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1 Microphones and acceleration
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Figure 1: A MEMS condenser microphone. The condenser
consists of a compliant diaphragm (solid line) and rigid back
plate (dashed line). The ASIC produces a voltage signal (not
shown) proportional to the effective displacement of the di-
aphragm relative to the back plate.

Capacitive microphones are sensitive to both acoustic pres-
sure and mechanical acceleration, because both will tend to
cause the displacement of a microphone’s diaphragm relative
to its back plate. A MEMS microphone with diaphragm and
back plate are shown in Figure 1. The diaphragm is a thin,
flexible membrane connected to the microphone package at
its edges. The effective (spatial average) displacement of the
diaphragm relative to the back plate, in meters, is

∆l(t) = dd(t) − d0(t) (1)

where dd(t) is the effective displacement of the diaphragm and
d0(t) is the displacement of the microphone package, which
the back plate is rigidly connected to. The ASIC produces a
voltage

u(t) = Se∆l(t) (2)

where Se (V/m) is the electronic sensitivity of the micro-
phone. The two causes of ∆l(t) are illustrated in Figure 2.
The force due to an acoustic pressure on the diaphragm com-
presses the inside air axially (assuming that the microphone is
stationary), and the electronics produce a voltage u(t). This
voltage can represent the pressure measured by the micro-
phone. If the microphone accelerates, the force required to
accelerate the effective mass of the diaphragm axially com-
presses the air inside, from which the electronics produce an
unwanted voltage which also appears in u(t).

We will assume that all vibration accelerates the micro-
phone axially, normal to the plane of the diaphragm. An
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examination of the sensitivity to vibration in other directions
(as well as rotation) is left for future studies. Vibration of
surfaces nearby to the microphone may cause pressure which
contributes to u(t), and must be considered in product de-
signs that minimize unwanted vibration signals. For example,
when the exterior surface of a laptop which houses a micro-
phone inlet vibrates, it will radiate undesired sound pressure
that the microphone picks up. The topic of this work will
be the voltage sensitivity to vibration of a microphone on its
own, and not as part of a larger product (such as a laptop).
Any sources of pressure that are caused by vibration exter-
nal to the microphone itself will therefore be neglected in this
work.
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Figure 2: The diaphragm moves relative to the rest of the
microphone when (Top:) acoustic pressure impinges on the
diaphragm, or (Bottom:) the microphone’s outer structure
accelerates. In both cases, the diaphragm is displacing rela-
tive to the back plate (not shown) because it is rigidly fixed
to the rest of the microphone.

The undesired sensitivity to vibration in microphones has
been described as far back as the 1960s. Vibration noise in
hearing aids was described with both external causes (the
walking motion of the user) and internal causes (the mechan-
ical vibration of the speaker). Friis observes [1] that internal
feedback, including vibration response, has become a greater
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concern in hearing aid designs due to decreasing design size of
hearing aids. Many newer electronic products such as laptops,
cell phones, and smart appliances all operate in vibrations of
both internal and external causes. De Oliveira describes [2]
acceleration of the microphone in a smart speaker. This mi-
crophone undergoes vibration when the speaker is producing
sound, which may affect the ‘barge-in’ performance; whether
the smart speaker can still recognize a trigger while it is pro-
ducing sound. For example, De Oliveira states, the vibration
signal from the microphone may saturate the smart speaker’s
echo cancellation, rendering it less able to recognize a voice
from far away.

The main purpose of the present work is to study the pres-
sure related acceleration sensitivity that is caused by the bod-
ies of air inside of a microphone.

We use a transfer matrix formulation that treats the mi-
crophone as a one-dimensional duct. This duct can have an
arbitrary number of straight pipes and area discontinuities,
allowing for complex geometry. The effects of acoustic pres-
sure due to nearby radiating surfaces is neglected. We will
demonstrate that the pressure related acceleration sensitiv-
ity of a sub-miniature microphone may be approximated by
a simple function of axial length of the bodies of air it con-
tains.

2 Pressure related acceleration sen-
sitivity

Consider a microphone that is sensitive to a harmonic pres-
sure p(t) (Pa) and acceleration a(t) (m/s2). These excitations
are represented by their complex amplitudes, P (f) and A(f)
in the expressions

p(t) = Re
{
P (f)ei2πft

}
(3)

and

a(t) = Re
{
A(f)ei2πft

}
. (4)

The microphone’s signal voltage U(f) (V) is the sum of two
components

U(f) = Up(f) + Ua(f) (5)

where Up(f) (V) is the pressure component, and Ua(f) (V)
is the acceleration component. Each component has its own
linear time invariant sensitivity function [3]:

Up(f) = P (f)Sp(f) (6)

and

Ua(f) = A(f)Sa(f) (7)

where Sp(f) (V/Pa) is the microphone’s sensitivity to pres-
sure and Sa(f) (V/m/s2) is the microphone’s sensitivity to
acceleration. We can rewrite (5) using (6) and (7)

U(f) = P (f)Sp(f) +A(f)Sa(f) (8)

The magnitude of Sa is not a good indicator of acceleration
performance on it’s own. For example, Sa could be reduced
to zero by simply eliminating Se, the electronic sensitivity of
the microphone, which would have the undesired effect of also

eliminating Sp. When Sa is normalized to Sp, we obtain the
(Pa/(m/s2)) pressure-related acceleration sensitivity

Pa(f) =
Sa(f)

Sp(f)
(9)

which we will use to quantify the acceleration performance,
as it is independent of any factors that Sp and Sa have in
common, such as Se.

3 Analytical models

In the following we will show that the expression for Pa when a
microphone acts like a spring mass damper does not depend
on the spring stiffness or the damping coefficient. We will
produce expressions for Pa which account for the acoustic
fields inside of several microphone geometries, and show that
each of them is roughly proportional to the lengths of the
bodies of air each microphone contains.

3.1 Single degree of freedom model

md

f(t) = p(t)sd

k c

dd(t)

d0(t)

Figure 3: Lumped parameter mechanical model of the mi-
crophone. The voltage signal of the microphone (not shown)
is a function of dd(t) − d0(t).

Ignoring the effects of a pressure-equalizing port, assume
that a microphone’s mechanical sensitivity can be approx-
imated by the linear second order oscillator shown in Fig-
ure 3 [4]. The sensitivity to pressure is

Sp(f) = Se
sd

k + i2πfc− (2πf)2md
(10)

where m is the effective mass of the diaphragm (kg), k is the
effective spring constant (N/m), c is the effective damping
coefficient (N · s/m) sd is the area of the diaphragm. The
sensitivity to acceleration is

Sa(f) = Se
md

k + i2πfc− (2πf)2md
(11)

Using (9), the pressure related acceleration sensitivity is

Pa(f) =
md

sd
(12)

Rule et al. [5] obtain this same relationship by observing
that the acceleration of a diaphragm must be proportional
to some pressure equal to that diaphragm’s mass per unit
area (md/sd).
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3.2 An ideal microphone

The mass per unit area of a diaphragm is proportional to the
thickness. The thickness of a micromachined silicon MEMS
diaphragm can be extremely small, less than 1 micrometer
[6]. Given a silicon density of 2330 kg/m3, this compares to a
2 mm long body of air. This mass moves with the diaphragm,
contributing significantly to Pa.

Consider an ideal microphone with a diaphragm so thin
that its mass per unit area is negligible. Inside this mi-
crophone, the air is an acoustic body (Figure 4) and the
diaphragm moves according to the motion of the air that
touches it. If the acoustic pressure and velocity are a func-
tion of axial position (p(x, t) and u(x, t)), the one-dimensional
acoustic pressure and momentum relationships can be used.
The acoustic body in Figure 5 represents a microphone with

pipr

x

Figure 4: One dimensional model of a microphone. Solutions
to the acoustic wave equation in one dimension have incident
wave pi(x, t) and reflected wave pr(x, t).

a massless diaphragm at x = L1. At the bottom of the body,
the acoustic pressure and velocity at the microphone’s base
are P0(f) and U0(f). At the top of the body, the acoustic
pressure and velocity on the diaphragm are Pd(f) and Ud(f).
This microphone satisfies the transfer matrix relationship [4]:

Pd, Ud

P0, U0

L1

Figure 5: The microphone of Figure 4. A transfer matrix
T defines the relationship between (Pd, Ud) and (P0, U0) for
a single uniform duct element [7].

(
Pd(f)
Ud(f)

)
= [T ]2×2

(
P0(f)
U0(f)

)
(13)

where [T ]2×2 is the (frequency dependent) transfer matrix
for a straight pipe that satisfies the one-dimensional acoustic
model [7].

The microphone’s signal (2) is

U(f) =
1

2iπf
Se(Ud(f) − U0(f)) (14)

where we’ve taken the integrals

Dd(f) =
Ud(f)

2iπf
(15)

and

D0(f) =
U0(f)

2iπf
(16)

The pressure sensitivity is defined by (13) when U0(f) = 0

Sp(f) = Se
T21

i2πfT11
(17)

The acceleration sensitivity is defined when Pd(f) = 0

Sa = − Se
(2πf)2

(
−T12T21

T11
+ T22 − 1

)
(18)

The pressure related acceleration sensitivity (9) is

Pa(f) = −ρ0 cos(kL1) − 1

k sin(kL1)
(19)

where ρ0 is the density of the air and k = 2πf/c is the
wavenumber. At low frequencies, Pa(f) is approximately
equal to the first term of its Taylor series, which is not fre-
quency dependent:

Pa ≈ ρ0
L1

2
(20)

as seen in Figure 6.
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Figure 6: The back volume (Figure 5) transfer matrix model
agrees with the Taylor approximation (Eq. 20), which is a
simple function of the microphone’s length.

3.3 Including a front volume

Using an additional duct element, Figure 7 includes a front
volume. The transfer matrix relating the base to the inlet [T ]
is

[T ] = [F ][B] (21)

where [B] is the back volume transfer matrix and [F ] is the
front volume transfer matrix. The motion of the diaphragm
satisfies (

Pi
Ui

)
= [T ]2×2

(
P0

U0

)
(22)
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Pd, Ud
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Figure 7: The microphone of Figure 4, with an additional
element representing a front volume. A transfer matrix T may
be obtained from transfer matrices representing the front and
back volumes.

and (
Pd
Ud

)
= [B]2×2

(
P0

U0

)
(23)

The pressure sensitivity is defined by (22) and (23) when
U0(f) = 0

Sp = Se
B21

T11i2πf
(24)

The acceleration sensitivity is defined when Pd(f) = 0

Sa = − Se
(2πf)2

(
−B21

T12
T11

+B22 − 1

)
(25)

Since [B] and [F ] are uniform ducts, the pressure related
acceleration sensitivity (9) is

Pa = −ρ0
cos(k(L1 + L2)) − cos kL2

k sin kL1
(26)

Or, at low frequencies,

Pa ≈ ρ0
2

(L1 + 2L2) (27)

A comparison between the exact solution and the low fre-
quency estimate is shown in Figure 8.

3.4 Non-uniform cross section

We will show that the dependence on length in (27) still stands
for microphones with non-uniform cross sections illustrated in
Figure 9. The transfer matrices [B] and [F ] can be chosen
based on the back and front volume geometry that we want
to consider. We will ignore thermoviscous effects, in Section 4
we will see that the effect on Pa is small. A small diaphragm
and a tube are represented by discontinuities in the area of
the duct model. The horizontal surfaces move with the mi-
crophone and displace air as shown in Figure 10 The transfer
matrix relationship for this duct element is(

Pn+1

Un+1

)
= [J ]

(
Pn
Un

)
+ [S]

(
P0

U0

)
(28)

where

[J ] =

[
1 0
0 sn/sn+1

]
(29)

satisfies volume velocity for the stationary element and

[S] =

[
0 0
0 1 − sn/sn+1

]
(30)
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Figure 8: The back and front volume (Figure 7) transfer
matrix model agrees with the Taylor approximation (27).
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Pd, Ud
sd
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Figure 9: A microphone with a small diaphragm and a length
of tube connected to the inlet. The tube’s cross sectional area
is different from the front and back volumes.
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P1, U1

P2, U2

U0 U0

Figure 10: A moving structure with an area discontinuity.
The horizontal surfaces displace an acoustic volume velocity
equal to the product of U0 and s2 − s1
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incorporates the motion due to the base.
Equations (24) and (25) can be used for any microphone

that has a defined transfer matrix for the back volume [B]
and microphone [T ]. We will use the geometry shown in Fig-
ure 9, which has area discontinuities to account for a smaller
diaphragm area, sd and the inlet channel area s2.

[T ] = [L3]([J t][L2]([Jf ]([Jb] + [Sb]) + [Sf ]) + [St]) (31)

and
[B] = [Jb][L1] + [Sb], (32)

where the uniform sections are [L1], [L2], and [L3], the three
moving discontinuities are

• [J t] and [St], discontinuity between s1 and s2 before the
tube,

• [Jf ] and [Sf ], the discontinuity between sd and s1 in
front of the diaphragm and

• [Jb] and [Sb], the discontinuity between s1 and sd behind
the diaphragm.

The transfer matrix model for Pa is found using (24), 25, and
9 shown in Figure 11 alongside the low frequency approxima-
tion:

Pa ≈ ρ0

(
L1

2
+ L2 + L3

)
. (33)
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Figure 11: The non-uniform (Figure 9) transfer matrix model
agrees with the Taylor approximation (33) at low frequencies.
The ratio between the inside area and the tube area was cho-
sen to be s1/s2 = 20, and the length of the tube is equal to
the length of the front volume (L2 = L3).

4 Finite element model

A finite element model was created to obtain, an at least
partial, verification of the results from our idealized transfer

matrix model. A 1 micrometer thickness silicon diaphragm,
which is fixed to the microphone at its edge, is situated be-
tween two bodies of air having dimensions similar to those in
the previous section. This finite element model exhibits the
length-dependence predicted in the transfer matrix models.

4.1 Geometry

The model is comprised of a diaphragm, back volume, and
front volume. The back and front volumes are cylinders of
air, separated by the diaphragm, a circular disk (Figure 12).
The computational work is reduced by using two symmetry
planes as shown in Figures 13 and 14.

Figure 12: The microphone in the finite element model con-
tains a diaphragm separating a front volume from a back vol-
ume. This diaphragm is fixed to the microphone at its edge.

The fluid structure interaction flag is set on elements which
share nodes with the diaphragm. The source of acoustic ex-
citation is a harmonic pressure condition at the inlet surface.
The source of acceleration excitation is a harmonic velocity
condition on the bottom surface as well as harmonic displace-
ment of the edge of the diaphragm. The diaphragm is meshed

Figure 13: The air is meshed with FLUID220 and FLUID221

elements

with two coupled layers of SHELL281 elements so that one
layer interacts with the front volume and another layer inter-
acts with the back volume [8]. The edges of the diaphragm
are constrained to the microphone: They are fixed when the
microphone is stationary and they displace with the same
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harmonic function as the bottom when the microphone accel-
erates.

Figure 14: The diaphragm is meshed with two layers of
SHELL281 elements.

4.2 Dependence on length

The five models listed in Table 1 were chosen so that Pa can be
simulated for several values of L1 and L2. In order to use (27)

Table 1: Lengths of front and back volume for the five finite
element models.

Model L1 L2

1 1.0 mm 0.1 mm
2 1.2 mm 0.1 mm
3 1.4 mm 0.1 mm
4 1.0 mm 0.2 mm
5 1.0 mm 0.3 mm

for a microphone with diaphragm we added the diaphragm’s
acceleration pressure, (12)

Pa ≈ ρ0(0.5L1 + L2) + ρdtd (34)

where ρd = 2329 kg/m3, the density of the diaphragm and
td = 1 µm is the thickness of the diaphragm. The finite ele-
ment model supports the transfer matrix formulation. When
the acceleration pressure of the diaphragm is accounted for,
the finite element Pa matches the transfer matrix model with
various back volume (Figure 15), and front volume (Figure 15)
lengths.

The microphones examined in this paper have dimensions
small enough that thermoviscous effects may become signifi-
cant. A model of the same microphone geometry with the full
linearized Navier Stokes (FLNS) formulation was created in
ANSYS. The relative difference in Pa between the adiabatic
formulation and the FLNS formulations was found to be not
more than 0.33% for the five models.

5 Measured results

The vibration response of several small microphones agrees
with the prediction that length plays an important role in vi-
bration sensitivity. A pair of electret microphones, Knowles
models TO38-32626 and TO-24611, as well as a pair of MEMS
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Figure 15: Agreement between the transfer matrix and the
finite element determinations of Pa for several lengths of the
back volume. The finite element model is evaluated at a har-
monic frequency of 1 kHz. The acceleration pressure of the
diaphragm (34) is added to the transfer matrix Pa.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Front Volume Length (m) #10-4

9

10

11

P
a
 (

P
a/

m
/s

2
)

#10-4 Pressure Related Vibration Sensitivity

Finite element, 1kHz
Taylor estimate (with diaphragm)

Figure 16: Agreement between the transfer matrix and the
finite element determinations of Pa for several lengths of the
front volume. The finite element model is evaluated at a har-
monic frequency of 1 kHz. The acceleration pressure of the
diaphragm (34) is added to the transfer matrix Pa.
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microphones, Knowles models MQM-32622 and MM15-32943
have identical design but differing effective length. Within
both pairs, the microphones with longer effective lengths also
had substantially greater pressure related acceleration sensi-
tivity.

5.1 Experimental setup

All four microphones are substantially more sensitive to pres-
sure than vibration, so their vibration sensitivity cannot be
accurately obtained on a shaker without accounting for the
acoustic pressure produced by that shaker. A dual input, sin-
gle output spectral technique described in Walsh et al. [9] is
used to obtain their vibration sensitivities with the equipment
shown in Fig 17.

Using this technique, we solve (8) for the vibration sensi-
tivity Sa

Sa(f) =
U(f)

A(f)
− Sp

P (f)

A(f)
(35)

The acceleration A(f) is recorded using the laser vibrometer,
and the pressure P (f) is recorded with the probe microphone.
The pressure sensitivity, Sp(f) is determined by subsequently
using the probe microphone and the loudspeaker to obtain
the microphone response to only pressure.

Figure 17: The setup used to measure microphone vibration
response. A description of the equipment is given in Walsh et
al. [9]. A microphone is subjected to pressure and vibration
from a combination of the loudspeaker and the shaker. Both
inputs are monitored and recorded: The pressure is recorded
with a probe microphone and the vibration is recorded with
a laser vibrometer.

5.2 Electret

Two of the microphones were electrets, a Knowles TO38-
32626 and a Knowles TO-24611, illustrated in Figure 18. The
two electrets have similar outer dimensions. They have a sim-
ilar diaphragm, and similar electronic components. The key
difference between the two electrets is the location of the in-
let. As a result of the different inlet locations, the effective

axial length of the TO38-32626 is much less than the TO-
24611. We measured the outer dimensions of the electret mi-
crophones with calipers. Using these dimensions we estimated
L1, L2, L3, and s1/s2 (Table 2) for a transfer matrix model
of Pa. To do this, we assumed that the diaphragm bisects
the length of the microphone (L1 = L2), and the thickness of
the walls is negligible. We added (12) to the transfer matrix

Table 2: Approximated Electret microphone dimensions
Microphone L1 (mm) L2 (mm) L3 (mm) s1/s2
TO-24611 0.65 0.65 0.9 16.5

TO38-32626 1.8 1.8 1.5 6.0

model, as before in (34), based on the assumption that the
diaphragm is 0.5 µm thick, and roughly the density of Mylar
(ρ = 1380 kg/m3). The transfer matrix model is compared

L

L

Figure 18: The two electret microphones contain the same
components and have the same volume of air, but differ sig-
nificantly in length. The TO38-32626 (left) has less length,
whereas the TO-24611 (right) has more.
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Figure 19: Agreement between the Pa measured from the
electret microphones and the Pa determined by the transfer
matrix estimates. The TO-24611 model had a larger mea-
sured Pa, than the TO38-32626 did, as predicted by their
lengths.

to the measured values for Pa for the electrets in Figure 19.
As predicted by the model, the longer TO-24611 measured a
larger value for Pa. Both electrets measured smaller Pa val-
ues than their corresponding transfer matrix estimates. The
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axial length of the two microphones may be smaller than our
assumed dimensions, as we have not accounted for the size
and location of e.g., the transistor, which may account for
the error in modeling Pa for the electrets. A possible source
of error is in the diaphragm area’s orientation, which is not
perpendicular to the microphone’s axial direction in either
microphone, but the model assumes that it is.

5.3 MEMS

L
L

Figure 20: The MEMS microphones have different effective
lengths. There is no difference between these microphones
except that the metal enclosure for the Knowles MQM-32622
(left) has a smaller effective length than the enclosure for the
Knowles MM15-32943 (right).

Two of the microphones were MEMS microphones, a
Knowles MQM-32622 and a Knowles MM15-32943, as illus-
trated in Figure 20. The two MEMS microphones have similar
diaphragms and internal configuration, except for the metal
case that encloses the back volume of the microphone. As a
result, the MQM-32622 has a smaller axial length than the
MM15-32943.

We measured the outer dimensions of the MEMS micro-
phones with calipers. Using these dimensions we estimated
L1, L3, and s1/s2 (Table 3) for a transfer matrix model of
Pa. These estimates assume that the diaphragm bisects the
length of the microphone (L1 = L3), and the thickness of
the walls is negligible. We added (12) to the transfer ma-

Table 3: Approximated MEMS microphone dimensions
Microphone L1 (mm) L2 (mm) L3 (mm) s1/s2
MQM-32622 0.45 0 0.45 20
MM15-32943 0.70 0 0.70 20

trix model, as before in (34), based on the assumption that
the diaphragm is 0.5 µm thick, and made up of polysilicon
(ρ = 2330 kg/m3).

The transfer matrix model is compared to the measured
values for Pa for the MEMS in Figure 21. As predicted by
the model, the longer MM15-32943 measured a larger value
for Pa. The MQM-32622 and MM15-32943 both had larger Pa
values than their corresponding estimates. This discrepancy
may be attributed to the mass of air outside of the micro-
phone, which is not taken into account in the transfer matrix
model. It may also by attributed to the approximate nature of
the dimensions and the estimated thickness of the diaphragm.

6 Conclusion

The results presented here indicate that for miniature micro-
phones, the sensitivity to vibration is significantly affected by
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Figure 21: Agreement between the Pa measured from the
MEMS microphones and the Pa determined by the transfer
matrix estimates. The MM15-32943 had a larger measured Pa
than the MQM-32622 did, as predicted based on their lengths.

the package, or length of the air volume around the pressure-
sensing diaphragm. The air in this space comprises a proof
mass and significantly affects the pressure related accelera-
tion sensitivity of the microphone. At low frequencies, the air
length is analogous to the thickness of the diaphragm, which is
proportional to the ‘acceleration pressure’ that it contributes,
as described by Rule et al.
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