Thermal Buckling Analysis of Laminated Composite Plates using Isogeometric Analysis

Presented in honor of Prof. Romesh C. Batra’s 70th Birthday

Balakrishnan Devarajan

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24060
USA
Outline

- Isogeometric Analysis
- Bezier Extraction: Motivation
- Bezier Extraction: Theory
- Plate Problem
 - Numerical Investigation
- Analysis Procedure
- Results
Unifies the computer aided design (CAD) and the computer aided engineering (CAE) \(^1\).

Significant decrease in computational cost as the meshes are generated within the CAD.

Higher accuracy results because of the smoothness and the higher order continuity between elements.
B-spline basis functions are expressed by a set of non-decreasing values called the knot vector

$$\Xi = \{\xi_1, \xi_2, \ldots, \xi_{n+p+1}\}$$ \hspace{1cm} (1)

B-spline basis functions are defined by the following recursive form

$$N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1}, \text{ for } p = 0 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (2)

$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi) \text{ for } p \geq 1$$ \hspace{1cm} (3)

where ξ_1 is the ith knot, n is the number of basis functions and p is the polynomial order.
IGA is implemented with the presence of C^0 continuous Bézier elements.

The Bezier extraction operator decomposes the Non Uniform Rational B-Splines (NURBS) into C^0-continuous Bezier elements using linear combinations of Bernstein polynomials.

Bezier elements bear a closer resemblance to the Lagrange elements used in finite element methods.

Allows easy incorporation into existing finite element codes without adding many changes as IGA.
Beziers Extraction: Theory

Bézier decomposition \(^2\) is accomplished by the insertion of new knots into the B-spline curve until \(k = p\). Where \(k\) is the multiplicity of the knot

\[
\bar{P}_i = \begin{cases}
 P_1 & i = 1 \\
 a_i P_i + (1-a_i)P_{i-1} & 1 < i < n + 1 \\
 P_n & i = n + 1
\end{cases}
\]

\[
a_i = \begin{cases}
 1 & 1 \leq i \leq k-p \\
 \frac{\xi - \xi_i}{\xi_{i+1} - \xi_i} & k-p+1 \leq i \leq k \\
 0 & i \geq k + 1
\end{cases}
\]

The new control points are expressed in matrix form as,

\[
\mathbf{P}^b = \mathbf{C}^T \mathbf{P}
\]

Knot Insertion: Visual Description

(a) (b)

(c) (d)

(e) (f)
The 2D NURBS basis functions which are written as

$$R_{i,j}(\xi,\eta) = \frac{N_{i,p}(\xi)M_{j,q}(\eta)w_{i,j}}{\sum_{i=1}^{n}\sum_{j=1}^{m}N_{i,p}(\xi)M_{j,q}(\eta)w_{i,j}}.$$ \hspace{1cm} (7)

are now written in terms of Bernstein polynomials as

$$R(\xi,\eta) = \frac{1}{W(\xi,\eta)}WN(\xi,\eta) = \frac{1}{W(\xi,\eta)}WCB(\xi,\eta).$$ \hspace{1cm} (8)

The new control points are expressed as,

$$P^b = (W^b)^{-1}C^TWP,$$ \hspace{1cm} (9)

Where W^b and W are derived from the weights of the control points.
Three-dimensional displacement field \((u, v, w)\) of a four-layered unit square are expressed in terms of five unknown variables as:

\[
\begin{align*}
 u(x, y, z) &= u_0(x, y) + z\varphi_x(x, y) \\
 v(x, y, z) &= v_0(x, y) + z\varphi_y(x, y) \\
 w(x, y, z) &= w_0(x, y)
\end{align*}
\]

where, \(\frac{-h}{2} \leq z \leq \frac{h}{2}\)
Material Property

\[\frac{E_L}{E_T} = 15, \frac{G}{E_T} = 0.5, \frac{G_{TT}}{E_T} = 0.3356, \]
\[\nu_{LT} = 0.3, \nu_{TT} = 0.49, \frac{\alpha_L}{\alpha_0} = 0.015, \frac{\alpha_T}{\alpha_0} = 1 \] (10)

Boundary Condition

Clamped:
\[u_0 = v_0 = w_0 = \varphi_y = \varphi_x = 0 \text{ on } x = 0, L \]
\[u_0 = v_0 = w_0 = \varphi_x = \varphi_y = 0 \text{ on } y = 0, W \] (11)

Loads: A unit temperature rise of 1 unit is applied on all the control points.
For the symmetric laminated plate subjected to a uniform temperature rise, only membrane forces are generated.

- ABD matrix is calculated using the material properties.
- A linear static analysis is then solved to determine the thermal in-plane resultants.
- The stress resultants are then used to compute the initial stress stiffness matrix.
- The stiffness matrix and the geometric stiffness matrix are used to solve the eigenvalue problem.
Results

The critical buckling temperature is normalized as \(T_{cr} = a_0 T_{cr} \)

<table>
<thead>
<tr>
<th>L/h</th>
<th>FSDT(^3)</th>
<th>HSDT(^3)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.3348</td>
<td>0.3352</td>
<td>0.3349</td>
</tr>
<tr>
<td>10</td>
<td>0.1655</td>
<td>0.1601</td>
<td>0.1656</td>
</tr>
</tbody>
</table>

Table – critical buckling temperature of a symmetric four-layer [0/90/90/0] laminated plate. 10x10 mesh and \(p = 2 \)

Thermal buckling mode shapes for various L/h ratios are presented.

Plate with a Central Circular Cutout

Figure – $[0^\circ/90^\circ/90^\circ/0^\circ]$
Figure – $[45^\circ/-45^\circ/-45^\circ/45^\circ]$
Figure – $[90^\circ/0^\circ/0^\circ/90^\circ]$
Figure – $[60^\circ/-60^\circ/-60^\circ/60^\circ]$
Numerical Investigation: Hybrid Composites

Material Property - I

\[
\frac{E_L}{E_T} = 15, \frac{G_{LT}}{E_T} = 0, 5, \frac{G_{TT}}{E_T} = 0.3356, \\
\nu_{LT} = 0.3, \nu_{TT} = 0.49, \alpha_L/\alpha_0 = 0.015, \alpha_T/\alpha_0 = 1
\]

Material Property - II (Isotropic)

\[
\frac{E_L}{E_T} = 1, \frac{G_{LT}}{E_T} = 0.3846, \frac{G_{TT}}{E_T} = 0.3846, \\
\nu_{LT} = 0.3, \nu_{TT} = 0.3, \alpha_L/\alpha_0 = 1, \alpha_T/\alpha_0 = 1
\]

Boundary Condition

\[
\text{Clamped:} \quad u_0 = v_0 = w_0 = \phi_y = \phi_x = 0 \quad \text{on} \quad x = 0, L \\
\quad u_0 = v_0 = w_0 = \phi_x = \phi_y = 0 \quad \text{on} \quad y = 0, W
\]

0/90/90/0 Laminate where the 1st and the 3rd layer have Material Property -I and the 2nd and 4th layer have Material Property -II
Results: Hybrid Composites

The critical buckling temperature is normalized as

\[T_{cr} = 1000 \times \alpha_0 \times T_{cr} \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>IGA</th>
<th>abaqus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.241</td>
<td>0.245</td>
</tr>
<tr>
<td>2</td>
<td>0.310</td>
<td>0.308</td>
</tr>
<tr>
<td>3</td>
<td>0.390</td>
<td>0.387</td>
</tr>
<tr>
<td>4</td>
<td>0.423</td>
<td>0.425</td>
</tr>
<tr>
<td>5</td>
<td>0.485</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Table – critical buckling temperature of a symmetric four-layer [0/90/90/0] laminated plate. Radius/Width=0.15
Acknowledgement

Virginia Tech Engineering Mechanics Student Travel Fund for its financial support in making this travel possible
References

