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Abstract 

Identifying the number of oil families in petroleum basins provides practical and valuable 

information in petroleum geochemistry studies from exploration to development. Oil family 

grouping helps us track migration pathways, identify the number of active source rock(s), and 

examine the reservoir continuity. To date, almost in all oil family typing studies, common 

statistical methods such as principal component analysis (PCA) and hierarchical clustering 

analysis (HCA) have been used. However, there is no publication regarding using artificial neural 

networks (ANNs) for examining the oil families in petroleum basins. Hence, oil family typing 

requires novel, not overused and common techniques.  This paper is the first report of oil family 

typing using ANNs as robust computational methods. To this end, a self-organization map (SOM) 

neural network associated with three clustering validity indices were employed on oil samples 

belonging to the Iranian part of the Persian Gulf’ oilfields. For the SOM network, at first, ten 

default clusters were selected. Afterwards, three effective clustering validity coefficients, namely 

Calinski-Harabasz (CH), Silhouette indexes (SI) and Davies-Bouldin (DB), were operated to find 

the optimum number of clusters. Accordingly, among ten default clusters, the maximum CH (62) 

and SI (0.58) were acquired for four clusters. Likewise, the lowest DB (0.8) was obtained for four 

clusters. Thus, all three validation coefficients introduced four clusters as the optimum number of 

clusters or oil families. The number of oil families identified in the present report is consistent with 

those previously reported by other researchers in the same study area. However, the techniques 

used in the present paper, which have not been implemented so far, can be introduced as more 

straightforward for clustering purposes in the oil family typing than those of common and overused 

methods of PCA and HCA.  
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1. Introduction 

Identifying the relationship between oil samples and grouping them, known as oil family 

classification, as a part of petroleum system studies, plays a paramount role in various aspects of 

the oil industry, including exploration, development, etc. The primary outcomes of oil family 

typing are detecting migration pathways and evaluating the continuity between different oil 

reservoirs1. 

It is for a long time that geochemists use the statistical techniques PCA and HCA to group oil 

families in petroleum basins2,3 . However, it is an undeniable fact that artificial intelligence (AI) 

and machine learning (ML) systems are developing on a regular basis and provide various 

applications for scientists4–8, and petroleum geochemists are no exception. AI and ML techniques 

in petroleum-related studies have been widely used in recent years. Amar et al9 used Ml approaches 

to model oil-brine interfacial tension at high pressure and high salinity conditions. Mazloom et al10 

used AI algorithms to estimate asphalten adsorbtion in nonocomposites. Rostami et al11 utilized 

ANNs for predicting the natural gas viscosity. Mokarizadeh et al5 implemented ANNs and ML 

algorithms to determine the solubility of SO2 in ionic liquids. Hemmati-Sarapardeh et al12 

conducted the modeling natural gas compressibility using a kind of ANN. Amooie et al13 took 

advantage of ML methods for geological carbon storage studies. Menad et al4 estimated the 

solubility of CO2 in brine via advaned ML techniques. Razghandi et al14 predicted under-saturated 

crude oil viscosity by ML algorithms. Bolandi et al15 evaluated source rock characteristics by ML 

methods. Bolandi et al16 studeied the organic facies of source rocks by combining ML and ANNs. 

Tabatabaei et al17 utilized ML algorithm for estimation of total organic carbon (TOC) from well 

log data. Naghizadeh et al18 estimated viscosity of CO2–N2 gaseous mixtures by smart ML models. 
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Kadkhodaie-Ilkhchi et al19 integrated endividual smart ML models with a committee machine 

intelligent system to approximate TOC from petrophisical well logs. Ghiasi-Freez et al20 used 

committee machines to predict permeability from petrographic image analysis. Tohidi-Hosseini et 

al6 predicted solution gas-oil Ratio via a robust ML system. Esfahani et al21 implemented ML 

paradigms for determination of natural gas density. Hajirezaie et al22 employed a powerful ML 

algorithm to estimate under-saturated reservoir oil viscosity. Karkevandi-Talkhooncheh et al23 

used the adaptive neuro fuzzy interface system optimized with evolutionary algorithms for 

modeling CO2-crude oil minimum miscibility pressure. Barati-Harooni et al24 employed different 

ML and AI frameworks to predict minimum miscibility pressure (MMP) in enhanced oil recovery 

(EOR) process by N2 flooding. Amiri-Ramsheh et al25 conducted an study about modeling of wax 

disappearence temperature (WDT) using different AI and ML methods. Mohammadi et al26 

employed a powerful ML technique to model hydrogen solubility in hydrocarbons. Moosanezhad-

Kermani et al27 employed a kind of ANN for modelling of  carbon dioxide solubility in ionic 

liquids. Rezaei et al28 implemented a radial basis function neural network with evolutionary 

algorithms for modelling of gas viscosity at high pressure and high temperature conditions. 

Khamehchi et al29 utilized divers ML and AI systems to model viscosity of light and intermediate 

dead oil systems. In addition to the mentioned studies, recently researchers used AI and ML for 

organic geochemistry purposes. For example, Safaei-Farouji and Kadkhodaie30 used intelligent AI 

and ML methods for estimation of kerogen type from petrophisical well logs. Collectively, even 

though AI and ML methods have been used in various petroleum-related firlds, oil family typing 

using an artificial neural network is missing. ANNs have various applications that one of which is 

clustering31–33. Therefore, oil family grouping as a kind of clustering problem can be solved via 

ANNs.   
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The SOM function as an artificial neural network proposed by 34 maps multidimensional data to a 

two-dimension space. This space is created with the help of a competitive and unsupervised 

learning process. SOM neural network preserves the topological properties of the input space by 

utilizing a neighborhood function. Actually, the resulting map illustrates the relationship between 

input patterns. 35,36.  

The primary use of SOM is clustering and other types of unsupervised classifications 35,36. So far, 

for oil family grouping, limited common statistical methods, such as PCA and HCA, have been 

used, but using artificial neural networks is entirely missing. Rabbani et al2 geochemically 

analyzed thirty-three oil samples from several oil fields in the Persian Gulf's Iranian sector. They 

defined four main oil families through statistical methods of PCA and HCA. Mashhadi and 

Rabbani37 also geochemically investigated twenty oil samples from oil fields in the Iranian part of 

the Persian Gulf. They identified two distinct genetic oil families using PCA analysis. In another 

study, Hosseini et al3  based on the study of fourteen oil samples from the eastern Iranian sector of 

the Persian Gulf and implementing HCA, identified two different oil families.    

Petroleum geochemistry studies of the examined area have been conducted by previous researches 

2,3,37; correspondingly, in the present paper, we focus on using a SOM neural network as a novel 

paradigm to determine oil families in the region. Indeed, the present study enables us to relate our 

outcomes to previously published works in the study area while using more database and 

introducing a new method for oil family typing.  

In the following introduction, the method used and recent works are generally explained. The 

second part of the paper is devoted to the data preparation and methodology. Then, the obtained 

results are discussed in the third section. Ultimately, the final part of the study provides a summary 

of the findings.  
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2. Materials and Methods  

Collectively, 60 oil samples were collected from the literature 2,3,37. These samples belong to 

different oilfields in the Iranian part of the Persian Gulf. This Gulf and its coastal regions are home 

to about two-thirds of the world’s proven oil reserves (715 billion barrels) 38. The examined 

oilfields include Dorood, Kharg, Aboozar, Foroozan, Salman, Resalat, Reshadat, Balal, 

Bahregansar, Souroush, Nowrouz, Sirri A, Sirri C, Sirri D, and Sirri E. The location map of the 

studied oil field is given in figure 1. Also, the detailed geochemical and biomarker analysis of the 

studied crude oil samples can be found in Hosseiny et al3, Mashhadi and Rabbani37, and Rabbani 

et al2.  Table. 1 summarizes the 16 geochemical and biomarker parameters used as inputs for the 

SOM network.  

 

Figure 1. The geographical map of the studied oil fields.  

 

2.1.Principal component analysis 
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The first stage in this study was using PCA to decrease data dimensions. Since sixteen different 

geochemical and biomarker parameters were implemented as inputs, it was mandatory to diminish 

dimensions to illustrate data and provide graph results39,40. Accordingly, the data dimensions or 

components were decreased from sixteen to three using PCA.    

2.2.Creating the self-organizing map (SOM) network 

Artificial neural networks mimic the learning process in the human brain. A key component in 

processing a neural network is the neurons that receive the inputs and generate the outputs using 

nonlinear operations. The SOM artificial neural network can learn complex and high-dimension 

data and extract a visible cluster set 34. The process of SOM network training consists of two 

repetitive phases. The first phase selects the best mapping unit (neural network neurons) to adapt 

to input data. The second phase is to update the mapping to provide the best representation and 

display input data 41.  

The process of selecting the best unit to conform to the input data (best adaptive unit or BMO) is 

based on the minimum distance (usually the Euclidean distance). Then in the update phase, each 

BMU and its neighboring units (within a given radius) move closer to the input data and fully 

comply with it. This neighborhood radius decreases with each phase selected and updated, 

eventually leading to a final (two-dimensional) mapping 42.  

The SOM network is composed of an input layer  of nodes, and an output  layer of neurons, in which 

the grouping of the inputs is formed 43. The output layer is called the competitive layer because 

the competitive role of the network during the training process takes place at this layer. A 

competitive layer is a two-dimensional plane structured with m neurons while accommodating an 

input of n neurons. Each input layer neuron with different weight values is connected to the 

competing layer neurons, and also, a series of minor connections are made between the competing 
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layer neurons 44. The number of neurons may vary from a few tens to a few thousand. Each neuron 

is assigned a dimensional vector d with weight m, of which d is the same dimension as the input 

vectors. Neurons are connected to their neighboring neurons by a neighborhood relationship that 

affects the topology or structure of the map. Common topologies are square, hexagonal, triangular 

or irregular grids 45.  

As depicted in Figure 2, the SOM neural network consists of a set of M=m×m processing neurons. 

Suppose these M neurons are organized on a grid in a plane. In that case, the obtained network is 

two-dimensional because this network projects multi-dimensional input vectors onto a two-

dimensional surface; for a given network, the input vector x is composed of a fixed dimension n. 

In the array, the n components of the input vector x (i.e., x1, x2, . . ., xn) are connected to each 

neuron. For a connection from the ith component of the input vector to the jth neuron, a synaptic 

weight wij is assigned. Thus, an n-dimensional vector wj of synaptic weights is related to each 

neuron j46.  

 

Figure 2. The main structure of a SOM neural network.  
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In brief, the process of the SOM network is as following46:  

1. Calculate the distance between the pattern (X) and all neural neurons46 

                dij =‖ xk-wij ‖                          (1) 

2. Select the nearest neuron as the winning neuron46 

              wij: dij = min(dmn)                 (2) 

3. Update each neuron according to the neighbourhood function46 . 

wi = wij + αh (wwinner, wij) ‖xk-wij‖      (3) 

The value of coefficient a reduces the effect of different weights46. 

 

This process is repeated until a specific stopping criterion is reached. Often the criterion for 

stopping is a certain number of repetitions. To stabilize the convergence and stability of the map, 

the learning rate and neighbourhood radius are reduced in each iteration. Therefore, convergence 

will tend to zero. The measuring distance between the vectors is the Euclidean distance 46.  

2.3.Clustering Validity Indices  

The clustering validity indexes commonly are used associated with a clustering algorithm. 

According to the selected index, to determine the exact number of clusters, either minimum or 

maximum index value aids to figure out the optimum number of clusters (k) 47.  

Generally, validity indexes can be grouped into internal and external. Internal indexes employ the 

information related to the data itself, whilst external indices, such as labels, are implemented by 

external information. Internal measures can improve clustering algorithms. By contrast, external 

measures can be used merely for validation. Internal indices are generally employed to determine 

k value 48–51.   
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In this paper, for the SOM neural network, three efficient internal coefficients, including DB, CH, 

and SH, were implemented to determine the optimum number of clusters for oil samples. Initially, 

a number of 10 classes were selected for the SOM network. The model was developed based on 

these clusters; then, the optimum number of classes as the optimum number of oil families was 

recognized using the coefficients.   

2.3.1. David-Bouldin (DB) Index: 

This index aims to minimize the average distance between each cluster and the most similar one. 

The minimum value for the DB index indicates the optimum number of clusters or oil families52.  

This index is described as52: 

        𝐷𝐵 =
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖{

𝑘
𝑖=1 𝐷𝑖,𝑗}              (4) 

In which 𝐷𝑖,𝑗 shows the within-to-between cluster distance ratio for the ith and jth clusters. 𝐷𝑖,𝑗 can 

be defined as52: 

                                  𝐷𝑖,𝑗 =
�̅�𝑖+�̅�𝑗

𝑑𝑖,𝑗
                                  (5) 

Where di represents the mean distance between each point in the ith cluster and the cluster's 

centroid, di,j denotes the Euclidean distance between the centroids of the ith and jth clusters. The 

optimum clustering solution possesses the lowest DB index value 52.  

2.3.2. Calinski–Harabasz (CH) Index 

CH index 53 demonstrates the quality of clustering solution based on the average sum of squares 

between and within a cluster. It can be measured as47:  

                        𝐶𝐻 =
𝑆𝑆𝐵

𝑆𝑆𝑊
×

(𝑛−𝑘)

(𝑘−1)
                       (6) 
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In which SSB shows the average between-cluster sum of squares. SSW indicates the average 

within-cluster sum of squares, k represents the number of clusters, and n denotes the number of 

observations. The average SSB is calculated as bellows47: 

                  𝑆𝑆𝐵 = ∑ 𝑛𝑖
𝑘
𝑖=1 ‖𝑚𝑖 − 𝜇‖2                     (7) 

Where 𝑚𝑖 is the centroid of cluster I, 𝜇 shows the mean of all data points, and ‖𝑚𝑖 − 𝜇‖ typifies 

the Euclidean distance between the centroid of the cluster and the mean of all data points. The 

formulation of mean SSW is computed as bellows47: 

                   𝑆𝑆𝑤 = ∑ ∑ ‖𝑥 − 𝑚𝑖‖
2

𝑥𝜖𝑝𝑖

𝑛
𝑖=1                (8) 

In which k indicates the number of clusters, 𝑥 is a sample, 𝑝𝑖 demonstrates the ith cluster, 𝑚𝑖 shows 

the centroid of the cluster 𝑝𝑖, and ‖𝑥 − 𝑚𝑖‖ is Euclidean distance between sample and centroid of 

the cluster47.  

A higher CH quantity epitomizes a better data clustering outcome or the optimum number of 

questionable clusters. Therefore, high SSB and low SSW numbers give a well-separated cluster 47. 

2.3.3. Silhouette Index (SH) 

SH index 54 demonstrates how close every data point is to other data points within a cluster and 

how well clusters are detached from each other. Simply put, it operates based on the distance 

between each point between and within clusters. The highest silhouette quantity indicates the 

optimum number of clusters (k) 55. 

           𝑠𝑝(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑀𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
              (9) 

In which 𝑠𝑝(𝑖) is named silhouette width of point. a (i) shows the mean distance between the ith 

point and all the points in the clusters Pi, (i = 1, 2, . . ., n). b (i) displays the most minor of these 
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distances. Hence, it can be observed that the silhouette value will be between 1 and -1. For every 

clustering, the average index of all sp (i) is employed 47. The detailed feature of the SOM network 

used for clustering in the present study is given in Table. 2. 

Table.2. The features selected for the SOM network. 

Tolology Distance CoverSteps InitNeighbor 

Hextop Linkdist 100 1 

 

3. Results  

Ten clusters as the default numbers have been defined for the SOM network as the definite number 

of clusters or oil families is unknown. The samples were distributed in these clusters. Nevertheless, 

the principal objective of this study is to find the optimum number of clusters and hence oil families 

among these defined clusters. Therefore, validity indices were employed.  

Regarding clustering validity coefficients, the maximum values of CH (62) and SI (58) parameters 

were determined for four clusters (Figures 3a & b). Additionally, the minimum DB coefficient 

(0.8) was achieved for four clusters (Figure 3c). This means that all three used clustering validity 

indices showed four clusters as the optimum number of clusters. Figure 4 in a 3-D shape typifies 

four clusters identified by SOM neural network. Therefore, it can be concluded that four oil 

families exist in the Iranian part of the Persian Gulf. In other words, at least four different source 

rocks have generated the reservoir oils.  
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Figure3. The outcomes obtained by CH (a), H (b), and DB coefficients (c) demonstrating the optimum 

number of clusters.  
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Figure 4. The schematic of the SOM clustering results illustrating four oil families.  

 

Based on the SOM network's obtained result, cluster I consist of crude oil samples from Foroozan, 

Aboozar, Balal, Resalat, Reshadat, Salman, Bahregansar, and Souroush oilfields. Cluster II is 

composed of crude oils from Foroozan, Kharg, Dorood, Balal, Salman, and Nowrouz oilfields. 

Cluster III contains oil samples from Resalat, Reshadat, Hendijan, Nousrat, Siri A, Siri C, Siri D, 

and Siri E oilfields. Finally, crude oil samples from Kharg, Dorood, Aboozar, Reshadat, 

Bahregansar, Nousrat, Sirri A, Sirri C, Sirri D, and Sirri E were grouped into cluster IV.  

Overall, the SOM artificial neural network employed in the present paper grouped crude oil 

samples into four clusters and demonstrated four oil families in the studied area. Hanifa-Tuwaiq, 

Garau, Diyab member of Surmeh Formation, Kazhdumi, Sarvak, Khatiya, and Ahmadi member 

of Sarvak Formation are regarded as the possible source rocks in the region 2. The identified 

number of oil families are consistent with those suggested by Rabbani et al2. Nonetheless, only 



15 
 

thirty-three samples were analysed in the mentioned research. However, sixty crude oil samples 

were analysed to identify oil families in the present paper to reach more reliable results.  

4. Conclusions 

Lack of novelty in previous studies was the main reason for which we decided to find a new method 

for identifying oil families, a vital study, in petroleum basins. Thus, an SOM neural network was 

selected for this purpose. In creating the SOM network, ten clusters were initially defined in the 

network. Then, three effective clustering validity coefficients were implemented to identify the 

optimum number of clusters based on geochemical and biomarker characteristics of oil samples 

used as inputs for the network. The maximum CH and SI coefficients were acquired for four 

clusters. Similarly, the lowest DB coefficient was obtained for four clusters among ten defined 

clusters. Accordingly, all three validation indices introduced four clusters as the optimum number 

of clusters, hence the number of oil families. Finally, it should be noted that, while some statistical 

methods such as PCA or HCA can be employed for oil family typing, these approaches have 

become over-used, and petroleum geochemistry studies and specifically oil family grouping 

demands novel paradigms. Accordingly, this paper introduced the SOM artificial neural network 

as a quick and easy-to-use method, which could be great asses for geochemists in petroleum 

geochemistry studies for classification purposes.  

 

Abbreviation table 

Abbreviation Full Name 

PCA Principal Component Analysis 

HCA Hierarchical Clustering Analysis 
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ANNs Artificial Neural Networks 

CH Calinski-Harabasz 

DB Davies-Bouldin 

SI Silhouette indexes 

AI Artificial Intelligence 

ML Machine Learning 
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Appendix 

Table 1: biomarker parameters used as inputs for the SOM network. 
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Foroozan 39.01 22.15 38.84 0.15 0.22 1.02 0.26 0.43 1.44 0.02 1.34 0.01 0 1.17 -27.1 -27.2 

Foroozan 41.84 21.32 36.83 0.17 0.25 0.94 0.29 0.48 1.37 0.02 1.36 0.03 0 1.15 -27.2 -27.2 

Foroozan 36.19 22.35 41.46 0.14 0.25 0.92 0.28 0.43 1.3 0.02 1.42 0.01 0 1.02 -27.3 -27.1 

Foroozan 42.75 16.33 40.92 0.13 0.24 1.04 0.3 0.46 1.31 0.03 1.52 0.01 0 0.8 -27 -26.7 

Foroozan 40.7 18.42 40.88 0.16 0.16 1.1 0.39 0.16 1.29 0.02 1.36 0.01 0 0.67 -27.4 -27.2 

Kharg 40.01 22.59 37.4 0.19 0.21 0.77 0.29 0.43 1.42 0.02 1.4 0.01 0.13 1.12 -27.3 -27 

Kharg 41.39 20.23 38.38 0.22 0.23 0.83 0.32 0.4 1.52 0.02 1.48 0.01 0 0.91 -27.3 -26.9 

Kharg 33.24 29.06 37.7 0.34 0.19 0.74 0.39 0.4 1.26 0.03 1.21 0.02 0.24 0.83 -27.3 -27.1 

Dorood 38.1 21.26 40.64 0.16 0.21 0.92 0.3 0.39 1.49 0.02 1.46 0.01 0 0.9 -27.4 -27.2 

Dorood 42.6 22.63 34.77 0.16 0.17 1.09 0.25 0.38 1.51 0.01 1.53 0.01 0.04 1.01 -27.4 -27.2 

Dorood 31 29.78 40.3 0.35 0.14 0.56 0.56 0.42 1.08 0.04 1 0.03 0.24 0.83 -27.3 -27 

Aboozar 33.17 25.18 41.65 0.24 0.18 0.69 0.41 0.41 1.49 0.02 1.14 0.01 0 0.83 -27.7 -27.4 

Aboozar 34.33 28.7 36.97 0.3 0.13 0.35 0.56 0.48 1.09 0.04 0.96 0.09 0 0.69 -28.5 -27.1 

Balal 43.2 22 34.81 0.3 0.83 0.42 0.53 0.5 2.22 0.07 1 0.23 0.25 0.65 -27.3 -26.6 

Balal 34.51 20.45 45.04 0.16 0.3 0.75 0.37 0.48 1.65 0.02 1.03 0.02 0.1 1.04 -27.1 -26.8 

Balal 32.3 21.1 46.7 0.15 0.25 0.65 0.43 0.47 1.85 0.02 0.45 0.05 0.14 1.01 -27.5 -27.2 

Balal 38.3 22 39.7 0.3 0.86 0.34 0.61 0.63 2.55 0.09 0.98 0.12 0.53 0.64 -27.39 -27.08 

Balal 36.3 23.2 40.5 0.3 0.78 0.39 0.61 0.53 2.51 0.06 1.07 0.15 0.19 0.63 -27.66 -27.04 

Resalat 36.21 21.08 42.71 0.2 0.39 0.72 0.38 0.4 1.75 0.02 1.03 0.05 0 0.93 -27.2 -26.5 

Resalat 35.36 19.59 45.05 0.19 0.58 0.65 0.46 0.37 1.89 0.04 1.21 0.04 0 0.97 -27.1 -26.6 
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Resalat 39.55 26.21 34.25 0.23 0.04 0.97 0.29 0.39 0.34 0.04 0.98 0.01 0.14 1.03 -27 -26.4 

Resalat 37.9 29.1 33.1 0.21 0.04 1.08 0.28 0.4 0.36 0.03 1.11 0 0.32 1.35 27.2 26.5 

Resalat 31.9 22.2 45.9 0.18 0.47 0.8 0.42 0.44 2.07 0.01 0.92 0.03 0.29 0.97 27.2 -26.6 

Resalat 33 21.3 45.7 0.11 0.37 1 0.32 0.69 2.01 0.04 1.2 0.09 0.22 0.97 -26.3 -26 

Resalat 34.38 22.85 42.76 0.14 0.38 0.95 0.29 0.65 1.89 0.04 1.21 0.04 0 0.97 -26.3 -26 

Reshadat 35.36 19.59 45.05 0.19 0.58 0.65 0.46 0.37 2.08 0.03 0.9 0.06 0 0.85 -27.1 -26.6 

Reshadat 35.08 29.91 35.01 0.25 0.1 0.58 0.43 0.43 0.58 0.03 0.93 0.02 0.14 0.86 -27.3 -26.2 

Reshadat 36.2 28.9 34.8 0.21 0.08 0.57 0.28 0.43 0.59 0.03 0.95 0 0.32 0.91 -27.2 -26.5 

Reshadat 33 21.9 45.1 0.2 0.53 0.56 0.45 0.36 2.3 0.02 0.98 0.04 0.33 1.08 -27.6 -26.9 

Salman 34.24 23.34 42.41 0.25 0.55 0.62 0.46 0.45 2.03 0.03 1.03 0.05 0 0.97 -27.2 -26.3 

Salman 31.13 21.75 47.12 0.24 0.56 0.57 0.47 0.48 2.06 0.03 1.06 0.06 0.12 0.81 -27.2 -26.4 

Salman 30.43 16.41 53.16 0.17 0.35 0.79 0.66 0.59 1.74 0.02 0.97 0.04 0 0.62 -27.1 -26.7 

Salman 34.8 20.4 44.8 0.17 0.33 0.8 0.38 0.46 1.89 0.01 1.03 0.03 0.12 0.99 -27.3 -26.8 

Salman 35.1 25 39.9 0.23 0.35 0.9 0.37 0.42 1.43 0.01 1 0.03 0.15 1 -27 -26.7 

Salman 37.4 21.4 41.2 0.21 0.45 0.82 0.44 0.5 2.21 0.01 1.02 0.05 0.28 0.97 -27.3 -26.7 

Salman 34.5 19.7 45.9 0.16 0.34 0.64 0.4 0.41 2 0.02 1.06 0.03 0.09 1.02 -27.4 -26.7 

Salman 40 20 40 0.26 0.55 0.72 0.49 0.51 2.17 0.01 0.92 0.06 0.13 0.94 -27.4 -26.8 

Bahregans

ar 
28.83 24.75 46.42 0.33 0.24 0.57 0.46 0.67 1.25 0 1 0.03 0.13 1.2 -27.34 -27.08 

Bahregans

ar 
34.47 30.73 34.8 0.36 0.09 0.41 0.65 0.81 0.53 0 0.68 0.05 0.23 0.97 -28.21 -27.06 

Nowrouz 40 20 41 0.14 0.17 1.1 0.26 0.77 1.66 0 1.18 0.01 0.15 1.22 -27.87 -27.54 

Souroush 30.46 20.98 48.56 0.22 0.13 0.73 0.36 0.8 1.29 0 1.07 0.03 0.16 1.15 -28.11 -27.6 

Hendijan 35 27 38 0.57 0.1 0.39 0.74 0.74 0.53 0 0.68 0.05 0.23 0.97 -28.33 -27.08 

Sirri D 34.56 31.52 33.92 0.24 0.07 0.58 0.4 0.43 0.56 0.04 0.86 0.02 0.09 0.97 -27.1 -26.2 

Sirri D 32 31.9 36.1 0.3 0.14 0.54 0.47 0.24 0.53 0.07 0.85 0.02 0.15 0.92 -27.1 -26.3 

Sirri D 37 30 33 0.27 0.07 0.67 0.41 0.54 0.51 0.04 0.76 0.02 0.22 0.95 -27.3 -26.3 

Nousrat 34.54 30.11 35.34 0.24 0.09 0.57 0.44 0.42 0.55 0.04 0.94 0.02 0.08 0.86 -27.1 -26.5 

Nousrat 37 29.9 33.1 0.21 0.07 0.67 0.37 0.44 0.52 0.03 0.91 0.02 0.26 1.27 -27.3 -26.1 

Nousrat 40 29 31 0.22 0.07 0.87 0.36 0.58 0.37 0.04 0.96 0.02 0.24 0.96 -26.9 -26.3 

Nousrat 34.54 30.11 35.34 0.24 0.09 0.57 0.44 0.42 0.55 0.04 0.94 0.02 0.08 0.86 -27.1 -26.5 

Sirri E 36.15 31.9 31.96 0.22 0.1 0.49 0.43 0.44 0.6 0.03 0.89 0.01 0.06 1.1 -27.2 -26.2 

Sirri E 38.1 31.1 30.8 0.21 0.1 0.48 0.45 0.39 0.67 0.04 0.85 0.02 0.25 1.28 -27.4 -26.1 

Sirri E 37.2 31.6 31.3 0.23 0.1 0.49 0.46 0.38 0.67 0.05 0.79 0.02 0.28 1.27 -27.3 -26 

Sirri E 32.5 34 33.6 0.27 0.14 0.42 0.5 0.23 0.63 0.02 0.78 0.02 0.25 1.18 -27.1 -26.4 

Sirri E 34.5 34 31.5 0.25 0.14 0.42 0.5 0.35 0.59 0.02 0.85 0.02 0.25 1.14 -26.5 -26.6 

Sirri A 33.78 31.62 34.6 0.26 0.13 0.47 0.47 0.4 0.66 0.05 0.78 0.02 0.12 0.12 -27.1 -26 

Sirri A 35.6 31.6 32.8 0.26 0.11 0.47 0.51 0.46 0.78 0.05 0.77 0.02 0.26 1.16 -27.1 -26.2 

Sirri A 36.9 30.1 33 0.24 0.12 0.4 0.5 0.48 0.75 0.05 0.83 0.02 0.3 1.18 -27.2 -26.1 

Sirri A 35 32 33 0.26 0.11 0.48 0.48 0.53 0.55 0.05 0.84 0.05 0.3 1.17 -27 -26.3 

Sirri C 34.39 31.51 34.1 0.25 0.09 0.56 0.41 0.39 0.57 0.04 0.84 0.02 0.11 1.38 -27.1 -25.9 

Sirri C 35 31 34 0.25 0.09 0.51 0.46 0.43 0.66 0.04 0.86 0.02 0.27 1.17 -27.3 -26.2 

Sirri C 39 27 34 0.26 0.06 0.58 0.43 0.6 0.48 0.04 0.73 0.02 0.25 1.29 -27.4 -26.2 

Sirri C 37 29 34 0.25 0.08 0.72 0.4 0.57 0.45 0.03 0.77 0.02 0.2 0.9 -27 -26.4 

C19t/C23t: C19 tricyclic terpanes/C23 tricyclic terpanes, C22t/C21t: C22 tricyclic terpanes /C21 tricyclic 

terpanes, C24t/C23t: C24 tricyclic terpanes /C23 tricyclic terpanes, C26t/C25t: C26 tricyclic terpanes /C25 

tricyclic terpanes, C24Tet/C23t: C24 tetracyclic terpanes /C23 tricyclic terpanes, C28BNH/C30H: 

C28Bisnorhopane/C30Hopane, C29H/C30H: C29Hopane/C30Hopane, C30DiaH/C30H: 

C30DiaHopane/C30Hopane, Gam/C31HR: Gamacerane/C31HopaneRatio, C35H/C34H: 

C35Hopane/C34Hopane, d13CSAT (‰):d13CSaturate (‰), d13CARO(‰): d13CAromaric(‰). 
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