090-T3. Contours of effective plastic strain in the matrix material
ε̄p for unit-cell finite element calculations performed with macroscopic triaxiality T = 2 and Lode parameter L = −1 (axisymmetric tension).

Cut-view for x2 = L0/2. The macroscopic effective strain is ε̄ = 0.35. Calculations carried out for material orientation zΣIIIx45◦
y45◦

with: (a)
CPB06ex2 yield criterion (Plunkett et al., 2008) and (b) Yld2011-27p yield criterion (Aretz and Barlat, 2013).
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Abedrabbo, N., Pourboghrat, F., Carsley, J., 2007. Forming of AA5182-O and AA5754-O at elevated temperatures701

using coupled thermo-mechanical finite element models. International Journal of Plasticity 23, 841 – 875.702

Achani, D., Hopperstad, O.S., Lademo, O.G., 2009. Influence of advanced yield criteria on predictions of plastic703

anisotropy for aluminium alloy sheets. International Journal of Material Forming 2, 487–490.704

Achani, D., Lademo, O.G., Engler, O., Hopperstad, O.S., 2011. Evaluation of constitutive models for textured aluminium705

alloys using plane-strain tension and shear tests. International Journal of Material Forming 4, 227–241.706

Aretz, H., Barlat, F., 2013. New convex yield functions for orthotropic metal plasticity. International Journal of707

Non-Linear Mechanics 51, 97 – 111.708

Banabic, D., Barlat, F., Cazacu, O., Kuwabara, T., 2000. Advances in anisotropy and formability. International Journal709

of Material Forming 3, 165–189.710

Barber, C.B., Dobkin, D.P., Huhdanpaa, H., 1996. The quickhull algorithm for convex hulls 22, 469–483.711

Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transfomation-based anisotropic712

yield functions. International Journal of Plasticity 21, 1009 – 1039.713

Barlat, F., Becker, R.C., Hayashida, Y., Maeda, Y., Yanagawa, M., Chung, K., Brem, J.C., Lege, D.J., Matsui, K.,714

Murtha, S.J., Hattori, S., 1997. Yielding description for solution strengthened aluminum alloys. International Journal715

of Plasticity 13, 385 – 401.716

Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., 2003.717

Plane stress yield function for aluminum alloy sheets—Part I: theory. International Journal of Plasticity 19, 1297 –718

1319.719

Barlat, F., Lege, D.J., Brem, J.C., 1991. A six-component yield function for anisotropic materials. International Journal720

of Plasticity 7, 693–712.721

Barlat, F., Lian, K., 1989. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic722

sheets under plane stress conditions. International Journal of Plasticity 5, 51 – 66.723

Basu, S., Dogan, E., Kondori, B., Karaman, I., Benzerga, A.A., 2017. Towards designing anisotropy for ductility724

enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia 131, 349–362.725



48

Becker, R., Callaghan, K., 2020. Void growth dependence on loading path and mean stress from large-scale numerical726

simulations. International Journal of Plasticity 134, 102780.727

Becker, R., Smelser, R.E., 1994. Simulation of strain localization and fracture between holes in an aluminum sheet.728

Journal of the Mechanics and Physics of Solids 42, 773 – 796.729

Benzerga, A.A., Besson, J., 2001. Plastic potentials for anisotropic porous solids. European Journal of Mechanics -730

A/Solids 20, 397 – 434.731

Benzerga, A.A., Besson, J., Pineau, A., 2004a. Anisotropic ductile fracture: Part I: experiments. Acta Materialia 52,732

4623 – 4638.733

Benzerga, A.A., Besson, J., Pineau, A., 2004b. Anisotropic ductile fracture: Part II: theory. Acta Materialia 52, 4639734

– 4650.735

Benzerga, A.A., Leblond, J.B., 2010. Ductile fracture by void growth to coalescence, in: Aref, H., van der Giessen, E.736

(Eds.), Advances in Applied Mechanics. Elsevier. volume 44 of Advances in Applied Mechanics, pp. 169 – 305.737

Benzerga, A.A., Thomas, N., Herrington, J.S., 2019. Plastic flow anisotropy drives shear fracture. Scientific Reports 9,738

1425.739

Bron, F., Besson, J., 2004. A yield function for anisotropic materials. application to aluminum alloys. International740

Journal of Plasticity 20, 937 – 963.741

Brünig, M., Gerke, S., Schmidt, M., 2018. Damage and failure at negative stress triaxialities: Experiments, modeling742

and numerical simulations. International Journal of Plasticity 102, 70–82.743

Bryhni Dæhli, L.E., Faleskog, J., Børvik, T., Hopperstad, O.S., 2017a. Unit cell simulations and porous plasticity744

modelling for strongly anisotropic FCC metals. European Journal of Mechanics - A/Solids 65, 360 – 383.745

Bryhni Dæhli, L.E., Morin, D., Børvik, T., Hopperstad, O.S., 2017b. Influence of yield surface curvature on the746

macroscopic yielding and ductile failure of isotropic porous plastic materials. Journal of the Mechanics and Physics747

of Solids 107, 253 – 283.748

Cao, T.S., Maziere, M., Danas, K., Besson, J., 2015. A model for ductile damage prediction at low stress triaxialities749

incorporating void shape change and void rotation. International Journal of Solids and Structures 63, 240 – 263.750

Chien, W.Y., Pan, J., Tang, S.C., 2001. Modified anisotropic gurson yield criterion for porous ductile sheet metals.751

Journal of Engineering Materials and Technology 123, 409–413.752



49
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