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ABSTRACT 9 

Solar generation can become a major and global source of clean energy by 2050. Nevertheless, few 10 
studies have assessed its resilience to extreme events, and none have used empirical data to 11 
characterize the fragility of solar panels. This paper develops fragility functions for rooftop and 12 
ground-mounted solar panels calibrated with solar panel structural performance data in the Caribbean 13 
for Hurricanes Irma and Maria in 2017 and Hurricane Dorian in 2019. After estimating hurricane 14 
wind fields, we follow a Bayesian approach to estimate fragility functions for rooftop and ground-15 
mounted panels based on observations supplemented with existing numerical studies on solar panel 16 
vulnerability. Next, we apply the developed fragility functions to assess failure rates due to hurricane 17 
hazards in Miami-Dade, Florida, highlighting that panels perform below the code requirements, 18 
especially rooftop panels. We also illustrate that strength increases can improve the panels' structural 19 
performance effectively. However, strength increases by a factor of two still cannot meet the 20 
reliability stated in the code. Our results advocate reducing existing panel vulnerabilities to enhance 21 
resilience but also acknowledge that other strategies, e.g., using storage or deploying other generation 22 
sources, will likely be needed for energy security during storms. 23 

Keywords: solar panels, fragility functions, hurricane hazards, Bayesian update, structural 24 
reliability 25 

1. INTRODUCTION 26 

As the world transitions towards cleaner energy sources, the power system infrastructure is rapidly 27 
changing. In 2019, installations of solar generators accounted for 40% of the electric generating capacity 28 
installed in the United States (Perea et al., 2019). Market and government projections state that solar 29 
generation will be 20–30% of the global electricity by 2050 (Shah & Booream-Phelps, 2015; Sivaram & 30 
Kann, 2016; Solaun & Cerdá, 2019; The International Renewable Energy Agency, 2018). As a result, the 31 
resilience of the power system infrastructure is also changing. First, the design standards or the level of 32 
exposure of solar energy generating infrastructure can differ from current generation infrastructure. For 33 
example, engineers design nuclear plants or dams with risk category IV for safety in nuclear and 34 
hydroelectric generation, source of 20% and 7% electricity generation in the United States (U.S. Energy 35 
Information Administration, 2021). This category provides the highest structural reliability levels in the 36 
ASCE7-16 design code since failure “could pose a substantial hazard to the community” (American Society 37 
of Civil Engineers, 2017). In contrast, engineers can design solar panels following conventional reliability 38 
levels for rooftops, i.e., risk category II. Engineers can design them with even lower levels, i.e., risk category 39 
I, if the solar installation structural failure “represents low risk to human life in the event of failure” as for 40 
large ground-mounted installations in remote locations (Cain et al., 2015). Moreover, by design, the solar 41 
generators themselves must be placed outdoors and are directly exposed to extreme loads such as high 42 
winds. This exposure level is markedly different from existing generating units typically within protective 43 
infrastructure. For example, natural gas, source of 40% of the electricity in the United States (U.S. Energy 44 
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Information Administration, 2021), is transported in pipes underground and is processed in power plants 45 
with several key equipment within buildings, protecting them from winds. As solar generation becomes a 46 
key source of our energy production, we need a better understanding of its resilience to natural hazards and 47 
its ability to provide sufficient and reliable power during extreme load conditions. 48 

Fragility functions describe the likelihood of damage (or failure) due to an extreme load, e.g., earthquake 49 
shaking, hurricane wind. The development of fragility functions for energy generation components is 50 
essential to understand the risk profile of power systems (Bennett et al., 2021; Winkler et al., 2010; Zhai et 51 
al., 2021). However, lack of data has prevented the assessment of panel vulnerability to extreme loads, 52 
hindering our ability to understand the resilience of future power grids. Due to the lack of solar panel failure 53 
data or appropriate experimental tests, Goodman (2015) used simplified numerical structural assessment to 54 
propose the first solar panel fragility functions. The analysis focused on yielding onset of rooftop panel 55 
racks due to high wind loads. Due to the lack of better models, its fragility function has also been applied 56 
to ground-mounted solar panels (Bennett et al., 2021; Watson, 2018). To the best of the authors’ knowledge, 57 
data-driven assessments of solar panel vulnerability have not been conducted. 58 

In this paper, we fill this research gap by analyzing a novel dataset of solar panel structural performance in 59 
60 sites in the Caribbean after the 2017 and 2019 hurricane seasons. This dataset captures these storms’ 60 
severe impact on renewable infrastructure, especially in Puerto Rico (Kwasinski, 2018). We use this dataset 61 
to propose the first data-driven fragility curves for both rooftop and ground-mounted solar panels. Through 62 
a Bayesian approach, we supplement this empirical dataset with numerically driven fragility functions by 63 
Goodman (2015). Combining these different information sources results in more robust estimates of 64 
fragility function parameters than those based on either observation or numerical simulation. We present 65 
an algorithm based on Metropolis-Hastings (MH) Monte Carlo Markov Chain (MCMC) to solve the 66 
Bayesian update with computational efficiency. Additionally, the Bayesian approach explicitly 67 
characterizes the uncertainty in the fragility functions’ parameters, which is critical to account for the 68 
uncertainty of key risk metrics, e.g., panels’ annual rate of failure. 69 

Next, this paper shows an application of the developed fragility functions by assessing the structural 70 
reliability of solar panels in Miami-Dade, Florida, to hurricanes. Our assessment combines our new fragility 71 
functions and hurricane hazard modeling for mainland United States (Marsooli et al., 2019). Finally, this 72 
paper explores the value of increasing solar panel strength to, for example, assess its effectiveness in 73 
reducing annual failure rates and meet different ASCE7-16 standards for structural reliability. This paper 74 
contributes to the body of literature on the risk of modern power systems to extreme events by providing 75 
the first data-informed fragility functions for solar panels and a holistic assessment of their reliability to 76 
hurricanes. 77 

2. SOLAR PANEL STRUCTURAL PERFORMANCE DATA 78 

2.1. Panel damage data 79 

Our dataset is an extended version of the “Solar Under Storm” reports’ panel failure dataset (Burgess et al., 80 
2020; Burgess & Goodman, 2018). The initial dataset consists of 26 sites primarily located in residential 81 
buildings in Puerto Rico for rooftop panels. “Solar Under Storm” focuses on reporting main failure 82 
mechanisms in rooftop installations with qualitative descriptions of failure modes in the Caribbean after the 83 
large hurricanes Irma and Maria in 2017 and Dorian in 2019. The study reports frequent failures in racks 84 
and the clips that attach the panel to the racks (Burgess et al., 2020). Unlike Goodman (2015), which covers 85 
the early serviceability damage state, i.e., yielding onset in racks, the identified damage conditions in the 86 
dataset introduce a damage state of structural collapse (Figure 1).   87 



  
(a) Residential rooftop panels (b) Large ground-mounted panels 

Figure 1. Example of solar panel damage in dataset. (a) Rooftop panels: Clip failures in the bolt 
connection between panels and racks (red arrows) lead to panel uplift (see bolts in circle with zoom-in 
view). Clamp failures (see rectangle with zoom-in view) lead to blown racks (see red line where a rack 
used to be placed) (Burgess et al., 2020). (b) Large ground-mounted panels: Satellite imagery shows the 
scale of the wind damage in comparison to the pre-hurricane view in the rectangle (National 
Oceanographic and Atmospheric Administration, 2021). In large-scale failures, multiple failure modes 
were found, including debris impact from damaged panel arrays. 

Because the “Solar under Storm” dataset focuses on failed rooftop panels, we extended the dataset to cover 88 
panels that survived the hurricanes. The data extension is critical to properly fit fragility functions with data 89 
representing various panels’ structural performance. By surveying local engineers in Puerto Rico, we 90 
extended the dataset to 46 sites. Supplementary Table 1 shows the list of the rooftop solar panels, their 91 
geographical coordinates, and their failure mode, e.g., Figure 1a. Out of the 46 sites, 46% experienced clip 92 
(clamp) failures, 17 % racking failures, 4% roof attachment failures, and 50% either rack or connection or 93 
roof attachment failure. Most panels underwent damage due to debris impact (65% in the initial dataset). It 94 
is important to note that debris failure was primarily part of a cascading mechanism with projectiles 95 
originating from the damaged panels themselves. Figure 2a shows a map with all the panel installation sites, 96 
indicating clip, racking, or attachment failures. The plot also shows that Hurricane Irma, Maria, and 97 
Dorian’s tracks were near the sites. 98 

For ground-mounted solar panels, we surveyed reports and newspapers to determine panels’ failures in 99 
large sites. Utility-scale solar installations are primarily ground-mounted, each one composed of hundreds 100 
or thousands of panels. Thus, their failures often have media coverage. We visually verified the installation 101 
damage with high-resolution satellite imagery from the National Oceanic and Atmospheric Administration 102 
(NOAA) (National Oceanographic and Atmospheric Administration, 2021) and Google Earth Satellite 103 
Imagery. We obtained information for 14 large panel installations with 13 MW of capacity on average in 104 
the Caribbean for Hurricanes Irma and Maria in 2017. The “Solar Under Storm” study also surveyed a few 105 
of these installations, but it did not report the installations’ geographical coordinates to preserve the 106 
confidentiality of the sites (Burgess & Goodman, 2018). Supplementary Table 2 shows the list of these 107 
ground-mounted solar panels, their geographical coordinates, capacity, and the percentage of failed panels 108 
(see site failure in Figure 1b). 36% of sites reported significant failures in more than 50% of their panels, 109 
including the Humacao Solar Farm with 40 MW of capacity, the second largest solar farm in Puerto Rico  110 
(Institute for Energy Research, 2018). Figure 2b shows installations indicating the sites with significant 111 
failures, i.e., more than 50% of failed panels. The reported failures included clip (clamp) failures, racking 112 



fractures and buckling, bolt shear failure, and bolt loosening (Burgess & Goodman, 2018). We observed 113 
evidence of cascading structural failures triggered by debris from damaged panels in large sites, suggesting 114 
that damage in a few panels can progress quickly to massive failures. This observation is consistent with 115 
the cascading failures of clip (T-clamps) fractures found in the more detailed post-hurricane structural 116 
inspections (Burgess & Goodman, 2018). 117 

  
(a) Residential rooftop panels (b) Large ground-mounted panels 

Figure 2. Solar panel sites in collected dataset after Hurricanes Irma and Maria in 2017 and 
Hurricane Dorian in 2019. The lines indicate the hurricane tracks, and the panels with failures (clip, 
racking, rooftop attachment) and without failures are highlighted in the map. Failure in the panel 
array is defined as either clip, racking, or roof attachment (in case of rooftop panels) failures in more 
than 50% of the panels. 

In Puerto Rico, where 50% and 59% of the inspected rooftop and ground-mounted panels were located, 118 
wind design levels range from 63 to 72 m/s and from 57 to 76 m/s for structures with risk categories I and 119 
II, respectively (American Society of Civil Engineers, 2017). As mentioned earlier, the ASCE7-16 requires 120 
solar panels on residential buildings to be designed with a risk category of II. Ground-mounted solar panels 121 
can be designed with a risk category I since they “represent low risk to human life in the event of failure”. 122 
While the structural design levels for ground-mounted solar panels are lower, our described findings 123 
reported fewer sites with large failures than rooftop panels (50% versus 60%). For further assessment, we 124 
analyzed the wind conditions that the panels experienced. 125 

2.2 Wind conditions 126 

We obtained the hurricanes’ tracks, their radii of maximum wind, and maximum winds from the revised 127 
HURDAT2 Atlantic hurricane database (Landsea & Franklin, 2013). We estimated axisymmetric winds 128 
circulating counterclockwise based on a tropical cyclone wind profile model (Chavas et al., 2015). We then 129 
combined these circulating winds with the estimated background winds (Lin et al., 2012) to calculate the 130 
resulting asymmetric wind fields for each hurricane. For smoothness, we interpolated HURDAT2 3-hour 131 
timesteps and thus the corresponding wind fields to obtain maximum wind at each panel site for every 10 132 
minutes (Supplementary Figure 1).  133 

For evaluation, we compared the resulting wind estimates to the hourly wind records from the NOAA 134 
National Centers for Environmental Information (2001)’ Global Integrated Surface Dataset during 135 
Hurricane Maria from the weather station at the San Juan International Airport in Puerto Rico (Figure 3). 136 
No other stations reported wind data from Puerto Rico for the event. Unfortunately, wind data were not 137 
gathered for the most intense period; nevertheless, data during and before August 20th, 2017, show that our 138 



wind estimates and records closely follow each other. During August 20th, both datasets showed rapid wind 139 
intensification, at least up to the ~30 m/s, when records stopped. Our estimates indicate that winds peaked 140 
at 60 m/s on August 20th, 2017.  141 

 
Figure 3. Comparison of wind estimates from Chavas et al. (2015), (C15), and the wind records from 
NOAA National Centers for Environmental Information (2001), (NCEI), at the San Juan International 
Airport.   

Using a multiplicative factor from an empirical formula (Vickery & Skerlj, 2005), we converted the 1-m 142 
sustained wind estimates at the panel sites to 3-second gusts to be compatible with the wind load metrics 143 
for structural design (American Society of Civil Engineers (ASCE), 2017). Failures in rooftop panels were 144 
caused by gusts starting at 73 m/s, with a mean in all sites of 81 m/s (Figure 4a). Failures in ground-mounted 145 
panels were caused by gusts starting at 83 m/s, with a mean of 91 m/s (Figure 4b). The solar panel dataset 146 
is suitable for assessing fragility functions as it contains ranges of gusts where failure occurrence has large 147 
variability (Figure 4). For example, between 70 and 90 m/s, several sites with rooftop panels experienced 148 
both failure and no failure. Getting data in this range is critical for fragility functions to appropriately 149 
capture the uncertainties in panel failure when transitioning from low winds to high winds. 150 

  
(a) Rooftop panel (b) Ground-mounted panel 

Figure 4. 3-s gust distributions for panels with (black) and without (gray) damage. The data are shown 
as points and the empirical probability density functions are estimated using a Gaussian kernel  

3. BAYESIAN FRAMEWORK FOR FRAGILITY FUNCTION UPDATES 151 

3.1. Fragility function 152 



Fragility functions with lognormal shape are typically used to model infrastructure’s damage due to wind 153 
hazards and multiple other extreme loads (Ellingwood et al., 2004; Shinozuka et al., 2000; Straub & der 154 
Kiureghian, 2008). Its shape is given by  155 
 

𝑞𝑞(𝑤𝑤; 𝜐𝜐,𝛽𝛽) = Φ�
ln (𝑤𝑤) − ln (𝜐𝜐)

𝛽𝛽
� 

(1) 

where 𝑞𝑞 is the probability of panel failure due to a wind gust 𝑤𝑤, 𝜐𝜐 is the wind gust with a failure probability 156 
of 50%, 𝛽𝛽 is a normalizing factor, and Φ is the cumulative standard normal distribution function. 𝛽𝛽 defines 157 
the width of the transition range between winds with low and high failure probability, and it is a measure 158 
of aleatory uncertainty in the vulnerability analysis. For example, a 𝛽𝛽 value of 0 would be equivalent to a 159 
deterministic assessment, where the panel would fail after a given wind threshold. 160 

We follow a Bayesian approach to fit solar panels’ fragility functions due to two key factors.  161 

• The Bayesian formulation can represent fragility functions’ significant epistemic uncertainties 162 
through random fragility function parameters, υ and 𝛽𝛽. Treating υ and 𝛽𝛽 as random variables rather 163 
than deterministic parameters allows for the propagation of their uncertainty to solar panel damage 164 
predictions in risk analysis. 165 

• The Bayesian approach allows for the combination of multiple sources of information to improve 166 
the fragility function characterization. The dataset presented in this paper provides the opportunity 167 
for a data-driven, probabilistic description of panel failure. However, the number of samples is not 168 
high, e.g., 46 and 14 for rooftop and ground-mounted panels, respectively. Thus, through the 169 
Bayesian approach, we use Goodman (2015)’s numerical assessment as prior information and then 170 
combine it with the dataset for the final fragility function estimates. 171 

In the Bayesian formulation, the posterior distribution 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) after combining both data sources is 172 
 

𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) =
𝑝𝑝(𝑥𝑥|𝜐𝜐,𝛽𝛽)𝑝𝑝(υ,β)

∫ ∫𝑝𝑝(𝑥𝑥|𝜐𝜐,𝛽𝛽)𝑝𝑝(υ,β)dυdβ
  

(2) 

where 𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is the vector containing the failure information at each site, thus 𝑥𝑥𝑛𝑛 ∈ {0,1} 173 
equals zero if the panel did not fail and one if it failed, and 𝑛𝑛 is the number of sites, i.e., equal to 46 and 14 174 
for rooftop and ground-mounted panels, respectively. The limit state for rooftop panel failure is defined as 175 
extensive damage, including clip, racking, or roof attachment failures. Hereafter, we refer to this damage 176 
state as panel failure. The limit state for failure in the large ground-mounted panels is defined as extensive 177 
damage, including clip and racking failures, in more than 50% of their panels. 𝑝𝑝(𝑥𝑥|𝜐𝜐,𝛽𝛽) is the likelihood 178 
function of observing the dataset for fixed values of 𝜐𝜐 and 𝛽𝛽, and 𝑝𝑝(υ,β) is the prior distribution of 𝜐𝜐 and 179 
𝛽𝛽.  180 

3.2. Prior 181 

As in the Bayesian approach, 𝜐𝜐 and 𝛽𝛽 from Equation (2) are random variables rather than deterministic 182 
values. Additionally, 𝜐𝜐 and 𝛽𝛽 can only be positive numbers. Accordingly, we use lognormal distributions 183 
to model the prior. The probability density functions (pdfs) of 𝑝𝑝(𝜐𝜐) and 𝑝𝑝(𝛽𝛽) are given by  184 
 𝑝𝑝(𝜐𝜐) = 1

𝜐𝜐𝜎𝜎𝜐𝜐√2𝜋𝜋
exp �− (𝑙𝑙𝑙𝑙 𝜐𝜐−𝜇𝜇𝑣𝑣)2

2𝜎𝜎𝜐𝜐2
�  (3) 

 
𝑝𝑝(𝛽𝛽) = 1

𝛽𝛽𝜎𝜎𝛽𝛽√2𝜋𝜋
exp�− �𝑙𝑙𝑙𝑙𝛽𝛽−𝜇𝜇𝛽𝛽�

2

2𝜎𝜎𝛽𝛽
2 �  

(4) 

where 𝜇𝜇𝜐𝜐 and 𝜎𝜎𝜐𝜐 are hyperparameters defining the logarithmic mean and standard deviation of 𝜐𝜐. 𝜇𝜇𝛽𝛽 and 185 
𝜎𝜎𝛽𝛽 are hyperparameters defining the logarithmic mean and standard deviation of 𝛽𝛽. For simplicity, we 186 
assume 𝜐𝜐 and 𝛽𝛽 are independent. Thus 187 
 𝑝𝑝(𝜐𝜐,𝛽𝛽) = 𝑝𝑝(𝜐𝜐)𝑝𝑝(𝛽𝛽) (5) 



For Bayesian assessments, the data supporting the prior distribution need to be independent of the data used 188 
for the parameter update. Thus, the selection of Goodman (2015)’s fragility function is appropriate for this 189 
study. The numerical assessment is based on code-conforming rooftop panels designed for wind conditions 190 
in Atlanta, Georgia. The uncertainty in the fragility function stems from the stochastic velocity pressure 191 
induced by winds acting on the panel. It also models stochasticity in material strength and construction 192 
quality. Goodman (2015)’s study is frequentist; thus, the parameters defining the fragility function in 193 
Equation (1) are deterministic. The resulting fragility functions had a deterministic υ, gust for 50%-failure 194 
probability, of 60 m/s and β of 0.13 for a panel on a 30o roof.  195 

To use these numerical evaluations as a prior distribution, we adjusted their wind design conditions to the 196 
Caribbean. Taking San Juan, Puerto Rico, as a reference, we scaled up 𝜐𝜐 to represent a local solar panel 197 
design using the ratio between the wind design values in San Juan and Atlanta. We consider a design with 198 
risk category II (wind with a return period of 700 years) for rooftop panels and a risk category I (wind with 199 
a return period of 300 years) for the ground-mounted panels (Cain et al., 2015). As a result, we used 𝜐𝜐 equal 200 
to 85 m/s for rooftop panels and 81 m/s for ground-mounted panels.  201 

We use the values of 85 m/s and 81 m/s to find the prior logarithmic means of 𝜐𝜐 (𝜇𝜇𝜐𝜐) for the rooftop and 202 
ground-mounted solar panels, respectively, since they are equal to the prior medians (𝑒𝑒𝜇𝜇𝜐𝜐) in the lognormal 203 
distributions. For the logarithmic means of 𝛽𝛽 (𝜇𝜇𝛽𝛽), we use Goodman (2015)’s value of 0.13 for both panel 204 
types. The logarithmic standard deviations (𝜎𝜎𝜐𝜐 and 𝜎𝜎𝛽𝛽) are a measure of epistemic uncertainty as data can 205 
reduce them. We consider the results from Goodman (2015)’s numerical assessment to be initial sound 206 
data. Thus, we use it as an informative prior rather than using weakly informative or non-informative prior 207 
(Gelman et al., 2013). Accordingly, we set 𝜎𝜎𝜐𝜐 and 𝜎𝜎𝛽𝛽 equal to 0.5. This value is similar to other Bayesian 208 
assessments for vulnerability curves (Noh et al., 2017), and it accounts for the lack of information (e.g., 209 
actual material strength or failure modes) in the numerical study in reproducing panel failure. 210 

3.3. Likelihood of observing the data 211 

Panel failure follows a Bernoulli distribution with probability 𝑞𝑞 that is a function of the wind. Considering 212 
that the failures at different 𝑛𝑛 sites are independent, then the likelihood of observing failures or non-failures 213 
in 𝑛𝑛 sites is given by 214 
 

𝑝𝑝(𝑥𝑥|𝜐𝜐,𝛽𝛽) = �𝑞𝑞𝑥𝑥𝑖𝑖  (1− 𝑞𝑞)1− 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

  
(6) 

where 𝑥𝑥𝑖𝑖 is one if the panel failed at the site or zero otherwise and 𝑞𝑞 is found from the fragility function in 215 
Equation (1) with parameters 𝜐𝜐 and 𝛽𝛽.  216 

3.4. Posterior distribution 217 

According to the Bayes rule for conditional probabilities, the posterior 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) can be found in Equation 218 
(2). The numerator is the product of the likelihood of observing the panel failures and the prior distribution. 219 
The denominator is the integral of this product through the entire parameter space of υ and β. Equations (5) 220 
and (6) allow us to find the numerator in closed form, but the denominator requires a complex integration 221 
that cannot be solved analytically.  222 

3.5. Solving for the posterior distribution using MCMC  223 

To overcome the challenge stemming from numerical integration, we followed an approach based on 224 
MCMC (Liu, 2004). MCMC only requires evaluating a proportional function to the posterior distribution 225 
rather than the posterior itself. Thus, we can find samples from the posterior and circumvent the evaluation 226 
of the integral with MCMC since  227 



 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) ∝ 𝑝𝑝(𝑥𝑥|𝜐𝜐,𝛽𝛽)𝑝𝑝(𝜐𝜐,𝛽𝛽) (7) 

We use the Metropolis-Hastings (MH) MCMC algorithm to define a Markov Chain (MC) that samples 228 
from the posterior distributions of 𝜐𝜐 and 𝛽𝛽. With the MH algorithm, we define the MC as a random walk 229 
through the parameter space of 𝜐𝜐 and 𝛽𝛽. To generate 𝑚𝑚-th sample pair (𝜐𝜐𝑚𝑚,𝛽𝛽𝑚𝑚) of the posterior, we sample 230 
a candidate (𝜐𝜐∗,𝛽𝛽∗) using the following uncorrelated bivariate normal distribution 231 

(𝜐𝜐∗,𝛽𝛽∗) ∼ 𝑁𝑁(𝝁𝝁(𝑹𝑹𝑹𝑹),𝝈𝝈(𝑹𝑹𝑹𝑹)) (8) 
where 𝝁𝝁(𝑹𝑹𝑹𝑹) is the mean vector of the random walk, and it is equal to the last posterior sample 232 
(𝜐𝜐𝑚𝑚−1,𝛽𝛽𝑚𝑚−1). 𝝈𝝈(𝑹𝑹𝑹𝑹) is the covariance matrix, equal to the diagonal matrix 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎𝜐𝜐 (𝑅𝑅𝑅𝑅),𝜎𝜎𝛽𝛽 (𝑅𝑅𝑅𝑅)�. 𝜎𝜎𝜐𝜐 (𝑅𝑅𝑅𝑅) 233 
and 𝜎𝜎𝛽𝛽 (𝑅𝑅𝑅𝑅) are calibrated values for an effective exploration of the high-probability regions, i.e., good 234 
mixing. For this symmetrical random walk, the sample candidate (𝜐𝜐∗,𝛽𝛽∗) is accepted with probability 235 
min(1,𝐴𝐴), where 236 

𝐴𝐴 =
𝑝𝑝(𝑥𝑥|𝜐𝜐∗,𝛽𝛽∗)𝑝𝑝(𝜐𝜐∗,𝛽𝛽∗)

𝑝𝑝(𝑥𝑥|𝜐𝜐𝑚𝑚−1,𝛽𝛽𝑚𝑚−1)𝑝𝑝(𝜐𝜐𝑚𝑚−1,𝛽𝛽𝑚𝑚−1)
  

(9) 

According to the MH properties, the MC has a stationary distribution, i.e., the resulting distribution when 237 
the number of samples is sufficiently large, equal to the posterior distribution of υ and β in Equation (2).  238 

This algorithm was implemented to assess the posterior of the fragility function parameters for both rooftop 239 
and ground-mounted panels. We ensured a good mixing by calibrating 𝜎𝜎𝜐𝜐 (𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶) and 𝜎𝜎𝛽𝛽 (𝑅𝑅𝑅𝑅) such that the 240 
average acceptance rate is around 25% as recommended in the literature (Chib & Greenberg, 1995; Robert, 241 
2014). Using the MH MCMC analysis, we sampled 10,000 realizations of υ and β from the posterior 242 
distribution after a burn-in period containing 1,000 realizations. We selected the burn-in period after 243 
verifying the MC stationarity (Supplementary Figure 2). 244 

4. BAYESIAN UPDATES FOR FRAGILITY FUNCTIONS  245 

4.1. Rooftop panels 246 

We used the generated 10,000 samples to estimate the posterior distribution of the fragility function 247 
parameters. For 𝜐𝜐, the median varied from 85 m/s in the prior to 80 m/s in the posterior, its standard 248 
deviation from 51 m/s to 5 m/s, and its logarithmic standard deviation from 0.5 to 0.07 (Figure 5a). The 249 
similar prior and posterior medians show that the numerical analysis in Goodman (2015) is consistent with 250 
the observations of wind in terms of the 50%-failure probability. The significant decrease (90%) in the 251 
standard deviation reveals the importance of the solar panel dataset in decreasing the initial epistemic 252 
uncertainties of 𝜐𝜐.  253 

For 𝛽𝛽, the median varied from 0.13 in the prior to 0.32 in the posterior, its standard deviation from 0.08 to 254 
0.11, and its logarithmic standard deviation from 0.5 to 0.30 (Figure 5b). The posterior median of 𝛽𝛽 is 255 
almost three times the prior value. Such an increase reveals the inconsistency of the numerical analysis in 256 
Goodman (2015) with the empirical data in terms of the aleatory uncertainty measured by 𝛽𝛽. The numerical 257 
analysis implies that the transition range between winds with low and high failure probabilities is narrow. 258 
Conversely, previous empirical evidence (Roueche et al., 2017, 2018) suggests that the 𝛽𝛽 value of 0.13 is 259 
too small to characterize the uncertainty in wind hazards, implying a wider transition range between winds 260 
with low and high failure probabilities. This observation demonstrates the importance of empirical data to 261 
calibrate numerical analysis.  262 

We found a lack of correlation between 𝜐𝜐 and 𝛽𝛽 in the posterior as the Pearson’s coefficient between their 263 
posterior samples was only 3x10−4. This result suggests independence between 𝜐𝜐 and 𝛽𝛽, as assumed in the 264 
prior. 265 



The Bayesian update from the parameters’ prior distribution to the posterior distribution brings important 266 
implications for the fragility function of rooftop solar panels. The mean fragility function, describing the 267 
probability of panel failure, for the posterior distribution can be found as 268 

 
𝐸𝐸[𝑞𝑞(𝑤𝑤)] = � � 𝑞𝑞(𝑤𝑤; 𝜐𝜐,𝛽𝛽)

∞

0

∞

0
𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(10) 

Equation (10) uses the posterior 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) as the distribution of  υ and β to find the posterior of 𝐸𝐸[𝑞𝑞(𝑤𝑤)]. 269 
Replacing 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) by the prior 𝑝𝑝(𝜐𝜐,𝛽𝛽) will result in the prior 𝐸𝐸[𝑞𝑞(𝑤𝑤)].  270 

  
a) 𝜐𝜐 (rooftop panel) b) 𝛽𝛽 (rooftop panel) 

  
c) 𝜐𝜐 (ground-mounted panel) d) 𝛽𝛽 (ground-mounted panel) 

Figure 5. The prior and posterior distribution of 𝜐𝜐 and 𝛽𝛽 for rooftop solar panels. Samples from the 
posterior distribution were used to depict the histogram, and Gaussian kernel was used to develop 
each empirical pdf. 

We solved Equation (10) by averaging all 𝑞𝑞 values for the suite of 10,000 fragility functions, obtained by 271 
evaluating the 10,000 samples of 𝜐𝜐 and 𝛽𝛽 (Figure 6a). With this procedure, we incorporate and propagate 272 
the uncertainty in 𝜐𝜐 and 𝛽𝛽 to the fragility function. The deterministic prior distribution in Goodman (2015) 273 
was used to set up the prior medians’ hyperparameters. However, the resulting mean fragility function 274 
(𝐸𝐸[𝑞𝑞(𝑤𝑤)]) from the Bayesian prior is different than its frequentist counterpart due to its parameters’ 275 
uncertain nature. The difference is negligible for the wind with a 50%-failure probability (~85m/s for both). 276 
Yet, it is significant for the wind with a 10% and 90%-failure probability (71 versus 43 and 100 versus 167 277 
m/s). The wider wind range in the transition from a 10% to a 90%-failure probability in the Bayesian 278 
assessment results from the uncertainty propagation from 𝜐𝜐 and 𝛽𝛽 (Figure 5a and 5b’s grey curves) to the 279 
fragility function. 280 



The posterior distribution changes the wind for 50%-failure probability only slightly (-5%), from 86 m/s in 281 
the prior to 80 m/s in the posterior. The wind range that transitions from a 10% to a 90%-failure probability, 282 
52 and 123 m/s, respectively, has a width that is 56% smaller than the prior. This reduction results from the 283 
lower uncertainty on 𝜐𝜐, whose standard deviation decreases from 51 m/s in the prior to 5 m/s in the posterior 284 
(Figure 5a). Moreover, the posterior fragility function shows a significantly narrower confidence interval 285 
than the prior fragility function. These results demonstrate the importance of the Bayesian approach to 286 
capture and reduce large initial uncertainties through empirical data, not only in the fragility function 287 
parameters (𝜐𝜐 and 𝛽𝛽), but also in the mean fragility function itself. 288 

  
a) Rooftop panel b) Ground-mounted panel 

Figure 6. Fragility functions for random samples 𝜐𝜐 and 𝛽𝛽 according to their prior and posterior 
distributions. The solid thicker lines indicate the expectation of the failure probability over the 
parameters’ distribution, and the dashed lines indicate the mean plus and minus a standard deviation. 
Goodman* is the deterministic fragility function adapted from Goodman (2015). 

4.2. Ground-mounted panels 289 

 The distribution of 𝜐𝜐 shows that the median varies from 81 m/s in the prior to 90 m/s in the posterior, its 290 
standard deviation from 50 m/s to 6 m/s, and its logarithmic standard deviation from 0.5 to 0.07 (Figure 291 
5c). The posterior shows a significant reduction in the uncertainty of 𝜐𝜐, with a standard deviation 87% lower 292 
than that of the prior. Such a reduction is very close to the one found in rooftop solar panels, even though 293 
the number of data points is one-third of the latter.  294 

For 𝛽𝛽, the median varies from 0.13 in the prior to 0.15 in the posterior, its standard deviation remains in 295 
0.07, and its logarithmic standard deviation from 0.5 to 0.39 (Figure 5d). As a result, the posterior 296 
distribution exhibits a slight shift to the right. The little variations in 𝛽𝛽's standard deviation and logarithmic 297 
standard deviation suggest that the number of data points is insufficient to substantially reduce uncertainty. 298 

Following the same procedure for the rooftop panels, we estimated the mean fragility function (𝐸𝐸[𝑞𝑞(𝑤𝑤)]) 299 
for ground-mounted solar panels (Figure 6b). Unlike the posterior fragility function for rooftop panels, the 300 
posterior fragility function for ground-mounted panels has a higher wind value (+10%) for a 50%-failure 301 
probability than its prior, 90 m/s versus 81m/s. This increase suggests that the panel installations for ground-302 
mounted solar panels were structurally sounder than for rooftop panels, whose wind for 50%-failure 303 
probability in the posterior was 5% less than in the prior. This better structural performance may result from 304 
more code enforcement, better member and connection installation (e.g., avoiding loose bolts), or proper 305 
inspections (Burgess et al., 2020; Burgess & Goodman, 2018). These panels are part of large installations 306 
with massive investments from utility companies, which, unlike residential homes that install rooftop 307 
panels, often have a budget for appropriate quality and control. 308 



We found that the wind range that transitions from a 10% to 90% failure probability in the posterior, 73 309 
and 116 m/s, is reduced in 64% from the prior, 41 m/s and 160 m/s. This narrower range is driven mainly 310 
by the lower standard deviation in 𝜐𝜐 (Figure 5c). This reduction in the transition range is larger than that in 311 
the case of the rooftop panels (Figure 6) because, unlike the rooftop panels, the ground-mounted panels’ 312 
posterior of 𝛽𝛽 did not have a larger standard deviation than the prior. Furthermore, the posterior fragility 313 
function shows a much narrower confidence interval than the prior fragility function. However, the 314 
confidence interval is slightly wider than in rooftop panels because the ground-mounted panel dataset is 315 
only a third of the rooftop panel dataset. 316 

5. PANEL’S ANNUAL FAILURE RATE 317 

To illustrate their application, we use our fragility functions to assess solar panel risk for hurricane winds 318 
for Miami-Dade, Florida, as a case study. Miami-Dade is exposed to similar wind hazards in Puerto Rico. 319 
For example, the risk category II design wind (700-year return period) in San Juan, Puerto Rico, is 71 m/s 320 
(159 mph), whereas the design wind in Miami-Dade is 73 m/s (164 mph). Different standards for solar 321 
panel installation and code enforcement might be in place in Miami-Dade, especially for rooftop panels, 322 
which performed worse than ground-mounted panels. However, more data collection efforts will be needed 323 
to confirm whether panels in mainland United States have fundamentally different structural behavior than 324 
those in the Caribbean. Due to the lack of these datasets, here we use our fragility functions from the 325 
Caribbean to study solar panels’ reliability and resilience performance in Miami-Dade; analysis for other 326 
regions can be similarly performed.  327 

A study site in the mainland United States is chosen to leverage a synthetic hurricane database with 5018 328 
landfalling storms in the United States generated from a statistical-deterministic tropical cyclone (TC) 329 
model (Marsooli et al., 2019). These synthetic hurricanes account for current climate conditions (from 1980 330 
to 2005) according to the National Center for Environmental Prediction (NCEP) reanalysis. The 5018 331 
synthetic storms correspond to ~1485 years of storm simulation. The model that generates these storms 332 
consists of three stages: a genesis model; a beta-advection TC motion model; and a dynamical TC model 333 
that captures how environmental factors influence TC development (Emanuel et al., 2008). The model 334 
solves the synthetic storms’ tracks, maximum sustained winds, and radii of maximum winds, and we use 335 
its results at 2-hour intervals. We estimated the wind fields by combining the storm’s axisymmetric winds 336 
circulating counterclockwise (Chavas et al., 2015) and background winds (Lin et al., 2012). The synthetic 337 
hurricanes were evaluated with observations by Marsooli et al. (2019). 338 

We determine the annual rate of panel failure λ𝑓𝑓 by combining the wind simulations with the Bayesian 339 
fragility functions. The rate defines the average number of events leading to panel failures in a given year 340 
assuming a Poisson process. In a frequentist analysis, the fragility function parameters υ and β are fixed. 341 
Thus, λ𝑓𝑓(υ,β) can be estimated as  342 
 

λ𝑓𝑓(υ,β) = � 𝑞𝑞(𝑤𝑤; υ,β)𝑑𝑑λw
∞

0
 

(11) 

where λ𝑤𝑤 is the annual exceedance probability of wind speed. It is the average number of events that result 343 
in winds exceeding a threshold 𝑤𝑤 in a given year under a Poisson process of storm arrivals, and it can be 344 
estimated from the synthetic storms. In our Bayesian framework, υ and β are random variables. Thus, λ𝑓𝑓 is 345 
also a random variable. Accordingly, its probability density function p𝜆𝜆𝑓𝑓(λ) can be found as 346 
 

p𝜆𝜆𝑓𝑓(λ) = � � 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥)𝛿𝛿 �𝜆𝜆 −� 𝑞𝑞(𝑤𝑤;υ,β)𝑑𝑑λ𝑤𝑤
∞

0
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

0

∞

0
  

(12) 

where 𝛿𝛿() is the Dirac delta function on 𝜆𝜆 − ∫ 𝑞𝑞(𝑤𝑤;υ,β)𝑑𝑑λw
∞
0 . Equation (12) uses the posterior 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) 347 

as the distribution of υ and β to find the posterior of p𝜆𝜆𝑓𝑓(λ). Replacing 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥) by the prior 𝑝𝑝(𝜐𝜐,𝛽𝛽) will 348 
result in the prior p𝜆𝜆𝑓𝑓(λ). The expected value of λ𝑓𝑓, E[λ𝑓𝑓], can be found as: 349 



 
E[λ𝑓𝑓] = � � �� 𝑞𝑞(𝑤𝑤; υ,β)𝑑𝑑λw

∞

0
� 𝑝𝑝(𝜐𝜐,𝛽𝛽|𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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(13) 

Explicitly evaluating E[λ𝑓𝑓] and particularly p𝜆𝜆𝑓𝑓(λ) is computationally challenging by traditional numerical 350 
integration. Thus, we used Monte Carlo analysis due to its simplicity to find such estimates. Using the 351 
10,000 Monte Carlo samples of prior and posterior fragility functions, we estimated the prior and posterior 352 
of λ𝑓𝑓 (Figure 7).  353 

  
a) Rooftop panel b) Ground-mounted panel 

Figure 7. Probability density function p𝜆𝜆𝑓𝑓(λ) of the annual probability of failure rate of solar panels. 
Samples from the Monte Carlo simulations were used to fit empirical pdfs with a Gaussian kernel. 

Our results indicate a marked decrease in uncertainty for λ𝑓𝑓 in the posterior. The posterior standard 354 
deviation and logarithmic standard deviation for rooftop panels are 1.2 × 10−2/yr and 6.3 × 10−1 , 355 
whereas the priors’ ones are 5.1 × 10−2/yr and 1.82. The posterior standard deviation and logarithmic 356 
standard deviation for ground-mounted panels are 1.7 × 10−3/yr and 5.5 × 10−1, whereas the priors’ ones 357 
are 5.7 × 10−2/yr and 1.87. This uncertainty decrease in the annual failure rate is consistent with the 358 
observed posterior fragility function uncertainty reductions for rooftop and ground-mounted panels (Figure 359 
6). 360 

For rooftop panels, the posterior E[λ𝑓𝑓] is 1.3 × 10−2/𝑦𝑦𝑦𝑦, i.e., return period of 75 years. Under the 361 
assumption of a Poisson process, this rate results in a 48% probability of failure in 50 years. This rate is 362 
equivalent to a 33% failure probability in 30 years, often considered the usable panel service time. The 363 
reliability index, defined as the inverse of the cumulative standard normal distribution function on the 364 
survival probability, i.e., one minus the failure probability, in 50 years, is 0.04. This reliability is 365 
significantly lower than the current standards in the ASCE7-16. Using results from a recent study 366 
(McAllister et al., 2018), we estimated that a structure designed for winds with a 700-year return period 367 
(risk category II) should have a reliability index of 2.3 in 50 years, i.e., failure rate of 2.3 × 10−4/𝑦𝑦𝑦𝑦. Thus, 368 
our findings show that the structural reliability of rooftop solar panels in our dataset was significantly below 369 
current code standards if similar panels are adopted in Miami-Dade. These results are consistent with the 370 
observed structural deficiencies in the installation and design of panels with failures in the dataset, e.g., 371 
insufficient connection strength, lack of vibration-resistant connections (Burgess et al., 2020). Thus, 372 
significant gains in reliability could be achieved by increasing quality and control during design and 373 
installation. 374 



For ground-mounted panels, the posterior E[λ𝑓𝑓] is 2.0 × 10−3/𝑦𝑦𝑦𝑦, i.e., return period of 504 years. This rate 375 
is equivalent to a 9% and a 6% probability of failure in 50 and 30 years, respectively. The reliability index 376 
for 50 years is 1.3. According to the ASCE7-16, the reliability index for a structure designed for winds with 377 
a 300-year return period (risk category I) is 1.9, i.e., failure rate of 6.1 × 10−4/𝑦𝑦𝑦𝑦 (McAllister et al., 2018). 378 
Thus, our results indicate that ground-mounted panels also have lower reliability than required by the 379 
current code standards. These results are also consistent with previously reported structural deficiencies in 380 
ground-mounted panels in the Caribbean, e.g., undersized racks, and undersized or under-torqued bolts 381 
(Burgess & Goodman, 2018). Nevertheless, the contrast between rooftop and ground-mounted panel 382 
performance indicates that the latter had a significantly higher structural reliability than the former. 383 

6. STRONGER SOLAR PANELS FOR GENERATION RESILIENCE  384 
 385 
6.1. Assessing structural reliability and generation in stronger panels 386 

We assessed panels’ strength increases by factors of 1.25, 1.50, 1.75, and 2.0. This wide range of strength 387 
increases accounts for addressing various panel installations and design deficiencies reported in the 388 
Caribbean. Existing studies already point to cost-effective solutions to correct these deficiencies, e.g., 389 
torque checks on bolts, well-designed clips (Burgess et al., 2020; Burgess & Goodman, 2018).  390 

This range also covers increases in strength for critical infrastructure. Hospitals and fire stations require 391 
that their buildings’ structural and non-structural components have higher strength for continuous 392 
operations in a disaster emergency response. Accordingly, solar panels serving these facilities must be 393 
designed with a risk category IV, higher than for panels on residential (risk category II) or utility-scale (risk 394 
category I) installations. For example, the wind design in Miami-Dade is 69 m/s (154 mph) for a risk 395 
category I and 81 m/s (182 mph) for a risk category IV. The difference represents a strength factor of 1.40 396 
as the design force is proportional to the square of the design wind. 397 

For our assessment, we multiplied the posterior samples of 𝜐𝜐 by the square root of the strength increase 398 
factors, i.e., 1.12, 1.22, 1.32, 1.41. We let samples 𝛽𝛽 remain the same to limit the increase in uncertainty, 399 
i.e., the transition from low-failure-probability to high-failure-probability winds. The resulting fragility 400 
functions are shifted to the right of the posterior functions in Figure 6, reducing the likelihood of panel 401 
failure (Figure 8). For example, the mean failure probability 𝑞𝑞 when rooftop panels undergo gusts of 60 402 
m/s decreases from 0.19 to 0.12, 0.08, 0.05, and 0.04 for the strength factors of 1.25, 1.50, 1.75, and 2.0, 403 
respectively. Similarly, the mean  𝑞𝑞 when ground-mounted panels undergo gusts of 80 m/s decreases from 404 
0.23 to 0.09, 0.04, 0.02, and 0.01. 405 

 406 

 407 



  
a) Rooftop panel b) Ground-mounted panel 

Figure 8. Mean fragility functions for panels with increases in strength. The factors that multiply each 
𝜐𝜐 sample are equal to the square root of the strength factors in the labels. The dashed curves indicate 
the wind annual exceedance rates. The x-axis represents 3-s gusts. 

Using Monte Carlo sampling, we estimated pλ𝑓𝑓(λ) for the different increases in strength (Figure 9). 408 
Expectedly, increases in strength shift pλ𝑓𝑓(λ) to the left as they reduce the resulting annual rate of failure. 409 
We also found E[λ𝑓𝑓] and assessed the corresponding panels’ structural reliability (Table 1). The increases 410 
in strength are effective at decreasing E[λ𝑓𝑓]. The strength factor of two reduces E[λ𝑓𝑓] by a factor of 3.9 and 411 
2.5 for rooftop and ground-mounted panels, respectively. A more modest strength factor of 1.25 also 412 
effectively decreases panel failure risk, reducing E[λ𝑓𝑓] by ~50% and ~70% for rooftop and ground-mounted 413 
panels, respectively. Nevertheless, our results indicate that the reliability indexes for these stronger panels 414 
are still below the ASCE7-10 targets even for a risk category I, i.e., 1.9. 415 

Table 1. Annual probability of panel failure and reliability indexes (for 50 
years) for different increases in strength 

Strength Factor Rooftop panel Ground-mounted panels 
E[λ𝑓𝑓] (1/yr)  Reliability 

index 
E[λ𝑓𝑓] (1/𝑦𝑦𝑦𝑦)  Reliability 

index 
1.0 0.0132 0.04 0.0020 1.30 

1.25 0.0089 0.36 0.0012 1.58 
1.50 0.0061 0.63 0.0010 1.66 
1.75 0.0043 0.87 0.0009 1.73 
2.0 0.0034 1.01 0.0008 1.77 

These results highlight large structural vulnerabilities in solar panels since they do not reach code-level 416 
reliability even if their strength is increased twice. These results suggest that existing lack of structural 417 
design and limited inspections in the panel installations were significant (Burgess et al., 2020; Burgess & 418 
Goodman, 2018). High vulnerability to hurricane winds has been noted previously in buildings. For 419 
example, a previous study in Southern Florida determined that roof-to-wall connections with 3-8d toenails 420 
in wooden residential buildings have an annual failure rate between 0.005-0.024 (Li & Ellingwood, 2006). 421 
These rates are comparable to the rooftop panels in our case study and below the performance of ground-422 
mounted panels (Table 1). Furthermore, roof panels with 6d nails @ 6/12 in. on these buildings showed 423 
even poorer performance, with higher annual failure rates of 0.077-0.137.  424 

 425 



  
a) Rooftop panel b) Ground-mounted panel 

Figure 9. Probability density function of the annual failure rate of solar panels for different increases 
in panel strength. The labels indicate the strength factor increase. 

 426 

6.2 Will stronger panels increase generation resilience? 427 
 428 

As demonstrated previously, increasing panel strength will increase its reliability. However, other critical 429 
factors also play a significant role in solar generation resilience, i.e., the ability to generate sufficient 430 
electricity during storms. First, solar generation can decrease even if panels remain structurally sound and 431 
functional during a hurricane. Ceferino et al. (2021) demonstrated that hurricane clouds can reduce 432 
irradiance and generation significantly through light absorption and reflection. For example, a category-4 433 
hurricane can decrease the generation by more than 70%, even if the panels remain undamaged. Cloud-434 
driven generation losses can last for days, although they will bounce back to normal conditions in an 435 
undamaged panel as the hurricane leaves. 436 

Failure of supporting infrastructure can also decrease generation resilience even if panels withstand extreme 437 
wind loads. Increasing the strength of rooftop panels on vulnerable roofs will not increase the global 438 
reliability of the residential energy system. Global reliability must consider that panels can fail in a 439 
cascading failure triggered by roof uplift, damaging the panel or its connections. The weakest link will 440 
control the reliability of this in-series system. As mentioned previously, roof-to-wall connections with 3-441 
8d toe nails or roof panels with 6d nails @ 6/12” exhibited similar or poorer performance than vulnerable 442 
rooftop panels (Li & Ellingwood, 2006). Strengthening panels on these roofs will substantially increase 443 
their local reliability (Table 1), but it will increase global reliability only negligibly.  Conversely, roofs with 444 
H2.5 hurricane clips in roof-to-wall connections and 8d nails @ 6/12'' in roof panels will make roofs an 445 
appropriate supporting system through higher reliability (Li & Ellingwood, 2006). Thus, our results 446 
advocate for stronger panels but under a holistic assessment of global reliability. 447 

Structurally sound rooftop panels have the intrinsic advantage of delivering power even if the primary grid 448 
is down. When inverters are within buildings, occupants can use their locally generated energy during an 449 
outage (Cook et al., 2020). Access to power can be vital for residential buildings, especially if heatwaves 450 
following storms increase the demand for cooling (Feng et al., 2021). Access to energy is also pivotal to 451 
sustaining emergency response operations for critical infrastructure such as hospitals or fire stations. 452 
Communities can further utilize locally generated energy through energy sharing and microgrids to increase 453 
households’ access to power after a disaster, even for those who did not install panels (Ceferino et al., 2020; 454 
Patel et al., 2021).  Nevertheless, solar panels will not replace the need for backup generation units for 455 



resilience, especially for critical facilities, and fully charged behind-the-meter batteries must complement 456 
them for power access during an emergency response. 457 

Stronger panels will also increase power security at the utility level by avoiding massive structural failures 458 
at the generation sites, as in Figure 1b. As noted previously, solar panels are directly exposed to wind. Poor 459 
structural performance in utility companies’ solar installations could result in significant generation losses 460 
and outages that can affect the disaster emergency response and recovery activities. Recently, Hurricane 461 
Ida caused damage to the power system that resulted in ~1M outages in Louisiana, reducing electricity 462 
access by more than 60% in more than ten parishes (counties), critically affecting the functionality of the 463 
water system and delaying recovery (J. D. Goodman et al., 2021; Prevatt et al., 2021). While solar 464 
generation losses could be potentially offset by other generating sources during an emergency response, 465 
adopting vulnerable panels in our grid will be a missed opportunity to make our power systems resilient.  466 

Solar is projected to be an important generation source in our future grids. Simultaneously, hurricanes are 467 
projected to be more intense in the future climate (Knutson et al., 2020). Governments invest massively to 468 
redesign the grid and transition to cleaner energy (The International Renewable Energy Agency, 2018). 469 
Thus, our results advocate for governments to leverage this unique opportunity to change the grid’s risk 470 
trajectory course by strengthening the infrastructure that will provide our future communities with energy 471 
safety. 472 

7. CONCLUSIONS 473 

This paper presented the first data-driven fragility curves for solar panels under hurricane wind loads. The 474 
article estimated the fragility curves using data on the structural performance of 46 rooftop panels in 475 
residential buildings and 14 large ground-mounted solar panel arrays in utility generation sites. Solar panel 476 
failure data was collected after Hurricanes Maria and Irma in 2017 and Hurricane Dorian in 2019 in the 477 
Caribbean. Further, this paper assessed solar generation resilience and its improvements with stronger 478 
panels. 479 

We used a Bayesian approach to supplement the panel dataset with an existing numerical assessment of 480 
panel failure. Using a Markov Chain Monte Carlo algorithm, we estimated the posterior distributions of 481 
fragility parameters for the rooftop and ground-mounted panels separately. Our results show significant 482 
reductions in epistemic uncertainty for 𝜐𝜐 (wind for a 50%-failure probability) in rooftop and ground-483 
mounted panels with 90% and 87% decreases in the standard deviation. Using Monte Carlo, we then 484 
propagated the uncertainty in the parameters to the fragility functions, showing significantly narrower 485 
confidence intervals. This result highlighted the importance of characterizing fragility functions with 486 
ground-truth data.  487 

We combined our fragility functions with a hurricane hazard assessment in Miami-Dade, Florida, using 488 
Monte Carlo simulations. Miami-Dade has similar hurricane hazards to Puerto Rico, where most damage 489 
data was collected. Our estimates of the annual rate of panel structural failure indicated that the panels are 490 
below the current structural reliability standards specified in ASCE7-16. These performance deficiencies 491 
were particularly striking for rooftop panels (estimated failure rate of 1.3 × 10−2/𝑦𝑦𝑦𝑦 versus 2.3 × 10−4/𝑦𝑦𝑦𝑦 492 
in the code), whose documented installation issues and frequent lack of structural design made them 493 
particularly vulnerable to high winds. 494 

Finally, we analyzed the implications of building stronger solar panels by up to a factor of two due to 495 
improvements in the panels’ installations, structural design, or higher structural requirements. We show 496 
that increasing panel strength effectively reduces the annual failure rate. However, even the factor of two 497 
is still insufficient to meet annual failure rates in the ASCE7-10 (reliability index of 1.9 for the lowest risk 498 
category) for rooftop and ground-mounted panels (reliability indexes of 1.01 and 1.77).  499 



As we transition towards cleaner energy sources and solar generation becomes an essential component of 500 
our grid, ensuring its resilience is critical for our communities. Our paper argues that increasing panels’ 501 
structural strength has critical implications for enhancing generation resilience during extreme storms. In 502 
the context of growing hurricane hazards due to climate change, panels must at least meet existing code 503 
structural performance standards. However, we also discuss that generation losses might arise even if 504 
panels can sustain high wind speeds. Thus, we point out different plans, such as using backup power, 505 
behind-the-meter storage, or sharing energy, to address such losses during hurricane emergencies in order 506 
to sustain a proper response to hurricanes. 507 
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