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Abstract. This article determines an aimpoint selection strategy for players in order to improve
their chances of winning at the classic darts game of 501. Although many studies have considered
the problem of aimpoint selection in order to maximise the expected score a player can achieve, few
have considered the more general strategical question of minimising the expected number of turns
required for a player to finish. By casting the problem as a Markov decision process and utilising
the reinforcement learning method of value iteration, a framework is derived for the identification
of the optimal aimpoint for a player in an arbitrary game scenario. This study represents the first
analytical investigation of the full game under the normal game rules, and is, to our knowledge, the
first application of reinforcement learning methods to the optimisation of darts strategy. The article
concludes with an empirical study investigating the optimal aimpoints for a number of player skill
levels under a range of game scenarios.

1. Introduction

In this paper, our aim is to determine the strategies that players of varying skill levels should adopt
to improve their chances of winning at darts. We shall exclusively be considering the standard darts
game 501, where two opposing players take alternating turns throwing darts at the board, with each
turn consisting of 3 throws. The objective for the players is to reduce their personal tally of 501
to 0, by subtracting the amount they score with their throws. However, in order to finish, a player
must reduce their tally to exactly 0, and do so by landing their last dart within the double ring
or inner bull (see Figure 1), a process known as doubling out. If a player exceeds their remaining
tally with any throw, reduces their tally to zero without doubling out or leaves themselves with a
tally of 1, then they are said to have ‘gone bust’. Any player who goes bust, immediately forfeits
the remaining throws of their turn and has their tally returned to the level at which they began
their turn. The first player to reduce their tally to 0, by means of doubling out, is the winner of
the game. This end of game procedure results in the game having two distinct stages. In the initial
stage, the player’s tally is still some way from 0, and it is generally accepted that the objective
here should be for the player to simply reduce their tally as quickly as possible. This is achieved
by aiming for the point on the board, which maximises the player’s expected score per dart. The
problem of score maximisation has been extensively studied, for example by [7, 28, 17, 4], and it is
well understood where players of various skill levels should aim in order to maximise their expected
score. In the second stage, the player’s tally is approaching zero, and consideration must be given to
the requirement of doubling out, along with the risk and associated costs of going bust. As a result
of these considerations, the determination of an optimal strategy and aimpoint during this phase
is considerably more complicated. To resolve this question, we examine the more general problem
of minimising the number of turns it takes a player to finish the game from an arbitrary game
state. In doing so, we hope to be able to make strategy recommendations for players in the second
stage of the game. Furthermore, this will allow us to test the earlier assumption that a player is
best served by maximising their scoring during the initial stage of the game and also determine the
optimal point for the player to switch their attention from scoring to finishing. The question of turn
minimisation was considered in [18], where a branch and bound method was applied to the problem.
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However, in [18], the author considered a simplified variation of the game, where the consequences
of going bust differed from the standard game. In the variation of [18], a player going bust still
forfeits the remaining throws of their turn. However, their tally is not reset to the level at which
they began their turn and instead advances to the next turn intact. The inclusion of the tally reset
introduces an additional dimension to the problem, increasing its complexity, and leads to some
interesting strategical choices given certain game scenarios. To solve the problem, we frame it as
a Markov decision problem (MDP) and apply the methods of reinforcement learning and dynamic
programming. There exists a large body of work concerning the application of these methods to
the study of optimal strategy selection within sports, see [21], with cricket ([11, 12]) and tennis
([20, 13]) receiving the most attention. More generally, there is a strong history of the application
of the analytical methods of operational research in the study of sports, and the interested reader
is directed to [29] and the references therein for a more detailed review. Most recently, there has
been a renewed interest in the application of reinforcement learning methods to strategical decisions
within games. These methods, when coupled with the power of neural networks, have produced
advances in game playing algorithms for complex strategy games, for example Go, [25].

1.1. Dartboard Design and Dimensions. Although there are many different dartboard designs,
for example the London 5’s board [1] and the Yorkshire board [3], the most commonly used board
is the standard dartboard as shown below (see Figure 1), and it is play on this board that we shall
be exclusively considering in this paper. The standard board consists of 20 equally sized sectors,
each giving the player a score, which ranges from 1 to 20. The board has two concentric bands
located at radial distances 99-107mm and 162-170mm from the centre, known as the ‘treble ring’
and ‘double ring’ respectively. A player landing their dart in the treble ring has their sectorial score
trebled, i.e. hitting the ‘treble 20’ produces a score of 60, whilst hitting the double ring, doubles
the sectorial score. The centre of the board consists of two concentric circles of radii 6.35mm and
15.9mm. The inner circle is known as the ‘inner bull’ and provides the player with a score of 50,
whilst the band surrounding it is known as the ‘outer bull’ and gives a score of 25. As described
previously, the point of the game is for the player to reduce their tally from 501 to exactly 0, and
in doing so hit either the inner bull or double ring with their last dart.

Figure 1. Layout of a standard dartboard.

Each section of the board is separated by a wire of thickness 1.27-1.85mm. The dartboard should be
mounted so that the centre is at a height of 1.73m, whilst players throw from the ‘oche’, which must
be a horizontal distance of 2.37m from the wall on which the board is mounted. The measurements
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given above are those of an official championship dartboard, as specified in the rules of the [10], one
of the main governing bodies in darts.

The ordering of the sectors on the dartboard is attributed to Brian Gamlin [2, 6]. Gamlin, a
carpenter from Bury in Lancashire, is thought to have invented the sequence in 1896. The numbering
on the board is intended to encourage accuracy, with the higher scoring sectors tending to be placed
next to the lower ones. Therefore, a player going for a high score must hit their target or else be
penalised by receiving a lower than average score. For example a player who shoots for the 20
sector and misses is likely to hit either 1 or 5, resulting in a greatly reduced score. A number of
studies have considered the possibility of rearranging the ordering so as to optimise the difficulty
of the board. The article [14] considers the problem from a combinatorial point of view, seeking
to maximise the p-norm of the difference between successive sectors. The author provides an
alternative arrangement, which surpasses the standard arrangement with respect to this p-norm
measure. The study by [27] takes a more probabilistic approach to the problem, modelling the
effect the arrangement has on the maximum expected score a player can achieve (by optimising
their aimpoint), under certain assumptions on the distribution of thrown darts. Given a skill level,
as modelled by the deviation of the distribution, the maximum expected score is then minimised
across possible board arrangements. Interestingly, the two studies agree on the optimally difficult
dartboard. However, the actual impact of the rearrangement in terms of scoring was found to be
rather minimal in [27], suggesting that Gamlin was not far off with his traditional arrangement.

2. Modelling Preliminaries

In this section, we outline a number of simplifications and assumptions made during the modelling
process. Primarily, these are in regard to the distribution used to model the errors of darts thrown
by real players. We also introduce the conventions, which shall be adopted in referencing specific
points on the dartboard.

2.1. Modelling Simplifications and Assumptions. Firstly, our model does not take account of
the wires on a real dartboard. These wires range in thickness from 1.27 to 1.85mm, however, their
effective thickness is less, as darts often glance off them into the target bed.

We shall assume that the outcome of darts thrown by our players follows a two dimensional nor-
mal distribution, centred at their aimpoint with independent horizontal and vertical components
with standard deviations of σx and σy (measured in mm) respectively. In addition, we take this
distribution to be constant across the dartboard, i.e. the player’s accuracy remains constant for all
aimpoints. In the upcoming analysis, when referring to a player having a skill level of (σx, σy), we are
assuming that the errors in their throws follow a distribution as described. A normal distribution
would seem reasonable if the error regarding the dart landing point is the result of the cumulative
effect of small discrepancies in many factors: stance, posture, grip, motion of the arm and hand,
timing, rhythm, release of the dart, etc. In which case, the Central Limit Theorem would lead us
to expect that the outcome would follow an approximately normal distribution. Furthermore, we
note that in previous studies considering such matters [18, 7, 17, 28, 4], the two dimensional normal
distribution has been widely used to model the outcome of darts throws.

Intuitively, we might anticipate that σx (horizontal standard deviation) would be less than σy (ver-
tical standard deviation). Throughout the motion of throwing a dart, the player’s arm largely
remains within one vertical plane and so the force they exert on the dart is also directed within
this plane. As no horizontal forces act on the dart during its flight, it therefore follows a trajectory
within this plane. As a result, a player’s horizontal accuracy is primarily determined by their ability
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to restrict their motion to a plane directed at their target. As a player throws a dart, their hand
follows an arc; the point along this arc at which the dart is released determines its initial launch
angle. If the dart is released early, then it will have a high launch angle, whereas darts released
later, will typically be projected at lower angles. The player must also judge the correct amount of
force to apply to the dart, however, this is dependent upon the launch angle. The vertical accuracy
of a player is thus determined by their ability to control the darts trajectory; to do so they must
balance the launch angle with force, whilst taking into account the effects of gravity on the dart.
These factors involve more judgement and ‘feel’ than those involved in the horizontal motion. As a
result, we might expect players to struggle more with vertical consistency, especially when they are
under pressure.

In addition to having a discrepancy between the horizontal and vertical accuracy of throws, we
might consider the possibility of a correlation between the horizontal and vertical components of
a miss. Due to the biomechanics of the throwing action, it might be that a right-handed player
is more likely to miss high and left or to pull their throw low and right, with the opposite being
true for a left-handed player. This possibility was considered in [23], where such correlations, in
conjunction with the arrangement of the dartboard, were posited as a possible explanation for a
lower number of left-handed players on the PDC professional darts tour, than would be expected
from the proportion of left-handed individuals in the population as a whole. The option of a corre-
lation between the horizontal and vertical error components appears in the modelling of [28], where
the authors utilised the general case of a bivariate normal distribution to model players’ misses.
However, in this paper we will not consider such a possibility; the purpose of this work is not the
validation of a given distribution as a model for real darts throws, and therefore we do not analyse
or test the validity of our distributional choice against real data. Instead, we are interested in the
strategical decisions faced by a player in light of the scoring rules and uncertainty of outcome. The
methods developed and applied in this paper are readily adapted to other choices of distribution
if seen fit, simply requiring the use of a different random number source or the substitution of the
requisite probability density function into the calculations.

Finally, we assume that the results of successive darts are independent. However, in reality there
are several reasons why this may not always be true. It is common for previous darts to obscure the
target area, reducing the chances of success on following throws. Conversely, if a player has already
hit their target, then it may be easier for them to replicate this result on the throws that follow,
as they have developed a feel for the shot, leading to the occurrence of the ‘hot hand phenomenon’
[22]. Alternatively, they might be able to make adjustments to correct slight misses.

2.2. Specification of Points on the Dartboard. Throughout this study, it will at times be
necessary to specify particular points on the dartboard. We do so in a variety of ways, choosing
the method according to the situation. Generally, when referring to points, we shall use a variation
on plane polar coordinates as shown below. We measure angles in degrees, clockwise from the 12
o’clock position, and distance in mm, radially from the centre of the board (see Figure 2). We
have chosen this system as we believe it allows the user to more easily assimilate the position of
points on the board and is more naturally understood by the layperson. However, this non-standard
system does not lend itself so readily to the mathematical analysis and computations involved in
the project. For this reason, we also make use of the standard Cartesian coordinate systems. When
using the Cartesian system, points are classified by their horizontal and vertical coordinates (x, y),
taking the centre of the board (centre of the inner bull) as our origin, with our horizontal axis
running through the 6 and 11 sectors, whilst the vertical axis runs through the 3 and 20 sectors.
Again, all distances will be given in mm unless otherwise stated.
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Figure 2. Specification of points on dartboard.

3. Initial Stage - Maximising Scoring

As described previously, during the initial stages of the game, the player is best served by reducing
their tally as quickly as possible. This is achieved by aiming at the point on the board, which
maximises their expected score from a single throw. Although this problem has been previously
addressed in a number of articles [18, 7, 28, 17, 4], we include it here as it provides an instructive
introduction to the modelling of the game of darts. In addition, the results provide a valuable set
of observations against which to check the methods of the following section.

3.1. Problem Definition. Under the distributional assumptions set out in the previous section,
considering a player of skill level (σx, σy), aiming at the point with cartesian coordinates (µx, µy),
the outcome of their throw (x, y) follows a distribution with the following bivariate normal proba-
bility density function:

(3.1) p(x, y) =
1

2πσxσy
exp

(
−(x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

)
.

Letting the random variable S denote the score achieved by our player, and d(x, y) the function
taking values as per the score on the dartboard at the point with cartesian coordinates (x, y), then
the expected score achieved by our player by aiming at (µx, µy), is given as the expected value of
the function d applied to the outcome of the throw. We compute this value via the following double
integral:

(3.2) E(S|µx, µy, σx, σy) = E(d(x, y)|µx, µy, σx, σy) =

∫ ∫
D

d(x, y)p(x, y) dxdy,

where the domain of integration D signifies the scoring region of the board. The question now is,
given a skill level (σx, σy), which aimpoint (µx, µy) maximises the value of (3.2).

3.2. Solution Method and Implementation. In order to determine the optimal point, we cover
the dartboard with a square grid of points

{
(µnx, µ

m
y )
}

, where µnx = n∆, µmy = m∆, with ∆ =



6 GRAHAM BAIRD

170/Nmm, for some (large) positive integer N and where

m,n ∈
{
−N . . . ,−1, 0, 1, . . . , N |n2 +m2 ≤ N2

}
.

Although ideally we would like the choice of ∆ to be as small as possible in order to increase the
precision of our results, the number of evaluations of (3.2) required scales as O((1/∆)2), and there-
fore taking ∆ too small would result in a computationally intractable problem. Additionally, there
is a practical limit as to how close we need to set the aimpoints, as a player can not distinguish
between points that are extremely close. Moreover, when we consider the length scales and level of
precision involved (i.e. the thickness of a dart and the tolerances in the board etc), beyond a certain
point, working with increasingly smaller mesh sizes overstates the achievable level of accuracy.

Having defined a grid, we then compute the value of (3.2) with (µx, µy) = (µnx, µ
m
y ) for each point

in our grid. The point (or points) which provide(s) the maximum value is then taken as the
optimum aimpoint for skill level (σx, σy), and the value achieved there, as the optimised expected
score. When it comes to computing the values of (3.2) there are a number of approaches that can
be taken when evaluating the requisite integrals, including various quadrature routines and Monte
Carlo integration. Utilising a mesh with step-size ∆ = 1mm, we carried out the described procedure
for a range of skill levels (σx, σy), where, for the moment, we have made the assumption of equal
horizontal and vertical accuracy i.e. σx = σy = σ. The integrations were performed by utilising
both Matlab’s built-in quadrature method intergal2 and also a two stage Monte Carlo approach.
This Monte Carlo approach involved an initial examination of all points of the grid using a sample
size of k darts per point. After this initial search, the top K scroing points are re-examined utilising
k′ darts per point, where k′ � k. We applied this approach with an initial sample size of k = 10000,
K = 500 and a larger sample size of k′ = 100000. The following heatmaps in Figure 3, derived via
the quadrature method, give a graphical representation of how the expected scores vary across the
board, for players with a range of skill levels.
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Figure 3. Heatmaps of expected score for various skill levels.

The higher scoring sectors, such as the high trebles and inner bull, show up very clearly in the more
accurate cases (σ = 5, 15), with this evening out as the accuracy decreases. For the least accurate
case (σ = 40), we see much less variation across the board, with the greatest intensity towards
the centre of the board with a slight preference for the lower left quadrant. This is perhaps not
unexpected as this quadrant features none of the lowest scoring sectors making it more forgiving
on the lesser skilled, player. Indeed, the left-hand side of the board is colloquially known as the
‘married man's side’, because married men allegedly play it safe [5].

Table 1 outlines the optimal points found using both of the methods, and the expected scores
achieved there. In general, there is reasonable agreement between the two methods. Having said
this, the quadrature method appears somewhat more consistent between accuracy levels, suggesting
that the results derived via this method may be more reliable. However, the Monte-Carlo method
does enjoy a considerable speed advantage over the quadrature method, and we could increase the
accuracy by increasing the sample size per aimpoint. Figure 4 provides a graphical representation
of the aimpoints identified in Table 1 (using the quadrature method intergal2). We can see that for
the most accurate players, the centre of the treble 20 offers the best scoring on average, with this
point moving up and to the left as skill level drops. This occurs as a consequence of the widening
out of the sectors as you move away from the centre, providing for a higher proportion of darts to
land in the 20 sector, as opposed to its lower scoring neighbours. The preference for the left-hand
arises from the relative advantage in missing to this side and hitting the 5 sector, as opposed to the
1 sector on the right. At some point, as the standard deviation increases from 15 to 20, the optimal
scoring point switches to the treble 19, from where it progresses upwards and inwards towards the
centre of the board as the skill level drops. The lowest skilled players should aim for the centre in
order to maximise the probability of hitting the board at all.
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Integral Methoda Monte-Carlo Methodb

Std Dev (mm) Angle (deg) Distance (mm) Score Sectorc Angle (deg) Distance (mm) Score Sectorc

5 0.00 103.00 42.73 T20 0.00 103.00 43.02 T20

10 0.00 104.00 29.47 T20 359.45 104.00 29.56 T20
15 358.92 106.02 21.75 T20 358.91 105.02 21.81 T20

20 199.00 104.00 17.78 T19 200.49 105.69 17.89 T19

25 201.80 107.70 15.79 Outer 19 200.49 105.69 15.89 T19
30 205.00 101.00 14.69 T19 203.85 103.87 14.76 T19

35 213.02 95.41 14.04 Inner 7 210.43 92.78 14.11 Inner 7

40 218.45 86.83 13.57 Inner 7 211.65 85.76 13.64 Inner 7
45 222.88 76.42 13.19 Inner 7 220.76 76.58 13.26 Inner 7

50 228.81 63.78 12.91 Inner 16 228.37 60.21 13.00 Inner 16

55 237.53 52.15 12.66 Inner 16 234.46 51.61 12.74 Inner 16
60 244.65 42.05 12.43 Inner 8 242.10 38.47 12.50 Inner 16

65 248.20 32.31 12.19 Inner 8 253.50 28.16 12.26 Inner 8

70 251.57 25.30 11.92 Inner 8 257.20 22.56 11.97 Inner 8
75 253.30 20.88 11.61 Inner 8 243.43 24.60 11.70 Inner 8

80 255.96 16.49 11.26 Inner 8 255.96 20.62 11.30 Inner 8
85 254.05 14.56 10.89 OB - 8 252.47 19.92 10.96 Inner 8

90 251.57 12.65 10.49 OB - 8 241.70 14.76 10.53 OB - 16

95 251.57 12.65 10.07 OB - 8 274.40 13.04 10.13 OB - 11
100 258.69 10.20 9.65 OB - 8 213.69 7.21 9.69 OB - 7

110 258.69 10.20 8.82 OB - 8 258.69 10.20 8.88 OB - 8

120 255.96 8.25 8.03 OB - 8 270.00 13.00 8.09 OB - 11
130 255.96 8.25 7.29 OB - 8 228.37 12.04 7.34 OB - 16

140 255.96 8.25 6.63 OB - 8 230.19 15.62 6.66 OB - 16

150 255.96 8.25 6.03 OB - 8 262.88 8.06 6.07 OB - 11
160 255.96 8.25 5.49 OB - 8 251.57 15.81 5.53 OB - 8

170 251.57 6.32 5.01 IB 315.00 2.83 5.06 IB

aComputed using Matlab’s built-in quadrature method intergal2.
bComputed using the two stage Monte-Carlo method described.
cNotational conventions: OB - 8 = outer bull inline with the 8 sector, IB = inner bull, T20 = treble 20 etc.

Table 1. Optimal aimpoints and expected scores.

Figure 4. Optimal points for maximising expected score.
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Finally, the chart below (see Figure 5) plots the expected score for three different aimpoints against
the skill level of the player. As we can see, for players of the highest skill level (lowest σ), the opti-
mal score and the score derived from the centre of the treble 20 coincide, as we would expect from
the previous table and figure. We can see that for such players, there is a clear scoring advantage
to be had here over, for instance, the inner bull. Unsurprisingly, as skill level drops, we observe a
general decrease in the expected score from all points. However, we can also observe a difference
emerging between the expected score achieved at the optimal point and the mean score from the
treble 20. This is also inline with the findings of Table 1, where the optimal point switches from the
treble 20 to the treble 19 and inwards to the centre. As we continue to decrease the skill level, the
expected score provided by aiming at the centre of the board comes to dominate the treble 20, and
as the optimal aimpoint approaches the centre of the board in Figure 4, we observe a convergence
between the scores achieved at these points.
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Figure 5. Expected score at optimal point vs. treble 20 vs. board centre

Having covered the strategy for a player looking to maximise their scoring during the initial stages
of the game, in the next section we will look to address more generally the question of how a
player should go about maximising their chances of winning from an arbitrary game state. Strictly
speaking, a player achieves this by adopting the strategy which maximises the probability of them
finishing before their opponent. However, analytically this represents a rather challenging proposi-
tion, requiring consideration of the opponent’s strategy, which, if they are playing in a somewhat
optimal fashion, should give consideration back to the original player’s strategy and so on. These
interactions in strategy could occur back and forth and result in a problem of high complexity.
Instead, we look to minimise the number of further turns (beyond the current one) that our player
will take to reduce their tally to zero, including doubling out. We expect that in most cases this
strategy will coincide with the one for maximising a player’s chances of winning.
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4. General Strategy - Minimising Further Turns

The question of minimising further turns has received little attention in the literature in comparison
to the problem of maximising score, with the only significant contribution provided by [18]. In his
article, Kohler utilises a branch and bound approach to determine the optimal aimpoints in terms
of minimising the expected number of further turns for a player to finish. However, the variation
of the game he considers is simplified in one important respect from the standard version of the
game considered here. In the version of the game considered in [18], the consequences for a player
going bust still involve forfeiting any remaining throws of their turn, however, their tally remains
the same and they do not face the additional penalty of having their tally returned to the level it
was at prior to the start of their turn. This significantly reduces the complexity of the problem,
removing a variable from the analysis. In the upcoming section, this additional factor (and penalty)
will be included in our situational modelling and it will be interesting to observe the impact this
factor has on the optimal strategies identified.

4.1. Problem Definition. We shall begin by introducing a number of notations, which shall be
employed in the following framing and analysis of our problem. Let us denote by St the tally the
player is currently on, with the player about to take throw t(= 1, 2, 3) of their turn. As such, S1

denotes the tally on which the player began the current turn, and the tally to which they will return
if they go bust. Therefore, for our purposes, the triple (St, t, S1) fully defines the situation a player
finds themselves in. We denote by T the number of further turns (beyond the current one) for
the player to reduce their tally to 0, including doubling out. We use E (T |St, t, S1) to denote the
expected value of this quantity for a player in the state (St, t, S1), assuming they adopt the optimal
strategy to minimise the quantity T .

Now consider a player facing the situation (St, t, S1) who is evaluating where on the board it is best
to aim their next throw. We denote by p the general aimpoint and use D to refer to the set of all
such points on the board. We then use Pr(r|p) to signify the probability of scoring r, whilst aiming
at p. The set of outcomes r, which result in a player going bust, given a current tally of St, we denote
by B. Then, assuming that on all subsequent throws the player selects the optimal (minimising
expectation of T ) strategy, the expected values E (T | ·, ·, ·) satisfy the following equations:

E (T |St, t, S1) = min
p∈D

{∑
r∈B

{E (T |S1, 1, S1) + 1}Pr(r|p)

+
St−2∑
r=0

{E (T |St − r, τ, Sτ ) + δt,3}Pr(r|p)

}
,(4.1)

where the quantities τ , Sτ and δt,3, take the following values:

τ =

 2 for t = 1
3 for t = 2
1 for t = 3

, Sτ =

 S1 for t = 1
S1 for t = 2

S3 − r for t = 3
, δt,3 =

 0 for t = 1
0 for t = 2
1 for t = 3

.

The optimum aimpoint for the player in the situation (St, t, S1) is then given by the point p which
satisfies (4.1) by minimising the collection of terms on the right-hand side. The difficulty now lies
in proceeding with the computation of the right-hand side of (4.1), given that it requires existing
knowledge of the values E (T | ·, ·, ·). However, the problem of computing these expected values, and
the optimum selection of aimpoints, naturally fits into the framework of a shortest stochastic path
(SSP) problem, a particular class of Markovian decision process (MDP). Therefore, we now spend
some time reframing the problem in such a way.



(NOT) THROWING THE GAME 11

4.2. Solution Method. Let us denote the state (St, t, S1) by S and use S′ to represent some
alternative state (S ′t, t

′, S ′1), which we imagine the player advancing to after their next throw. We
use V (S) to denote the value of E (T |S) = E (T |St, t, S1), and the notation Pr(S′|S, p) to signify
the probability of transitioning from state S to state S′, whilst throwing at the point p. Finally,
C(S′) is used to denote the additional cost associated with taking the final throw of a turn, either
by taking the third throw or else by going bust. Therefore, C(S′) takes the value 1 when t′ = 1,
and otherwise it takes the value 0 when t′ = 2 or 3. With such a framework in place, the equation
(4.1) now takes the form

(4.2) V (S) = min
p∈D

{∑
S′

(γV (S′) + C(S′))Pr(S′|S, p)

}
,

where γ is known as the discount factor, which in our case is equal to 1. The equation (4.2) is
known as the Bellman Equation, first appearing in [8]. A common approach to the solution of such
problems is via the reinforcement learning method of value iteration [26, page 100]. This method,
which originated in the seminal paper of [24], proceeds in the following manner:

For each state S, we start with an initial estimate V 0(S), of the true value V (S). We then sequen-
tially compute further approximations via the iterative relationship

(4.3) V n+1(S) = min
p∈D

{∑
S′

(V n(S′) + C(S′))Pr(S′|S, p)

}
.

This is done for all states S simultaneously, and the process continues until the values obtained for
all states are deemed sufficiently close to their predecessors. At which point, if V ∗(S) denotes the
final value of V n+1(S) obtained in the iteration stage, the optimum aimpoint for a player in state
S is the point p, which minimises the following quantity:

(4.4)
∑
S′

(V ∗(S′) + C(S′))Pr(S′|S, p).

In which case, the evaluation of (4.4) for the minimising point p gives E (T |S), i.e. the expected
number of further turns required to finish.

In reinforcement learning terminology, any rule which pairs states S to a choice of p is known as a
‘policy’ and is often denoted by π. A policy is said to be ‘stationary’, if the determination of the
p depends only on the current state. Finally, a policy which maps each S to the corresponding p,
which minimises (4.4), is known as the ‘optimal policy’ and is often denoted by π∗.

4.2.1. Method Convergence. It is not immediately apparent that this method will indeed provide
a solution to our problem. Therefore, we now outline an argument which guarantees the method
will; (i) generate a solution, and (ii) that the solution generated is correct.

Suppose for the moment that there are N possible states, {Si}Ni=1, then we can consider the set of
associated values V (Si) as forming a vector in RN . In cases when the discount factor is less than
unity, γ < 1, the application of the right-hand side of (4.2) can be shown to form a contraction
on RN with respect to the maximum norm [15, page 209]. The Banach Fixed Point Theorem [19,
Theorem 5.1-2] then guarantees the existence of a unique set of values {V (S)}, which satisfy (4.2).
Furthermore, these values can be obtained as the limit of the iterative procedure (4.3), starting
from any initial value. However, for our particular case, since the discount factor γ is equal to 1,
we must deepen our analysis. We now introduce some further terminology relating to SSP’s and
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associated policies before providing a result, which establishes convergence for our case.

First, we introduce the notion of an absorbing state. A state Sa is said to be ‘absorbing’ if
Pr(Sa|Sa, p) = 1 for all choices of p. Consequently, once we enter the state Sa we remain there for
all subsequent steps. The cost associated with such a state is zero, i.e. V (Sa) = 0. Having described
an absorbing state, and assuming the existence of such a state, we introduce what is referred to
as a ‘proper’ policy. A stationary policy is said to be ‘proper’, if when following the policy, there
is a non-zero probability that the absorbing state will be reached within a finite number of steps,
regardless of the current state. A stationary policy, which is not proper, is said to be ‘improper’.
With these notions in place, we now outline a set of conditions, which are sufficient to guarantee
the existence of a unique solution to (4.2), in the case that γ = 1.

Let us assume that the following conditions are satisfied by our SSP:

(1) There exists a cost free absorbing state;
(2) There exists at least one proper stationary policy;
(3) For every improper policy, the cost associated with at least one state is unbounded.

If each of these conditions are satisfied, then there exists a set of unique values {V (S)}, which
satisfy (4.2), and can be obtained via the iterative procedure (4.3), [9, Proposition 3.2.2].

If we consider how these conditions apply to our problem of darts strategy, we can see that the
assumptions (1)-(3) do indeed hold. Clearly, the end game state, when a player has successfully
doubled out, constitutes an absorbing state as described above, and therefore assumption (1) holds.

In the game, it is always possible to reach the final end state in a finite number of steps. Further-
more, given a player and any game state, it is possible to prescribe a (fixed) choice of aimpoint for
all possible intervening states between the current state and the end state, such that selecting these
aimpoints results in a non-zero probability of reaching the end state. For the player following this
policy, the subsequent selection of aimpoints would depend exclusively on the game state they find
themselves in, such a policy therefore constitutes a stationary policy, and the non-zero probability
of termination makes this a proper policy. Therefore, condition (2) is satisfied for our player.

Finally, if an improper policy exists for a given player, then by definition, for the player following
this policy, there must be at least one game state such that the probability of reaching the end state
in a finite number of steps is zero. For the player in question finding themselves in this particular
state, the number of further turns taken must be unbounded, and as such, they must incur an
infinite cost through the further turn cost C. Therefore, assumption (3) is satisfied.

Therefore, conditions (1)-(3) are met and [9, Proposition 3.2.2] guarantees the existence of a unique
set of values {V (S)}, which satisfy (4.2) and can be obtained via the iterative procedure (4.3).

4.3. Implementation. Having outlined the general framework of our solution method, in the
upcoming section we detail a number of specific considerations which are particular to implementing
our method in the specific problem context.

4.3.1. Transition Probabilities and Aimpoints. The value iteration method, outlined above,
requires us to have values for the transition probabilities Pr(S′|S, p) for all valid S′, S state com-
binations and all aimpoints p. In our implementation, these were approximated utilising a Monte
Carlo approach in the following way. Given an aimpoint p, we simulated a number of dart throws
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aimed at p and computed the resulting scores achieved on each throw. In addition, we also recorded
the radial distances of the landing points from the centre of the board. The relative proportions of
each score outcome r were then used to estimate the probabilities Pr(r|p), that is

(4.5) Pr(r|p) ≈ No. of darts aimed at p producing a score of r

No. of darts aimed at p
.

Additionally, having obtained the radial distance of the outcomes allows us to attribute whether
a score outcome equal to the player’s tally, that is r = St, was a case of doubling out or going
bust. From this information it is relatively simple to construct the probabilities Pr(S′|S, p), by
considering which outcomes lead from state S to state S′.

The reliability of any inferences derived from the value iteration method is dependent upon the
accuracy of the values used for the transition probabilities Pr(S′|S, p), and hence the probability
estimates of Pr(r|p) from (4.5). However, for many choices of aimpoint p and outcome r, the true
value of Pr(r|p) will be small, but non-zero. For such cases, the occurrence of a score r, whilst
aiming at p constitutes a ‘rare event’. When using the Monte Carlo approach (4.5) to estimate the
probabilities of such events, the sample size (and hence computational expense) required in order to
obtain a given precision (in terms of confidence interval width) scales proportional to 1/Pr(r|p) [16,
page 64]. Therefore, if each potential aimpoint requires a sample of such a size, practical computa-
tion concerns restrict the number of possible aimpoints that we are able to consider. Furthermore,
for each state S, the iteration procedure requires the computation of the bracketed expression on the
right-hand side of (4.3) for all aimpoints p. This again restricts the number of aimpoints that can
be practically considered. For the purposes of this study, we utilise potential aimpoints arranged
along rays radiating from the centre of the board. For each sector, we have three such rays, the first
being the centre line of the sector, with an additional ray either side, placed so as to be equidistant
between the centre line and the sector edges. The aimpoints are then distributed at set distances
along these rays to ensure good coverage of the sector. A full list of these distances is set out in
Table 2.

Section Radial Distances (mm)

Inner Bull 0
Outer Bull 11.25

Inner 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96
Treble 103
Outer 108, 116, 124, 132, 140, 148, 156
Double 166
Outside 175, 185, 195, (5000 not pictured)

Table 2. Radial distances for considered aimpoints.

The arrangement of the aimpoints within a typical sector can be seen in Figure 6. Aimpoints
outside of the scoring region of the board are also considered, in particular at 175, 185 and 195mm,
since, as we will see, it is not always optimal to aim for some doubles straight away, when trying
to double out. We also include a set of distant aimpoints, at a radial distance of 5000mm (not
pictured). These points are included to allow for the possibility of deliberately missing, which we
suspect could be optimal in cases where the cost of going bust outweighs the cost of an additional
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turn. In our experimentation, with the aimpoints as outlined, we computed the probabilities (4.5)

Figure 6. Considered aimpoints for probability calculations.

and the resulting transition probabilities, using a sample size of ten million simulated darts per
point.

4.3.2. Value Iteration Algorithm. In practice, the iteration procedure outlined in (4.3) can be
prohibitively slow, especially when the number of states we have to consider is large. In order to
speed up the convergence of the algorithm, we employed a number of strategies, which we now
outline.

4.3.3. Initial Approximation. The iteration algorithm (4.3) requires us to provide initial ap-
proximations V 0(S) for each state S. The closer these approximations are to the true values, the
less iterations of (4.3) we will be required to perform before termination. Therefore, if we are able
to compute accurate approximations in an efficient manner, then using these approximations as a
starting point for our iterative procedure can greatly speed up our computation. To accomplish
this, we decompose the cost in terms of number of further turns into two parts. These two parts
roughly correspond to the two stages of the game described earlier, i.e. a cost to finish by doubling
out and a cost to reach a finishing position.

We consider a player to be in a finishing position once they have reduced their tally to 40 or below.
Although a player can finish when St = 50 by hitting the inner bull, this is rather challenging and
usually games are completed by hitting one of the double sections. Furthermore, for all even tallies
of 40 or under, there is a corresponding double which allows the player to double out. To approxi-
mate the cost of reaching such a position, we utilise the maximum expected scores computed earlier
and listed in Table 1 (quadrature method). Given a current tally St > 40, we subtract 4− t times
the maximum expected score from St, to obtain the expected starting tally for the next turn. The
difference between the resulting figure and 40 (assuming it exceeds 40) is then divided by 3 times
the maximum expected score, in order to approximate the cost of reaching a finishing position.
However, if after subtracting 4 − t times the maximum expected score from St, the result is 40 or
less, or indeed if St ≤ 40, then this step is skipped as it is assumed the player is in a finishing
position or will be on their next turn.

In approximating the cost of finishing for a player, we make the simplifying assumption that the
value V (S) is roughly equal for all values of St under 40. We also make the further assumption
that the cost is independent of t and S1. Although this is not the case, it greatly reduces the
complexity and cost of the calculations. Having made these assumptions, we compute the cost
V ∗(S) for S = (S1, 1, S1) with S1 = 2, 3, . . . , 10 using the iterative procedure (4.3). Whilst the
iterative procedure can be slow when the number of states is large, the calculations are easily
accomplished for the small number of states we are now considering. The values of V ∗(S) obtained
are then averaged across S1 = 2, 3, . . . , 10 in order to provide an approximate finishing cost. This
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cost is then added to the cost of reaching a finishing position (if any), in order to produce our initial
approximation V 0(S). This process is repeated for all states S under consideration. The values
obtained are then used as the starting point for our algorithm, which proceeds to a preliminary
iteration stage as described below.

Figure 7. Representation of approximation scheme.

4.3.4. Preliminary Iteration Procedure. In the iteration procedure (4.3) described above, the
updated values V n+1(S) are computed for all states S, for every iteration. However, after a number
of such iterations it is likely that for many states S, the values are close to their true value and
remain fairly constant between iterations. For such states, the repeated calculation of the values
V n+1(S) represents a computational inefficiency. To counter this, we introduce a preliminary iter-
ation stage. This stage proceeds as per the iteration procedure (4.3), however, once the difference
between successive values V n(S) and V n+1(S) falls below a specified preset tolerance, the iterative
procedure is halted for state S, whilst continuing for the others. Only once the iterations for all
states have halted, is the process complete. The inclusion of this preliminary iteration stage allows
for an efficient refinement of the values obtained from our initial approximation, prior to commenc-
ing with the full value iteration procedure (4.3) outlined earlier.

In our experimentation, this initial value iteration procedure was carried out with state specific
iteration terminating when successive iterations differed by less than 0.01. Subsequently, we carried
out the full iteration procedure (4.3) until the difference in successive approximations was below
0.01 for all states simultaneously. Finally, the optimal aimpoint was identified by finding the point p
that minimised the value of (4.4), using the values V ∗(S) obtained from our three stage procedure.

5. Experimentation and Results

Given the number of parameters involved, i.e. (St, t, S1) for the game situation and (σx, σy) for the
skill level, providing a full rundown of the optimal play in all possible game scenarios for a range of
skill levels would be impractical due to the number of possible combinations. Instead, we provide
the details of the optimal aimpoints for a range of current tallies St, ranging from 2 to 250, for
each of the possible throws t = 1, 2, 3. With regards to the initial tally S1, we mainly restrict our
attention to two cases. First, we take the initial tally to be equal to the current tally, S1 = St,
corresponding to a scenario where a player has achieved a cumulative score of 0 so far in their turn.
At the other extreme, we consider the case where the player has scored the maximum possible so
far in their current turn and the initial tally S1 is as large as possible given St and t. Therefore,
S1 = S1 for the first throw, whilst S1 = S2 + 60 for the second throw and S1 = S3 + 120 for the
third. By considering these two extreme cases we hope to observe the influence of the initial tally
on strategy selection. Finally, for the skill level, we once again assume the horizontal and vertical
accuracies to be equal, that is σx = σy = σ, and consider the values σ = 12.5, 25, 40, 50 and 80.
These values were selected to correspond with the player classes A to E, identified in [18], so as to
enable comparison between results. A full rundown of the aimpoints for these players can be found
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in Tables 4 to 8 within the Appendix. We now outline a number of general findings from the results
and attempt to interpret the underlying strategical reasoning behind them.

5.0.1. Comparison of Early Game Strategy: Does Maximising Scoring Equal Min-
imising Turns? In the first half of this paper, we looked at the problem of aimpoint identifica-
tion in order to maximise a player’s expected score from a single throw. This was done under the
assumption that the player is best served by reducing their tally as quickly as possible in the initial
stages of the game, and the best way to do so is to maximise their score per dart. However, the
aim of the game is to finish before the opponent, and therefore minimising the number of further
turns is a more appropriate strategy to follow. In reality, we would expect the two strategies to
coincide during the initial stages of the game. Examining the Tables 4 to 8 in the Appendix, we can
see that for each of the skill levels, and for the highest tally values, the aimpoint identified via the
turn minimisation procedure of this section largely coincides with the maximum scoring aimpoints,
detailed in the Table 1.

Below in Table 3 and Figure 8 we can see the aimpoints identified via the turn minimisation pro-
cedure, for a wider range of skill levels, under the assumptions t = 1 and S1 = 250, that is for
S = (250, 1, 250). Comparing these to the aimpoints for score maximisation, given in Table 1
and Figure 4 (also plotted in blue in Figure 8), we can see strong agreement between the turn
minimisation and score maximisation optimised aimpoints. We should also note that some of the
discrepancies that appear are merely a consequence of the different meshes used between the two
problems. This agreement not only confirms our intuitive believe regarding the optimal strategy
in the early stages, but also provides reassurance regarding the validity of the methods and results
derived in this section.

Std Dev (mm) Angle (deg) Distance (mm) Std Dev (mm) Angle (deg) Distance (mm)

5 0 103 75 256.5 16
10 0 103 80 247.5 16
15 0 108 85 247.5 16
20 198 108 90 247.5 11.25
25 202.5 108 95 247.5 11.25
30 202.5 103 100 270 11.25
35 216 96 110 265.5 11.25
40 216 88 120 252 11.25
45 216 80 130 265.5 11.25
50 229.5 64 140 252 11.25
55 234 56 150 288 11.25
60 238.5 40 160 256.5 11.25
65 252 32 170 265.5 11.25
70 252 24

Table 3. Turn minimisation aimpoints for large tally St.
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Figure 8. Turn minimisation aimpoints for large tally St.

5.0.2. Switch from Scoring to Finishing. As a player’s tally is reduced, a level is reached at
which their focus must switch from maximum scoring to doubling out. The point at which this
occurs depends greatly on the skill level of the player. Generally, the greater the skill of the player,
the earlier they should consider finishing.

The highest possible three dart out shot is 170 (treble 20, treble 20 followed by the inner bull)
and all values below this are possible with three darts except 169, 168, 166, 165, 163, 162 and 159.
Players of the highest skill level should start considering their finish before reaching this point in
order to avoid these values. For example, a professional on 189, taking their final throw of a turn,
generally will switch from their usual treble 20 to the treble 19. The reasoning behind this is that if
they miss the intended treble, then the single 19 will also leave a three dart outshot of 170, whereas
a single 20 leaves the player stranded on 169. However, for most players the chances of making one
of these high outshots is very low, therefore there is less need to consider their finish this early and
they are better served by continuing to maximise their scoring for longer. Applying our method
to the above example of the game state S = (S1, 3, 189), we found that for players of high skill
level (σ = 5, 10, 15), whose regular score maximisation aimpoint is the treble 20, the recommended
aimpoint switches from the treble 20 to the centre of the treble 19. For players with skill levels just
below this, that is for σ just above 15, the score maximisation aimpoint is itself the treble 19 and
hence no switch is observed. However, if we consider decreasing the skill level further, for σ >> 15,
the recommended turn minimising aimpoints for game state S = (S1, 3, 189) correspond to the score
maximising points as expected.

To examine this phenomenon of strategy switching, we observed the highest tally St at which
the recommended aimpoint significantly moves away from the score maximising location. This was
carried out for a range of skill levels and for throws t = 1, 2, 3. In all cases we took S1 = St+(t−1)s̄,
where s̄ represents the optimised expected score for the player (rounded to the nearest integer),
as outlined in Table 1. This choice of S1 was made in order to be as representative as possible
of a player who has, up until the point in question, been following a score maximisation strategy.
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In all cases, starting with a high value for the tally St we reduce this one at a time and observe
the location of the optimal aimpoint. As you would expect from the previous section, initially,
the aimpoint identified corresponds to the score maximising point. However, as St continues to be
reduced, we reach a point at which movement is observed. Typically, the first movements consist of
small oscillations around the score maximising aimpoint. The significance of such movements are
not always apparent, most likely being a slight favouring of location due to the odd or even value
of the tally, but ultimately the aimpoint still signifies a focus on maximal scoring. Therefore, we
are interested in measuring the first significant move in aimpoint away from the score maximising
aimpoint, which we define to be a movement of 20mm or more. Having observed such a move,
we record the tally St as the tally at which the player’s optimal strategy switches from scoring to
finishing. The results are presented graphically in Figure 9, where we have fit the least squares
polynomial of degree 4, which was found to offer a good fit. The chart provides an indication of
the tally St at which a player of a given skill level should start considering their endgame strategy,
and as expected, the higher the skill level of the player, the earlier consideration must be given to
doubling out.

0 10 30 50 70 90 110 130 150 170
0

50

100

150

200

250

Figure 9. Switch from score maximisation to finishing.

5.0.3. Impact of the Initial Tally S1 on Aimpoint Selection. Examining the results detailed
in Tables 4 and 8, and particularly comparing the two cases for S1 within each skill level, we see
that the initial tally S1 can have a significant impact on the optimal aimpoint. This is in contrast
to the results of [18], where S1 did not feature as a factor.

Comparing high and low skill levels, we can observe that the significance of S1 is greater for lower
skilled players. Examining the two cases for S1, for the highest skilled players with the lowest
values of σ (e.g. Table 4), we see very little difference between the two strategy recommendations.
In general, the highest skilled players are recommended to go for the aimpoints that will see them
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double out in the lowest possible number of turns, even at the risk of going bust. Considering this
from a cost benefit perspective this strategy would seem reasonable. Given their higher accuracy,
the likelihood of success for these players is greater, whereas the cost of going bust is reduced, as
their higher average scoring ability enables them to return to a finishing position sooner than a
lower skilled player.

At the other extreme, for the lower skilled players with larger values of σ (e.g. Table 8), we can ob-
serve a number of occurrences of aimpoints with radial distance 5000mm (shown in red), signifying
the recommendation of an intentional miss. This represents the optimal choice for a player when
the expected cost of going bust exceeds the expected cost of foregoing an immediate opportunity
to finish. For example, if we consider the scenario where a player of skill level (σx = 80, σy = 80)
starts their turn on a tally of 128, and manages to score treble 20’s with both their first and second
throws, leaving them on 8 ahead of their third throw, corresponding to a game state S = (8, 3, 128).
Now, perhaps the obvious choice for this player is to aim for the double 4 with their final dart, in
an attempt to double out as soon as possible. However, in doing so the player faces a high chance
of going bust due to the relatively low level of their tally and their inaccuracy. In this case, the cost
of going bust for the player involves having their tally reset to 128, undoing the progression from
their first two throws, which were unusually high scoring. With an optimised expected score per
throw for such a player being 11.26, were they to go bust, we would expect it to take approximately
two to three further turns for them to get their tally back to a level where they have options to
double out. Therefore, the recommended strategy in this case is for the player to intentionally miss,
in order to protect the progression made during the turn. In comparison, if we consider the same
player, again facing a tally of 8 on the final throw of their turn, but this time having commenced
their turn also on 8 and scored 0 with their first two throws, i.e. a game state of S = (8, 3, 8), then
the optimal strategy is to aim towards the double 4 in an attempt to finish as soon as possible.

The strategy of intentionally missing comes as a consequence of the rules regarding going bust.
As the simplified rules considered in [18] did not feature a tally reset, this phenomenon was not
observed by the author. Its occurrence here is illustrative of how, under the normal game rules, the
initial tally S1 can impact strategy choice and it is perhaps the most significant example of how the
results in this paper differ from those of [18].

6. Conclusion and Further Considerations

In this paper, we considered the problem of a player looking to minimise the expected number of
further turns to complete the standard darts game 501. This represents the first study of the full
version of the game as compared to simplified variations, as in [18], or simply score maximisation,
for example in [7, 28, 17, 4]. By framing the problem as a Markov decision problem, and utilising the
methods of reinforcement learning, coupled with Monte Carlo simulation, we were able to determine
the best aimpoint for a player of a given skill level in an arbitrary game situation. In contrast to
the simplified game variation previously considered, the optimal strategy in our game was found to
be dependent upon the starting tally of the player’s turn. As a result, we observed some deviation
in aimpoint recommendations from those given in [18], with some interesting consequences arising
given the correct game scenario conditions, such as the recommendation to intentionally miss.

As discussed in the previously, a player ultimately optimises their strategy when they maximise
their probability of finishing before their opponent. This presents an apparently complex problem,
which in addition to the factors considered in this study, requires consideration of the adversary’s
game position, skill level and strategy. For example if the opponent is highly skilled and is getting
close to finishing, then our player should likely favour a more aggressive strategy which increases
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their probability of finishing in a low number of turns, even if on average such a strategy results in a
higher cost in terms of turns to finish. Furthermore, just as our player should give consideration to
their opponent, so an opponent playing in an optimal fashion must consider the skill, game position
and strategy of the original player. These two-way interactions in strategy could occur back and
forth indefinitely, and it is not immediately clear that the method developed in this paper would
generalise to allow for the inclusion of the opponent in the analysis. In any case, this would greatly
increase the number of factors in the game state S. Perhaps as a first step we might consider the
expected number of turns it will take the opponent to finish, using the methods developed in this
paper, then seek the aimpoints which maximise the probability that our original player doubles out
in fewer turns.
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Appendix A. Tables of Aimpoints for Section 5

Table 4. Optimal aimpoints for player with skill σx = σy = 12.5.

S1 = St S1 = St + 60(t− 1)

St
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3

2 18, 18, 18 175, 175, 166 18, 18, 18 175, 175, 175
3 18, 18, 18 140, 140, 132 18, 18, 18 140, 132, 140
4 144, 144, 144 166, 166, 166 144, 144, 144 166, 166, 166
5 18, 18, 18 140, 132, 132 18, 18, 18 140, 132, 140
6 180, 180, 180 166, 166, 166 180, 180, 180 166, 166, 166
7 180, 180, 180 140, 140, 132 180, 180, 180 140, 140, 140
8 54, 54, 54 166, 166, 166 54, 54, 54 166, 166, 166
9 18, 18, 18 140, 140, 132 18, 18, 18 140, 140, 140
10 342, 342, 342 166, 166, 166 342, 342, 342 166, 166, 166
11 180, 180, 180 140, 140, 132 180, 180, 180 140, 140, 140
12 90, 90, 90 166, 166, 166 90, 90, 90 166, 166, 166
13 342, 342, 342 140, 140, 132 342, 342, 342 140, 140, 140
14 216, 216, 216 166, 166, 166 216, 216, 216 166, 166, 166
15 216, 216, 216 140, 140, 132 216, 216, 216 140, 140, 140
16 252, 252, 252 166, 166, 166 252, 252, 252 166, 166, 166
17 18, 18, 18 140, 140, 132 18, 18, 18 140, 140, 140
18 306, 306, 306 166, 166, 166 306, 306, 306 166, 166, 166
19 180, 180, 180 140, 132, 132 180, 180, 180 140, 140, 140
20 108, 108, 108 166, 166, 166 108, 108, 108 166, 166, 166
21 342, 342, 342 140, 140, 132 342, 342, 342 140, 140, 140
22 270, 270, 270 166, 166, 166 270, 270, 270 166, 166, 166
23 216, 216, 211.5 132, 132, 132 216, 216, 211.5 132, 132, 132
24 324, 324, 324 166, 166, 166 324, 324, 324 166, 166, 166
25 306, 306, 306 140, 140, 132 306, 306, 306 140, 140, 140
26 72, 72, 72 166, 166, 166 72, 72, 72 166, 166, 166
27 270, 270, 270 140, 132, 132 270, 270, 270 140, 140, 140
28 288, 288, 288 166, 166, 166 288, 288, 288 166, 166, 166
29 72, 72, 72 140, 132, 132 72, 72, 72 140, 132, 132
30 126, 126, 126 166, 166, 166 126, 126, 126 166, 166, 166
31 126, 126, 126 132, 132, 132 126, 126, 126 132, 132, 132
32 234, 234, 234 166, 166, 166 234, 234, 234 166, 166, 166
33 18, 18, 18 132, 132, 140 18, 18, 18 132, 132, 140
34 162, 162, 162 166, 166, 166 162, 162, 162 166, 166, 166
35 184.5, 184.5, 184.5 132, 132, 132 184.5, 180, 180 132, 132, 132
36 36, 36, 36 166, 166, 166 36, 36, 36 166, 166, 166
37 342, 342, 342 132, 132, 132 342, 342, 342 132, 132, 140
38 198, 198, 198 166, 166, 166 198, 198, 198 166, 166, 166
39 216, 216, 216 132, 132, 132 216, 216, 216 132, 132, 132
40 0, 0, 0 166, 166, 166 0, 0, 0 166, 166, 166
41 306, 306, 306 132, 132, 140 306, 306, 306 132, 132, 140
42 103.5, 103.5, 108 132, 132, 132 103.5, 103.5, 108 132, 132, 140
43 270, 270, 270 132, 132, 132 270, 270, 270 132, 132, 132
44 324, 324, 324 140, 140, 140 324, 324, 324 140, 140, 140
45 72, 72, 72 132, 132, 132 72, 72, 72 132, 132, 132
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46 288, 288, 288 132, 140, 132 288, 288, 288 132, 140, 132
47 126, 126, 126 132, 132, 132 126, 126, 126 132, 132, 132
48 238.5, 238.5, 234 140, 140, 140 238.5, 238.5, 234 140, 140, 140
49 162, 162, 162 140, 132, 132 162, 162, 162 140, 140, 140
50 36, 36, 36 140, 140, 132 36, 36, 162 140, 140, 0
51 198, 198, 198 140, 132, 132 198, 198, 198 140, 140, 140
52 0, 0, 0 140, 140, 140 0, 0, 0 140, 140, 140
53 72, 72, 72 132, 132, 132 72, 72, 72 132, 132, 132
54 288, 288, 288 140, 140, 140 288, 288, 288 140, 140, 140
55 126, 126, 126 132, 132, 132 126, 126, 126 132, 132, 132
56 234, 234, 234 140, 140, 140 234, 234, 234 140, 140, 140
57 162, 162, 162 140, 132, 140 162, 162, 162 140, 132, 140
58 36, 36, 36 140, 140, 132 36, 36, 36 140, 140, 132
59 198, 198, 198 132, 132, 140 198, 198, 198 132, 132, 140
60 0, 0, 0 140, 140, 140 0, 0, 0 140, 140, 140
61 256.5, 256.5, 126 0, 0, 103 256.5, 256.5, 126 0, 0, 103
62 108, 108, 108 103, 103, 103 108, 108, 108 103, 103, 103
63 72, 256.5, 72 103, 0, 103 72, 256.5, 72 103, 0, 103
64 238.5, 238.5, 234 103, 103, 103 238.5, 238.5, 234 103, 103, 103
65 256.5, 256.5, 256.5 0, 0, 0 256.5, 256.5, 256.5 0, 0, 0
66 288, 288, 288 103, 103, 103 288, 288, 288 103, 103, 103
67 162, 162, 162 103, 103, 108 162, 162, 162 103, 103, 108
68 238.5, 0, 238.5 103, 103, 103 238.5, 36, 238.5 103, 156, 103
69 121.5, 198, 162 103, 103, 140 121.5, 121.5, 162 103, 103, 140
70 36, 36, 36 108, 103, 108 36, 36, 36 108, 103, 108
71 72, 72, 198 103, 103, 140 72, 72, 198 103, 103, 140
72 0, 0, 0 156, 156, 156 0, 0, 0 156, 156, 156
73 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
74 288, 288, 288 103, 103, 103 288, 288, 288 103, 103, 103
75 162, 162, 162 108, 103, 108 162, 162, 162 108, 103, 108
76 0, 0, 0 108, 103, 108 0, 0, 0 108, 103, 108
77 198, 198, 198 108, 103, 108 198, 198, 198 108, 103, 108
78 36, 36, 198 108, 103, 148 36, 36, 198 108, 103, 148
79 198, 198, 198 108, 103, 140 198, 198, 198 108, 103, 140
80 0, 0, 0 156, 156, 148 0, 0, 0 156, 156, 148
81 256.5, 198, 256.5 0, 103, 0 256.5, 198, 256.5 0, 103, 0
82 144, 144, 144 0, 0, 0 144, 144, 144 0, 0, 0
83 256.5, 162, 256.5 0, 103, 0 256.5, 162, 256.5 0, 103, 0
84 144, 0, 144 0, 103, 0 144, 0, 144 0, 103, 0
85 144, 126, 256.5 0, 103, 0 144, 126, 256.5 0, 103, 0
86 36, 36, 36 103, 103, 103 36, 36, 36 103, 103, 103
87 162, 162, 198 103, 103, 103 162, 162, 198 103, 103, 103
88 234, 234, 234 103, 103, 103 234, 234, 234 103, 103, 103
89 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
90 36, 36, 36 103, 103, 103 36, 36, 36 103, 103, 103
91 162, 162, 162 103, 103, 103 162, 162, 162 103, 103, 103
92 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
93 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
94 36, 36, 36 103, 103, 103 36, 36, 36 103, 103, 103
95 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
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96 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
97 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
98 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
99 198, 198, 198 103, 103, 103 198, 198, 198 103, 103, 103
100 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
110 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
120 0, 0, 0 103, 103, 103 0, 0, 0 103, 103, 103
130 198, 0, 198 103, 103, 103 198, 0, 198 103, 103, 103
150 198, 198, 198 103, 103, 103
200 0, 0, 0 103, 103, 103
250 0, 0, 0 103, 103, 103

Table 5. Optimal aimpoints for player with skill σx = σy = 25.

S1 = St S1 = St + 60(t− 1)

St
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3

2 18, 18, 18 185, 175, 166 18, 18, 18 185, 175, 185
3 18, 18, 18 140, 140, 132 18, 18, 18 140, 132, 124
4 144, 144, 144 175, 166, 175 144, 144, 144 175, 175, 185
5 18, 18, 18 140, 140, 124 18, 18, 18 140, 132, 132
6 180, 180, 144 175, 175, 132 180, 180, 180 175, 175, 185
7 180, 180, 180 140, 140, 132 180, 180, 180 140, 132, 132
8 54, 54, 54 175, 175, 166 54, 54, 54 175, 175, 185
9 18, 18, 18 140, 140, 124 18, 18, 18 140, 132, 132
10 342, 342, 342 175, 166, 175 342, 342, 342 175, 175, 185
11 180, 180, 180 140, 140, 124 180, 180, 180 140, 132, 132
12 90, 90, 90 175, 175, 175 90, 90, 90 175, 175, 185
13 342, 342, 342 140, 140, 124 342, 342, 342 140, 132, 132
14 216, 216, 94.50 175, 175, 124 216, 216, 216 175, 175, 185
15 265.5, 265.5, 216 140, 132, 132 265.5, 216, 270 140, 140, 132
16 252, 252, 247.5 175, 166, 166 252, 252, 252 175, 175, 185
17 306, 306, 18 132, 132, 124 306, 306, 72 132, 132, 132
18 306, 306, 306 175, 166, 175 306, 306, 306 175, 175, 185
19 175.5, 175.5, 180 132, 132, 124 175.5, 175.5, 175.5 132, 132, 132
20 108, 108, 108 166, 166, 175 108, 108, 103.5 166, 175, 175
21 175.5, 166.5, 166.5 116, 124, 124 175.5, 166.5, 175.5 116, 124, 124
22 270, 270, 270 166, 166, 175 270, 270, 270 166, 175, 185
23 202.5, 211.5, 202.5 124, 124, 124 202.5, 202.5, 202.5 124, 124, 124
24 324, 324, 324 166, 166, 175 324, 324, 324 166, 175, 175
25 166.5, 166.5, 166.5 124, 124, 124 166.5, 166.5, 166.5 124, 124, 124
26 72, 72, 72 166, 166, 175 72, 72, 72 166, 175, 175
27 193.5, 193.5, 193.5 124, 124, 124 193.5, 193.5, 193.5 124, 124, 124
28 288, 288, 288 166, 166, 175 288, 288, 288 166, 175, 175
29 72, 72, 175.5 132, 124, 116 72, 72, 175.5 132, 132, 124
30 126, 126, 126 175, 166, 175 126, 126, 126 175, 175, 175
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31 193.5, 202.5, 193.5 72, 116, 116 193.5, 202.5, 193.5 72, 124, 72
32 234, 234, 234 166, 175, 175 234, 234, 234 166, 175, 175
33 166.5, 166.5, 166.5 124, 124, 124 166.5, 166.5, 166.5 124, 124, 124
34 157.5, 162, 162 166, 166, 175 157.5, 162, 162 166, 175, 175
35 184.5, 184.5, 184.5 124, 124, 124 184.5, 184.5, 184.5 124, 124, 124
36 36, 36, 36 166, 175, 175 36, 36, 36 166, 175, 175
37 342, 342, 175.5 132, 132, 96 342, 337.5, 175.5 132, 132, 56
38 198.0, 198.0, 198.0 175, 175, 175 198.0, 198.0, 198.0 175, 175, 175
39 211.5, 211.5, 202.5 124, 124, 108 211.5, 211.5, 193.5 124, 124, 64
40 0, 0, 0 175, 175, 175 0, 0, 0 175, 175, 175
41 306, 306, 175.5 132, 132, 103 306, 306, 180 132, 132, 56
42 103.5, 103.5, 103.5 132, 124, 132 103.5, 103.5, 103.5 132, 132, 132
43 193.5, 193.5, 193.5 72, 116, 96 193.5, 198.0, 193.5 72, 64, 56
44 324, 324, 324 132, 124, 132 324, 324, 324 132, 132, 132
45 72, 72, 72 132, 124, 132 72, 72, 72 132, 132, 132
46 94.50, 94.50, 103.5 124, 124, 124 94.50, 94.50, 94.50 124, 124, 132
47 126, 126, 211.5 124, 124, 116 126, 126, 126 124, 132, 124
48 238.5, 238.5, 238.5 140, 132, 132 238.5, 238.5, 238.5 140, 140, 148
49 162, 162, 162 132, 124, 116 162, 162, 72 132, 132, 132
50 36, 36, 36 132, 132, 124 36, 108, 108 132, 124, 132
51 198.0, 198.0, 198.0 132, 124, 116 198.0, 198.0, 198.0 132, 132, 132
52 0, 0, 0 132, 132, 132 0, 234, 234 132, 132, 132
53 162, 162, 162 124, 124, 124 162, 162, 162 124, 124, 124
54 288, 288, 288 132, 132, 132 288, 288, 288 132, 132, 132
55 202.5, 198.0, 198.0 124, 124, 116 202.5, 126, 126 124, 132, 124
56 238.5, 238.5, 238.5 124, 124, 124 238.5, 238.5, 238.5 124, 124, 124
57 162, 162, 162 124, 124, 124 162, 162, 162 124, 132, 132
58 36, 36, 36 124, 124, 124 36, 36, 36 124, 132, 124
59 198.0, 198.0, 198.0 124, 124, 124 198.0, 198.0, 198.0 124, 124, 124
60 0, 0, 0 132, 132, 132 0, 0, 0 132, 140, 148
61 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
62 283.5, 283.5, 288 124, 124, 116 283.5, 288, 288 124, 124, 116
63 121.5, 121.5, 121.5 116, 116, 116 121.5, 121.5, 121.5 116, 116, 116
64 238.5, 238.5, 238.5 116, 116, 116 238.5, 238.5, 238.5 116, 116, 116
65 288, 288, 288 103, 103, 103 288, 283.5, 288 103, 103, 103
66 112.5, 112.5, 112.5 108, 108, 116 112.5, 108, 112.5 108, 108, 116
67 202.5, 202.5, 202.5 116, 116, 116 202.5, 270, 202.5 116, 103, 116
68 310.5, 319.5, 310.5 103, 103, 103 310.5, 319.5, 310.5 103, 103, 103
69 283.5, 283.5, 283.5 103, 103, 103 283.5, 274.5, 283.5 103, 103, 103
70 283.5, 283.5, 283.5 116, 116, 116 283.5, 283.5, 283.5 116, 116, 116
71 283.5, 202.5, 283.5 108, 116, 108 283.5, 121.5, 283.5 108, 116, 108
72 234, 234, 234 116, 116, 116 234, 238.5, 234 116, 116, 116
73 288, 283.5, 198.0 108, 108, 108 288, 283.5, 198.0 108, 108, 108
74 288, 288, 288 108, 108, 108 288, 288, 288 108, 108, 108
75 198.0, 198.0, 202.5 116, 116, 108 198.0, 198.0, 202.5 116, 116, 108
76 0, 0, 0 124, 124, 124 0, 0, 0 124, 124, 124
77 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
78 288, 288, 288 103, 103, 103 288, 288, 288 103, 103, 103
79 202.5, 202.5, 202.5 116, 108, 108 202.5, 202.5, 202.5 116, 108, 108
80 234, 234, 234 108, 108, 108 234, 234, 234 108, 108, 108
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81 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
82 288, 288, 288 103, 103, 103 288, 288, 288 103, 103, 103
83 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
84 234, 234, 234 103, 103, 103 234, 234, 234 103, 103, 103
85 121.5, 121.5, 121.5 108, 108, 108 121.5, 121.5, 121.5 108, 108, 108
86 288, 234, 234 103, 103, 103 288, 234, 234 103, 103, 103
87 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
88 234, 234, 234 103, 103, 103 234, 234, 234 103, 103, 103
89 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
90 283.5, 283.5, 283.5 103, 103, 103 283.5, 283.5, 283.5 103, 103, 103
91 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
92 0, 0, 0 108, 108, 108 0, 0, 0 108, 108, 108
93 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
94 283.5, 283.5, 283.5 103, 103, 103 283.5, 283.5, 283.5 103, 103, 103
95 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
96 234, 0, 0 103, 108, 108 234, 0, 0 103, 108, 108
97 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
98 0, 0, 0 116, 108, 108 0, 0, 0 116, 108, 108
99 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
100 0, 0, 0 108, 108, 108 0, 0, 0 108, 108, 108
110 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
120 0, 0, 0 116, 116, 108 0, 0, 0 116, 116, 108
130 202.5, 202.5, 202.5 108, 108, 108 202.5, 202.5, 202.5 108, 108, 108
150 202.5, 202.5, 202.5 108, 108, 108
200 202.5, 202.5, 202.5 108, 108, 108
250 202.5, 202.5, 202.5 108, 108, 108

Table 6. Optimal aimpoints for player with skill σx = σy = 40.

S1 = St S1 = St + 60(t− 1)

St
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3

2 18, 18, 18 195, 185, 166 18, 18, 0 195, 185, 5000
3 18, 18, 18 156, 148, 116 18, 18, 18 156, 124, 96
4 144, 144, 144 185, 175, 175 144, 144, 144 185, 195, 195
5 18, 18, 18 156, 148, 116 18, 18, 18 156, 132, 108
6 180, 180, 139.5 185, 166, 140 180, 180, 180 185, 166, 195
7 180, 180, 355.5 156, 140, 103 180, 180, 355.5 156, 124, 103
8 54, 54, 54 185, 175, 175 54, 54, 54 185, 195, 195
9 13.50, 4.500, 0 140, 116, 103 13.50, 4.500, 4.500 140, 116, 108
10 342, 342, 94.50 185, 175, 116 342, 342, 342 185, 175, 195
11 184.5, 184.5, 193.5 132, 124, 103 184.5, 193.5, 193.5 132, 108, 108
12 90, 90, 90 175, 175, 185 90, 90, 90 175, 195, 195
13 346.5, 342, 337.5 116, 108, 88 346.5, 342, 337.5 116, 103, 88
14 216, 216, 103.5 185, 175, 116 216, 216, 0 185, 185, 5000
15 198.0, 198.0, 198.0 116, 108, 103 198.0, 202.5, 198.0 116, 103, 103
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16 252, 252, 247.5 175, 166, 185 252, 252, 252 175, 195, 195
17 324, 328.5, 4.500 108, 96, 103 324, 328.5, 72 108, 96, 156
18 306, 306, 306 175, 166, 195 306, 306, 306 175, 185, 195
19 166.5, 166.5, 175.5 108, 96, 108 166.5, 166.5, 162 108, 103, 116
20 108, 108, 103.5 175, 166, 195 108, 108, 103.5 175, 185, 195
21 175.5, 175.5, 175.5 116, 108, 116 175.5, 175.5, 175.5 116, 116, 116
22 270, 270, 270 175, 166, 195 270, 270, 270 175, 185, 195
23 198.0, 202.5, 193.5 116, 116, 124 198.0, 198.0, 193.5 116, 116, 124
24 324, 324, 324 175, 175, 185 324, 324, 324 175, 185, 195
25 166.5, 166.5, 166.5 116, 116, 116 166.5, 166.5, 166.5 116, 124, 116
26 72, 72, 72 175, 166, 185 72, 72, 72 175, 185, 195
27 193.5, 193.5, 193.5 108, 116, 116 193.5, 193.5, 193.5 108, 116, 116
28 288, 288, 288 175, 175, 185 288, 288, 288 175, 185, 185
29 175.5, 166.5, 175.5 96, 108, 108 175.5, 166.5, 175.5 96, 108, 103
30 126, 126, 126 175, 166, 195 126, 126, 126 175, 185, 195
31 193.5, 193.5, 193.5 103, 103, 116 193.5, 193.5, 184.5 103, 108, 103
32 234, 234, 234 175, 175, 185 234, 234, 234 175, 185, 185
33 175.5, 175.5, 175.5 96, 96, 103 175.5, 166.5, 175.5 96, 103, 88
34 157.5, 157.5, 157.5 175, 175, 185 157.5, 157.5, 157.5 175, 185, 185
35 184.5, 184.5, 184.5 108, 116, 108 184.5, 184.5, 184.5 108, 116, 108
36 36, 36, 36 175, 175, 175 36, 36, 36 175, 185, 185
37 184.5, 180, 184.5 88, 88, 88 184.5, 180, 180 88, 80, 72
38 198.0, 198.0, 198.0 175, 175, 185 198.0, 198.0, 198.0 175, 185, 185
39 193.5, 184.5, 193.5 96, 103, 103 193.5, 184.5, 184.5 96, 103, 96
40 0, 0, 0 175, 175, 175 0, 0, 0 175, 185, 175
41 180, 180, 180 88, 88, 80 180, 180, 180 88, 80, 64
42 103.5, 103.5, 103.5 116, 108, 124 103.5, 103.5, 103.5 116, 124, 132
43 193.5, 193.5, 193.5 96, 96, 88 193.5, 193.5, 193.5 96, 96, 88
44 324, 324, 36 103, 103, 108 324, 324, 324 103, 108, 108
45 310.5, 310.5, 184.5 96, 96, 80 310.5, 310.5, 166.5 96, 96, 40
46 103.5, 103.5, 103.5 124, 116, 124 103.5, 94.50, 103.5 124, 124, 132
47 211.5, 211.5, 198.0 64, 64, 72 211.5, 202.5, 184.5 64, 40, 40
48 247.5, 247.5, 238.5 124, 116, 124 247.5, 247.5, 247.5 124, 124, 132
49 162, 162, 166.5 88, 88, 80 162, 148.5, 139.5 88, 64, 64
50 328.5, 328.5, 328.5 16, 16, 16 328.5, 328.5, 328.5 16, 16, 16
51 193.5, 193.5, 180 80, 80, 72 193.5, 184.5, 166.5 80, 48, 48
52 328.5, 337.5, 342 96, 88, 88 328.5, 324, 319.5 96, 96, 103
53 162, 162, 162 96, 88, 88 162, 157.5, 157.5 96, 88, 88
54 283.5, 283.5, 283.5 116, 108, 116 283.5, 283.5, 283.5 116, 116, 116
55 193.5, 193.5, 184.5 96, 96, 88 193.5, 175.5, 162 96, 72, 80
56 238.5, 238.5, 4.500 116, 116, 108 238.5, 238.5, 238.5 116, 116, 116
57 166.5, 166.5, 175.5 88, 88, 88 166.5, 166.5, 162 88, 88, 96
58 31.50, 31.50, 31.50 103, 103, 103 31.50, 36, 36 103, 108, 108
59 198.0, 202.5, 198.0 103, 96, 103 198.0, 198.0, 198.0 103, 103, 103
60 355.5, 355.5, 355.5 103, 108, 108 355.5, 355.5, 355.5 103, 108, 116
61 202.5, 229.5, 180 11.25, 11.25, 11.25 202.5, 202.5, 180 11.25, 11.25, 16
62 292.5, 292.5, 292.5 88, 88, 88 292.5, 292.5, 292.5 88, 88, 88
63 283.5, 283.5, 288 80, 80, 80 283.5, 288, 288 80, 80, 80
64 256.5, 256.5, 270 88, 88, 88 256.5, 274.5, 270 88, 88, 88
65 283.5, 283.5, 283.5 80, 72, 80 283.5, 283.5, 283.5 80, 80, 80
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66 274.5, 274.5, 283.5 88, 88, 88 274.5, 283.5, 283.5 88, 88, 88
67 283.5, 283.5, 274.5 88, 88, 88 283.5, 283.5, 274.5 88, 88, 88
68 292.5, 292.5, 292.5 88, 88, 88 292.5, 292.5, 292.5 88, 96, 88
69 283.5, 283.5, 283.5 88, 88, 88 283.5, 283.5, 283.5 88, 88, 88
70 283.5, 283.5, 283.5 88, 88, 88 283.5, 283.5, 283.5 88, 88, 88
71 220.5, 216, 216 80, 80, 80 220.5, 216, 216 80, 80, 80
72 238.5, 234, 238.5 88, 88, 96 238.5, 238.5, 238.5 88, 96, 96
73 211.5, 211.5, 202.5 88, 88, 88 211.5, 202.5, 202.5 88, 88, 88
74 234, 234, 234 88, 88, 88 234, 238.5, 234 88, 88, 88
75 216, 216, 216 88, 88, 88 216, 216, 216 88, 88, 88
76 238.5, 234, 238.5 80, 88, 88 238.5, 288, 238.5 80, 80, 88
77 202.5, 202.5, 202.5 88, 88, 88 202.5, 202.5, 202.5 88, 88, 88
78 283.5, 283.5, 283.5 88, 88, 88 283.5, 283.5, 283.5 88, 88, 88
79 211.5, 202.5, 202.5 88, 88, 88 211.5, 211.5, 202.5 88, 88, 88
80 238.5, 238.5, 238.5 88, 88, 88 238.5, 238.5, 238.5 88, 88, 88
81 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
82 283.5, 283.5, 283.5 88, 88, 88 283.5, 283.5, 283.5 88, 88, 88
83 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
84 234, 234, 234 88, 88, 88 234, 234, 234 88, 88, 88
85 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
86 234, 234, 234 80, 80, 80 234, 234, 234 80, 80, 80
87 211.5, 211.5, 202.5 88, 88, 88 211.5, 211.5, 202.5 88, 88, 88
88 234, 234, 234 88, 88, 88 234, 234, 234 88, 88, 88
89 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
90 229.5, 229.5, 229.5 80, 80, 88 229.5, 229.5, 229.5 80, 80, 88
91 216, 216, 211.5 88, 88, 88 216, 216, 211.5 88, 88, 88
92 220.5, 220.5, 220.5 88, 88, 88 220.5, 220.5, 220.5 88, 88, 88
93 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
94 220.5, 216, 220.5 88, 88, 88 220.5, 220.5, 220.5 88, 88, 88
95 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
96 220.5, 220.5, 220.5 88, 88, 88 220.5, 220.5, 220.5 88, 88, 88
97 211.5, 211.5, 211.5 88, 88, 88 211.5, 211.5, 211.5 88, 88, 88
98 229.5, 220.5, 220.5 88, 88, 88 229.5, 220.5, 220.5 88, 88, 88
99 220.5, 220.5, 216 88, 88, 88 220.5, 220.5, 216 88, 88, 88
100 220.5, 220.5, 220.5 88, 88, 88 220.5, 220.5, 220.5 88, 88, 88
110 216, 211.5, 211.5 88, 88, 88 216, 211.5, 211.5 88, 88, 88
120 216, 216, 216 88, 88, 88 216, 216, 216 88, 88, 88
130 216, 216, 216 88, 88, 88 216, 216, 216 88, 88, 88
150 216, 216, 216 88, 88, 88
200 216, 216, 216 88, 88, 88
250 216, 216, 216 88, 88, 88
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Table 7. Optimal aimpoints for player with skill σx = σy = 50.

S1 = St S1 = St + 60(t− 1)

St
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3

2 18, 18, 18 195, 185, 166 18, 18, 0 195, 195, 5000
3 18, 18, 18 166, 148, 116 18, 18, 18 166, 124, 80
4 144, 144, 144 185, 175, 175 144, 144, 0 185, 195, 5000
5 18, 18, 18 166, 140, 108 18, 18, 18 166, 124, 96
6 180, 175.5, 175.5 185, 166, 195 180, 180, 0 185, 175, 5000
7 355.5, 355.5, 355.5 140, 124, 103 355.5, 180, 355.5 140, 116, 96
8 54, 54, 58.50 185, 175, 185 54, 54, 0 185, 195, 5000
9 4.500, 4.500, 355.5 140, 124, 108 4.500, 4.500, 0 140, 116, 116
10 342, 342, 103.5 185, 175, 108 342, 342, 0 185, 185, 5000
11 193.5, 193.5, 193.5 140, 124, 108 193.5, 193.5, 193.5 140, 108, 116
12 90, 90, 90 185, 175, 185 90, 90, 0 185, 195, 5000
13 346.5, 337.5, 328.5 116, 103, 88 346.5, 337.5, 337.5 116, 103, 103
14 216, 216, 103.5 185, 185, 116 216, 216, 0 185, 195, 5000
15 198.0, 198.0, 198.0 124, 108, 103 198.0, 202.5, 198.0 124, 103, 116
16 252, 252, 247.5 175, 166, 195 252, 252, 0 175, 195, 5000
17 328.5, 337.5, 13.50 103, 88, 103 328.5, 337.5, 0 103, 88, 5000
18 306, 306, 306 175, 166, 195 306, 306, 306 175, 195, 195
19 157.5, 166.5, 175.5 103, 96, 108 157.5, 166.5, 157.5 103, 103, 124
20 108, 108, 103.5 175, 166, 195 108, 108, 103.5 175, 195, 195
21 175.5, 180, 175.5 116, 108, 124 175.5, 175.5, 175.5 116, 116, 124
22 270, 270, 270 175, 175, 195 270, 270, 270 175, 195, 195
23 198.0, 198.0, 184.5 108, 108, 116 198.0, 193.5, 184.5 108, 116, 116
24 324, 324, 328.5 175, 175, 195 324, 324, 328.5 175, 195, 195
25 175.5, 175.5, 175.5 108, 108, 116 175.5, 175.5, 175.5 108, 116, 116
26 72, 72, 72 175, 175, 195 72, 72, 72 175, 195, 195
27 193.5, 193.5, 184.5 103, 108, 116 193.5, 193.5, 184.5 103, 116, 108
28 288, 288, 288 175, 175, 185 288, 288, 288 175, 195, 195
29 175.5, 175.5, 175.5 96, 96, 108 175.5, 175.5, 175.5 96, 108, 103
30 126, 126, 126 175, 175, 195 126, 126, 126 175, 195, 195
31 193.5, 193.5, 184.5 96, 103, 103 193.5, 193.5, 184.5 96, 108, 103
32 234, 234, 238.5 175, 185, 185 234, 234, 238.5 175, 195, 185
33 175.5, 175.5, 175.5 80, 88, 96 175.5, 166.5, 175.5 80, 88, 88
34 157.5, 157.5, 157.5 175, 175, 185 157.5, 157.5, 157.5 175, 185, 195
35 184.5, 184.5, 184.5 103, 108, 108 184.5, 184.5, 184.5 103, 108, 103
36 36, 36, 36 175, 185, 185 36, 36, 36 175, 185, 185
37 184.5, 184.5, 184.5 72, 80, 80 184.5, 184.5, 184.5 72, 72, 72
38 198.0, 198.0, 198.0 175, 175, 185 198.0, 198.0, 198.0 175, 185, 195
39 184.5, 184.5, 184.5 96, 96, 96 184.5, 184.5, 184.5 96, 96, 88
40 0, 0, 0 175, 185, 175 0, 0, 0 175, 185, 185
41 175.5, 175.5, 175.5 80, 80, 72 175.5, 175.5, 180 80, 80, 64
42 94.50, 94.50, 103.5 103, 103, 108 94.50, 94.50, 103.5 103, 108, 124
43 193.5, 193.5, 184.5 96, 96, 88 193.5, 193.5, 193.5 96, 96, 88
44 40.50, 36, 22.50 96, 96, 88 40.50, 40.50, 324 96, 103, 96
45 184.5, 184.5, 180 72, 64, 64 184.5, 184.5, 180 72, 48, 48
46 94.50, 94.50, 274.5 108, 108, 88 94.50, 94.50, 283.5 108, 116, 96
47 202.5, 202.5, 193.5 64, 64, 64 202.5, 184.5, 166.5 64, 48, 48
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48 252, 247.5, 247.5 108, 108, 116 252, 252, 319.5 108, 116, 103
49 148.5, 148.5, 157.5 64, 64, 64 148.5, 144, 130.5 64, 64, 64
50 310.5, 328.5, 310.5 24, 24, 32 310.5, 319.5, 310.5 24, 24, 32
51 180, 180, 166.5 64, 64, 64 180, 166.5, 144 64, 56, 56
52 328.5, 328.5, 337.5 88, 88, 88 328.5, 328.5, 319.5 88, 88, 88
53 157.5, 157.5, 157.5 80, 80, 88 157.5, 157.5, 148.5 80, 88, 88
54 283.5, 283.5, 283.5 96, 96, 96 283.5, 283.5, 283.5 96, 103, 103
55 180, 180, 175.5 80, 80, 80 180, 166.5, 157.5 80, 80, 80
56 4.500, 4.500, 13.50 96, 96, 96 4.500, 13.50, 18 96, 96, 88
57 175.5, 175.5, 175.5 72, 72, 80 175.5, 166.5, 166.5 72, 80, 80
58 31.50, 31.50, 22.50 88, 88, 88 31.50, 31.50, 31.50 88, 96, 96
59 202.5, 202.5, 198.0 88, 88, 88 202.5, 198.0, 198.0 88, 88, 88
60 355.5, 355.5, 355.5 88, 88, 96 355.5, 346.5, 346.5 88, 88, 80
61 247.5, 252, 229.5 32, 32, 24 247.5, 234, 216 32, 32, 32
62 292.5, 292.5, 301.5 72, 72, 72 292.5, 301.5, 301.5 72, 72, 72
63 274.5, 274.5, 274.5 56, 56, 56 274.5, 283.5, 274.5 56, 64, 56
64 283.5, 283.5, 283.5 80, 80, 80 283.5, 283.5, 283.5 80, 88, 80
65 265.5, 265.5, 252 40, 40, 40 265.5, 256.5, 252 40, 40, 40
66 265.5, 265.5, 274.5 72, 72, 72 265.5, 270, 274.5 72, 80, 72
67 274.5, 274.5, 274.5 64, 72, 72 274.5, 274.5, 274.5 64, 72, 72
68 292.5, 288, 292.5 72, 72, 72 292.5, 292.5, 292.5 72, 72, 72
69 229.5, 220.5, 211.5 56, 64, 64 229.5, 216, 211.5 56, 64, 64
70 274.5, 274.5, 283.5 64, 64, 64 274.5, 274.5, 283.5 64, 64, 64
71 234, 229.5, 229.5 56, 56, 64 234, 229.5, 229.5 56, 56, 64
72 252, 252, 270 64, 64, 56 252, 265.5, 270 64, 64, 56
73 229.5, 220.5, 216 56, 64, 64 229.5, 220.5, 216 56, 64, 64
74 247.5, 247.5, 252 64, 64, 64 247.5, 252, 252 64, 64, 64
75 220.5, 216, 216 64, 64, 64 220.5, 220.5, 216 64, 64, 64
76 265.5, 256.5, 265.5 56, 56, 56 265.5, 270, 265.5 56, 56, 56
77 216, 211.5, 211.5 56, 56, 56 216, 211.5, 211.5 56, 56, 56
78 274.5, 274.5, 274.5 64, 64, 64 274.5, 274.5, 274.5 64, 64, 64
79 229.5, 220.5, 220.5 56, 56, 64 229.5, 229.5, 220.5 56, 56, 64
80 256.5, 256.5, 256.5 64, 64, 64 256.5, 256.5, 256.5 64, 64, 64
81 220.5, 220.5, 216 64, 64, 64 220.5, 216, 216 64, 64, 64
82 265.5, 265.5, 265.5 64, 64, 64 265.5, 265.5, 265.5 64, 64, 64
83 220.5, 216, 211.5 64, 64, 72 220.5, 216, 211.5 64, 64, 72
84 247.5, 247.5, 247.5 64, 64, 64 247.5, 247.5, 247.5 64, 64, 64
85 220.5, 220.5, 216 64, 64, 64 220.5, 220.5, 216 64, 64, 64
86 256.5, 256.5, 252 56, 56, 56 256.5, 256.5, 252 56, 56, 56
87 216, 216, 211.5 72, 72, 72 216, 211.5, 211.5 72, 72, 72
88 238.5, 238.5, 238.5 64, 64, 64 238.5, 238.5, 238.5 64, 64, 64
89 220.5, 220.5, 216 72, 72, 72 220.5, 216, 216 72, 72, 72
90 247.5, 247.5, 247.5 56, 56, 56 247.5, 247.5, 247.5 56, 56, 56
91 220.5, 220.5, 220.5 72, 72, 72 220.5, 220.5, 220.5 72, 72, 72
92 252, 238.5, 252 56, 64, 56 252, 252, 252 56, 56, 56
93 216, 216, 216 72, 72, 72 216, 216, 216 72, 72, 72
94 247.5, 247.5, 247.5 56, 56, 56 247.5, 247.5, 247.5 56, 56, 56
95 229.5, 220.5, 220.5 64, 64, 64 229.5, 220.5, 220.5 64, 64, 64
96 238.5, 238.5, 238.5 64, 64, 64 238.5, 238.5, 238.5 64, 64, 64
97 220.5, 220.5, 220.5 72, 72, 72 220.5, 220.5, 220.5 72, 72, 72
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98 238.5, 238.5, 238.5 64, 64, 64 238.5, 238.5, 238.5 64, 64, 64
99 234, 234, 229.5 64, 64, 64 234, 234, 229.5 64, 64, 64
100 238.5, 234, 234 64, 64, 64 238.5, 234, 234 64, 64, 64
110 229.5, 229.5, 229.5 64, 64, 64 229.5, 229.5, 229.5 64, 64, 64
120 229.5, 229.5, 229.5 64, 64, 64 229.5, 229.5, 229.5 64, 64, 64
130 229.5, 229.5, 229.5 64, 64, 64 229.5, 229.5, 229.5 64, 64, 64
150 229.5, 229.5, 229.5 64, 64, 64
200 229.5, 229.5, 229.5 64, 64, 64
250 229.5, 229.5, 229.5 64, 64, 64

Table 8. Optimal aimpoints for player with skill σx = σy = 80.

S1 = St S1 = St + 60(t− 1)

St
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3
Angle (deg)

t = 1, t = 2, t = 3
Distance (mm)

t = 1, t = 2, t = 3

2 18, 18, 18 195, 195, 166 18, 0, 0 195, 5000, 5000
3 18, 18, 18 175, 148, 108 18, 18, 18 175, 72, 24
4 144, 144, 144 195, 185, 175 144, 0, 0 195, 5000, 5000
5 18, 18, 18 166, 148, 103 18, 18, 13.50 166, 64, 32
6 175.5, 175.5, 175.5 195, 166, 195 175.5, 175.5, 0 195, 195, 5000
7 0, 355.5, 346.5 148, 132, 108 0, 346.5, 346.5 148, 72, 96
8 54, 58.50, 58.50 195, 185, 195 54, 0, 0 195, 5000, 5000
9 0, 0, 346.5 148, 124, 108 0, 355.5, 355.5 148, 103, 148
10 342, 342, 94.50 195, 185, 132 342, 342, 0 195, 195, 5000
11 198.0, 198.0, 193.5 140, 108, 116 198.0, 202.5, 193.5 140, 88, 166
12 90, 90, 90 195, 185, 195 90, 0, 0 195, 5000, 5000
13 319.5, 319.5, 324 124, 103, 108 319.5, 319.5, 0 124, 108, 5000
14 216, 216, 108 185, 185, 140 216, 216, 0 185, 185, 5000
15 229.5, 229.5, 211.5 88, 80, 96 229.5, 229.5, 198.0 88, 80, 195
16 256.5, 252, 247.5 185, 175, 195 256.5, 256.5, 0 185, 195, 5000
17 31.50, 18, 36 64, 56, 96 31.5, 18, 0 64, 56, 5000
18 306, 301.5, 306 175, 175, 195 306, 301.5, 0 175, , 195, 5000
19 157.5, 162, 157.5 96, 88, 124 157.5, 157.5, 148.5 96, 116, 166
20 108, 103.5, 103.5 175, 166, 195 108, 103.5, 103.5 175, 195, 195
21 175.5, 175.5, 166.5 103, 103, 140 175.5, 175.5, 166.5 103, 132, 156
22 270, 270, 274.5 175, 185, 195 270, 270, 274.5 175, 195, 195
23 184.5, 184.5, 180 88, 96, 124 184.5, 184.5, 175.5 88, 116, 140
24 324, 324, 328.5 175, 195, 195 324, 328.5, 328.5 175, 195, 195
25 180, 175.5, 175.5 88, 96, 116 180, 175.5, 175.5 88, 116, 132
26 72, 67.50, 67.50 175, 185, 195 72, 67.50, 67.50 175, 195, 195
27 184.5, 180, 180 72, 80, 96 184.5, 180, 180 72, 103, 103
28 288, 288, 288 175, 195, 195 288, 288, 288 175, 195, 195
29 180, 175.5, 175.5 64, 80, 88 180, 175.5, 175.5 64, 96, 96
30 126, 121.5, 121.5 185, 195, 195 126, 121.5, 121.5 185, 195, 195
31 193.5, 184.5, 180 72, 88, 88 193.5, 184.5, 180 72, 96, 88
32 234, 234, 238.5 185, 195, 195 234, 238.5, 238.5 185, 195, 195
33 193.5, 184.5, 184.5 40, 56, 72 193.5, 175.5, 180 40, 72, 64
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34 157.5, 157.5, 157.5 185, 185, 195 157.5, 157.5, 157.5 185, 195, 195
35 202.5, 198.0, 193.5 64, 72, 80 202.5, 198.0, 198.0 64, 80, 72
36 36, 36, 36 185, 195, 195 36, 36, 36 185, 195, 195
37 220.5, 202.5, 202.5 32, 40, 40 220.5, 202.5, 211.5 32, 40, 40
38 198.0, 198.0, 198.0 185, 185, 185 198.0, 198.0, 202.5 185, 195, 195
39 180, 180, 180 56, 64, 56 180, 180, 180 56, 64, 56
40 4.500, 0, 4.500 185, 195, 185 4.500, 0, 0 185, 195, 195
41 175.5, 175.5, 175.5 48, 48, 40 175.5, 175.5, 175.5 48, 48, 40
42 67.50, 67.50, 49.50 72, 72, 64 67.50, 72, 58.50 72, 80, 80
43 184.5, 184.5, 184.5 80, 72, 72 184.5, 184.5, 184.5 80, 80, 72
44 18, 18, 4.500 72, 72, 72 18, 18, 4.500 72, 80, 80
45 202.5, 202.5, 193.5 40, 40, 48 202.5, 202.5, 193.5 40, 40, 48
46 319.5, 319.5, 310.5 48, 48, 56 319.5, 306, 306 48, 64, 72
47 193.5, 193.5, 180 56, 56, 56 193.5, 184.5, 175.5 56, 56, 56
48 306, 310.5, 310.5 72, 72, 72 306, 310.5, 310.5 72, 80, 80
49 157.5, 157.5, 157.5 40, 40, 40 157.5, 148.5, 144 40, 48, 48
50 306, 306, 319.5 32, 32, 40 306, 306, 306 32, 48, 48
51 166.5, 166.5, 148.5 48, 48, 48 166.5, 157.5, 144 48, 48, 56
52 310.5, 310.5, 319.5 72, 72, 72 310.5, 310.5, 306 72, 72, 72
53 148.5, 148.5, 144 64, 64, 72 148.5, 144, 144 64, 72, 72
54 301.5, 301.5, 306 56, 48, 56 301.5, 288, 292.5 56, 64, 72
55 166.5, 166.5, 166.5 64, 64, 72 166.5, 166.5, 162 64, 72, 72
56 0, 0, 4.500 48, 48, 56 0, 4.500, 4.500 48, 56, 56
57 180, 180, 180 56, 56, 64 180, 180, 175.5 56, 56, 64
58 18, 18, 13.50 56, 56, 64 18, 18, 18 56, 64, 64
59 211.5, 202.5, 202.5 48, 48, 56 211.5, 202.5, 202.5 48, 56, 56
60 328.5, 328.5, 342 40, 40, 48 328.5, 328.5, 328.5 40, 40, 40
61 234, 234, 234 24, 24, 24 234, 220.5, 220.5 24, 32, 32
62 310.5, 310.5, 328.5 32, 32, 40 310.5, 319.5, 328.5 32, 40, 40
63 234, 234, 202.5 16, 16, 24 234, 211.5, 202.5 16, 16, 24
64 288, 288, 301.5 40, 40, 48 288, 301.5, 301.5 40, 48, 48
65 211.5, 211.5, 202.5 16, 16, 24 211.5, 202.5, 202.5 16, 24, 24
66 270, 270, 288 32, 32, 32 270, 288, 288 32, 32, 32
67 229.5, 220.5, 216 24, 24, 24 229.5, 216, 216 24, 24, 24
68 301.5, 310.5, 319.5 24, 24, 24 301.5, 319.5, 319.5 24, 24, 24
69 211.5, 211.5, 211.5 32, 32, 32 211.5, 211.5, 211.5 32, 32, 32
70 292.5, 292.5, 301.5 16, 16, 16 292.5, 301.5, 301.5 16, 16, 16
71 234, 220.5, 220.5 16, 24, 24 234, 220.5, 220.5 16, 24, 24
72 283.5, 283.5, 301.5 24, 24, 24 283.5, 301.5, 301.5 24, 24, 24
73 234, 229.5, 220.5 16, 24, 24 234, 229.5, 220.5 16, 24, 24
74 256.5, 270, 270 24, 24, 24 256.5, 270, 270 24, 24, 24
75 211.5, 211.5, 211.5 16, 24, 24 211.5, 211.5, 211.5 16, 24, 24
76 283.5, 301.5, 301.5 24, 24, 24 283.5, 301.5, 301.5 24, 24, 24
77 247.5, 234, 234 16, 16, 16 247.5, 234, 234 16, 16, 16
78 283.5, 283.5, 283.5 24, 24, 24 283.5, 283.5, 283.5 24, 24, 24
79 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
80 270, 270, 270 24, 24, 24 270, 270, 270 24, 24, 24
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81 229.5, 229.5, 229.5 24, 24, 24 229.5, 229.5, 229.5 24, 24, 24
82 270, 270, 270 24, 24, 16 270, 270, 270 24, 24, 16
83 229.5, 229.5, 229.5 24, 24, 24 229.5, 229.5, 229.5 24, 24, 24
84 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
85 229.5, 229.5, 229.5 24, 24, 24 229.5, 229.5, 229.5 24, 24, 24
86 270, 270, 270 16, 16, 16 270, 270, 270 16, 16, 16
87 247.5, 247.5, 247.5 16, 16, 16 247.5, 229.5, 247.5 16, 24, 16
88 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
89 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
90 270, 270, 270 16, 16, 16 270, 270, 270 16, 16, 16
91 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
92 270, 270, 270 16, 16, 16 270, 270, 270 16, 16, 16
93 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
94 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
95 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
96 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
97 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
98 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
99 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
100 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
110 256.5, 256.5, 256.5 16, 16, 16 256.5, 256.5, 256.5 16, 16, 16
120 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
130 247.5, 247.5, 247.5 16, 16, 16 247.5, 247.5, 247.5 16, 16, 16
150 247.5, 247.5, 247.5 16, 16, 16
200 247.5, 247.5, 247.5 16, 16, 16
250 247.5, 247.5, 247.5 16, 16, 16
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