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Abstract
The Bayesian inference framework with the obvious invocation of
Markov Chain Monte Carlo is computationally infeasible if the for-
ward model is heavy. The reason is that the inference framework
requires a huge number of forward simulation passes to arrive at
robust estimates of the model parameter(s). In lieu of that, a
reduced order model becomes critical. The LSTM based encoder
decoder framework offers promise in that realm. The encoder effec-
tively compresses all the solution information in dominant eigenmodes,
and the decoder reconstructs the solution from those eigenmodes.
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1 Introduction

The Bayesian framework for inference requires continuous evaluation of the
forward model, which can get overbearingly expensive if the forward model is
dense in computational physics. For that reason, it is incredibly important to
construct reduced order model which will then be used to provide continuous
evaluations within the Bayesian loop as shown in Fig. 1. With due regard to the
mathematics behind singular value decompositions and principal component
analysis for reduced order modeling, it can be difficult to operate on standalone
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Fig. 1: The big picture
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Fig. 2: LSTM encoder decoder

codes which do specific decompositions on specific time series based on the
features to be captured. This is where the deep learning framework in either
PyTorch or TensorFlow is incredibly useful, as they provide robust archetypal
code bases to build reduced order models by throwing some intuition into the
science of deep learning. Long short term memory (LSTM) [1] based encoder
decoder architectures offer a convenient path towards reconstruction of time
series solution, whether univariate or multivariate, and the framework in a
nutshell is shown in Fig. 2. The encoder and decoder are themselves LSTM
cells, single or multiple, and while the former compresses all the time series
information into a latent vector, the latter decompresses the latent vector to
reconstruct the time series. The LSTM cell itself is a little involved, as shown
in Fig. 3. There are 3 gates: input, output and forget gate, and there are 2
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Fig. 3: Single LSTM cell
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Fig. 4: Forget gate operations for hidden size of 4 and batch size of 1

states: cell state and hidden state. The operations within the vanilla LSTM
are documented in literature, but there are some architectural parameters for
the whole encoder decoder network like number of LSTM layers and size of
hidden state which are important to understand. For example, a LSTM forget
gate operations for a hidden size of 4 and batch size of 1 is shown in Fig. 4. On
the other hand, a LSTM forget gate operation for a hidden size of 4 and batch
size of 1 is shown in Fig. 5. We need to keep in mind that this entire effort
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Fig. 5: Forget gate operations for hidden size of 4 and batch size of 3

is geared towards reduced order model reconstruction for Bayesian inference
of parameters of a complicated forward model, but as always we start off
with simpler forward models to provide the robustness of the concept before
tacking the real challenge. The forward model, as explained in Appendix A is
that of the spring slider damper idealization of the rate and state model for
fault friction for modeling seismic behavior in response to pressure and stress
perturbations in the subsurface. The RSF model is a piece of the coupled
flow and geomechanics [2-10] puzzle, and we are working on an idealization of
the piece of the puzzle in itself. This goes to show the depth of this research
endeavor, and it makes sense to take it one step at a time. In this study, we see
how the size of the hidden state and the number of LSTM inside the encoder
and decoder can impact the accuracy of the reconstruction.

2 Reconstruction results

The code was implemented in PyTorch, and run on a basic AMD Ryzen 3
3200U with Radeon Vega Mobile Gfx x 4 processor. We observe from Figs. 6
and 7 that the number of layers and size of hidden state when increased lead to
better accuracy of the reconstructed solution. But it also evident that beyond
a point, a better accuracy is more or less a heuristic measure, which points to
the fact that the optimizer knowledge is equally important in this parlance.
The batch size has been kept as 1 in all simulations, and we will pick up this
particular batch size parameter in part-III of this series
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Fig. 6: Number of LSTM layers is 2
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Fig. 7: Size of hidden state is 5




Springer Nature 2021 BTEX template

Deep learning based reduced order modeling 7

Appendix A Forward model details
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Fig. Al: Sprmg slider damper idealization of fault behavior

The quantification of fault slip is achieved using the rate- and state-friction
(RSF) model for modeling earthquake cycles on faults [11-16], and given by

W= /Lo+A1n( )—i—Bln(Vo‘g)

w1 ev (A1)
at = de
where V = |44 is the slip rate magnitude, a = dt which we hypothesize is

of the same order as recorded by seismograph, pg is the steady-state friction
coefficient at the reference slip rate V), A and B are empirical dimension-
less constants, # is the macroscopic variable characterizing state of the surface
and d. is a critical slip distance over which a fault loses or regains its fric-
tional strength after a perturbation in the loading conditions [17]. As shown
in Fig. Al, we model a fault by a slider spring system [18-20]. The friction
coefficient of the block is given by

o o
where o is the normal stress, 7 the shear stress on the interface, 7; is the
remotely applied stress acting on the fault in the absence of slip, -k¢§ is the
stress relaxation due to fault slip [21] and 7 is the radiation damping coefficient
[22]. We consider the case of a constant stressing rate 7; = kV; where V] is the
load point velocity. The stiffness is a function of the fault length [ and elastic
modulus E as k ~ E With k&' = we get

lo’

~KEWV,-V)-k'V (A3)
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where k" = . Once the phenomenological form of /i is known, we rewrite Eq.

(Al) as
V= Voexp( (M uo—Bln(W))),

oV
dc

(A4)

to get acceleration time series as a =V as,

=565
_ Voexp(% (,ufpofBln<

o)
e (sien G (oo () =5 (%))

(A5)
The ballpark values are:

v Elastic modulus E =5 x 10'° Pq

v Critical fault length [ = 3 x 1072 m

v Normal stress o = 200 x 105Pq

v Radiation damping coefficient n = 20 x 105Pa/(m/s)

v A=0.011

v B=0.014

v Vo =1pm/s

v 0y =0.6

V' po = po = 0.6

v tstart - 07 tend =50 S, dt =0.05s
from which the effective stiffness and damping are obtained as
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Fig. A2: System response
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The influence of critical slip distance on system response to a load point

perturbation of the form

Vi = Vo(1 + exp (—t/20) sin(10t)) (A6)

is shown in Fig. A2.
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