1	Microplastics in Composts, Digestates and Food Wastes: A Review	
2	Katherine K. Porterfield ^{a,b} , Sarah A. Hobson ^c , Deborah A. Neher ^{d,b} , Meredith T. Niles ^{e,b} ,	
3	Eric D. Roy ^{a,b,c*}	
4		
5	^a Department of Civil and Environmental Engineering, University of Vermont, 33	
6	Colchester Ave, Burlington, VT, 05405, USA	
7	^b Gund Institute for Environment, University of Vermont, 210 Colchester Ave, Burlington,	
8	VT, 05405, USA	
9	^c Rubenstein School of Environment and Natural Resources, University of Vermont, 81	
10	Carrigan Drive, Burlington, VT, 05405, USA	
11	^d Department of Plant and Soil Science, University of Vermont, 63 Carrigan Drive,	
12	Burlington, VT, 05405, USA	
13	^e Department of Nutrition and Food Sciences & Food Systems Program, University of	
14	Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA	
15		
16	*Corresponding author:	
17	Dr. Eric D. Roy	
18	81 Carrigan Dr.	
19	Burlington, VT 05405 USA	
20	+1 802-656-7359	
21	eroy4@uvm.edu	
22		

Abstract

24	Diverting food waste from landfills to composting or anaerobic digestion can reduce	
25	greenhouse gas emissions, enable the recovery of energy in usable forms, and create	
26	nutrient-rich soil amendments. However, many food waste streams are mixed with plastic	
27	packaging, raising concerns that food waste-derived composts and digestates may	
28	inadvertently introduce microplastics into agricultural soils. Research on the occurrence of	
29	microplastics in food waste-derived soil amendments is in an early phase and the relative	
30	importance of this potential pathway of microplastics to agricultural soils needs further	
31	clarification. In this paper, we review what is known and what is not known about the	
32	abundance of microplastics in composts, digestates and food wastes and their effects on	
33	agricultural soils. Additionally, we highlight future research needs and suggest ways to	
34	harmonize microplastic abundance and ecotoxicity studies with the design of related	
35	policies.	

36

37 Key Words: microplastic, food waste, compost, digestate, circular economy

1. Introduction

39 Food waste constitutes approximately a quarter of all material landfilled in the US 40 (USEPA, 2020), and is readily converted to methane—a potent greenhouse gas—under the 41 anaerobic conditions found in landfills (Buzby et al., 2014). Diverting food waste from 42 landfills to anaerobic digestion and composting could reduce methane emissions and enable 43 the recovery of nutrients and energy in usable forms (USEPA, 2021a, 2021b). Both 44 processes produce soil amendments-digestate and compost, respectively-that can be 45 applied to agricultural lands to support soil health and fertility (Cheong et al., 2020; Kelley 46 et al., 2020; Roy, 2017). Anaerobic digestion provides the additional benefit of recovering 47 useable energy from food waste in the form of biogas (Xu et al., 2018). Growing 48 recognition of these co-benefits has prompted recent legislation regarding the diversion of 49 food waste from landfills (Golwala et al., 2021). In the US, this includes the state of 50 Vermont's Universal Recycling Law (2012), which mandated the diversion of all food 51 residuals (including those from households) from landfills in 2020, and California's Short-52 Lived Climate Pollutant Reduction Law (2016), which requires a 75% reduction in organic 53 material sent to landfills by 2025. 54 Contamination from plastic packaging is an emerging challenge for food waste

diversion initiation from plastic packaging is an emerging chaneling for rood waste diversion initiatives (O'Connor et al., 2022; USEPA, 2021a). The ubiquitous use of plastics in food packaging means that many pre- and post-consumer food waste streams are mixed with plastic packaging (USEPA, 2021a). Substantial fractions of wasted food from industrial and commercial settings can remain packaged for a variety of reasons (e.g., expiration, off-specification, contamination). For example, a study conducted for the US state of Vermont reported that an estimated 38% of food waste in the state was packaged

(DSM Environmental Services Inc, 2018). Recovering food waste in these cases requires some form of depackaging, using either mechanical depackagers or human labor, both of which are likely to achieve variable and imperfect separation efficiency (do Carmo Precci Lopes et al., 2019; Edwards et al., 2018). Source-separated post-consumer food waste can also be mixed with mis-sorted plastic packaging, with varying levels of contamination that may be influenced by factors such as population density (Friege and Eger, 2021) or food waste diversion program design (Dai et al., 2016).

68 Despite efforts to separate packaging from food waste streams, early evidence 69 suggests that microplastics (plastic particles <5 mm) may be present in many food waste-70 derived composts and digestates (Figure 1), and could be transferred to agricultural soils 71 when these amendments are land-applied (Kawecki et al., 2020; Weithmann et al., 2018). 72 Microplastics were first reported to be accumulating in the oceans in 2004 (Thompson et 73 al., 2004). In the two decades since, research on microplastics has focused on marine and 74 other aquatic environments, and it was not until 2012 that their presence in terrestrial 75 environments began to receive attention (Rillig, 2012). Since then, the number of studies 76 focusing on terrestrial environments has steadily increased, but still represent a small 77 fraction of all microplastic publications (5% as of 2019) (R. Qi et al., 2020). Previous 78 reviews focused on the abundance and sources of microplastics in soils as well as the 79 challenges of detecting and characterizing microplastics in complex organic matrices (e.g., 80 J. Li et al., 2020; Ruggero et al., 2020; Sun et al., 2019, 2022; J. Wang et al., 2019; Xu et 81 al. 2020; Y. Zhou et al., 2020; Zhu et al., 2019). Few studies to date have measured the 82 abundance of microplastics in food waste (Golwala et al., 2021), though a recent review 83 includes microplastics among emerging contaminants in food waste-derived composts and

84 digestates (O'Connor et al., 2022). The body of peer-reviewed research on soil-microplastic 85 interaction is still in its infancy as well, but several recent reviews summarize documented 86 effects on soil physical properties, biota and crops (e.g., Iqbal et al., 2020; Ng et al., 2018; 87 R. Qi et al., 2020; J. Wang et al., 2019; Xu et al. 2020; Y. Zhou et al. 2020; Zhu et al. 88 2019). In addition to the potential risks posed to soil-plant systems, plastic contamination 89 can impede circular economy efforts by making composts and digestates less attractive to 90 farmers and consumers (Friege & Eger, 2021; Roy et al., 2021). 91 Despite the lack of scientific consensus on the risks posed by microplastics in soils 92 and the relative input from organic amendments, a growing number of entities have 93 imposed regulatory thresholds for microplastics in composts and digestates (USEPA, 94 2021a). Given the lack of data on the extent, impact, and relative magnitude of microplastic 95 pollution from composts and digestates and absence of standardized methods for measuring 96 microplastics in complex organic materials (USEPA, 2021a), the environmental benefits of 97 existing regulations are uncertain. In this paper, we review the current state of 98 understanding of microplastic contamination in food wastes, composts, digestates, and soils 99 (Figure 2). This review complements previous reviews by focusing on food waste-derived 100 composts and digestates as a possible source of microplastics to agricultural soils, and 101 discussing the limitations of existing regulatory approaches to microplastic contamination 102 in composts and digestates. For a full description of the systematic review methods, see the 103 Supplementary Materials. We begin with an overview of the different methods that have 104 been used to measure microplastics in complex organic matrices, followed by a review of 105 microplastic abundance in food wastes, composts and digestates. Next, we discuss the 106 various inputs of microplastics to agricultural soils and their prevalence therein, followed

107	by an overview of the impacts of microplastics on soil-plant systems. Finally, we provide a
108	roadmap for future research and highlight ways to harmonize efforts to quantify
109	microplastics in food waste-derived materials, understand the effects of microplastics in
110	agricultural soils, and establish related policy.
111	2. Microplastic Measurement
112	Methods for measuring microplastics in solid organic matrices typically involve a
113	sequence of steps aimed at isolating, identifying and characterizing the microplastics in
114	each sample. Isolation methods include flotation, elutriation, centrifugation, digestion (with
115	e.g., H ₂ O ₂ , Fenton's reagent), and sieving (Junhao et al., 2021; Ruggero et al., 2020).
116	Identification methods include fluorescence microscopy, thermal degradation (e.g., TED-
117	GC-MS, PY-GC-MS), spectroscopy (e.g., Fourier Transform Infrared Spectroscopy
118	(FTIR), Raman) and visual analysis (with or without light microscopy) (Junhao et al., 2021;
119	Ruggero et al., 2020). It is common for multiple isolation and identification methodologies
120	to be combined in series (Ruggero et al., 2020). Studies of microplastic abundance in food
121	wastes, composts and digestates largely report values on a count per weight basis (Table 1),
122	with a smaller number of studies reporting values on a weight per weight (w/w) basis
123	(Table 2). Only 25% of studies reviewed report values in both units (Braun et al., 2021;
124	O'Brien, 2019; Schwinghammer et al., 2020; Sholokhova et al., 2021). For agricultural
125	soils, all studies reviewed reported microplastic abundance on a count per weight basis
126	(Table 3). Microplastics are typically characterized by size fraction, shape and polymer
127	type, with some studies further differentiating by color or other properties. Below, we
128	briefly summarize the most common methods used to quantify microplastics in food waste,

129	compost, digestate, and agricultural soil, as well as some of the challenges that arise due to
130	the lack of standardized methods. For a more detailed review of methodologies for
131	microplastic measurement in heterogeneous solid matrices, see Ruggero et al. (2020).
132	A limited number of studies have measured microplastic abundance in food waste
133	alone (Tables 1 and 2). In these studies, microplastic isolation was achieved by organic
134	matter oxidation with 30–35% H ₂ O ₂ (Ruggero et al., 2021; Schwinghammer et al., 2020),
135	density separation with a saturated salt solution (Golwala et al., 2021; Ruggero et al.,
136	2021), and/or wet sieving (do Carmo Precci Lopes et al., 2019; Kawecki et al., 2020;
137	Schwinghammer et al., 2020). Microplastics were identified using fluorescence microscopy
138	(Ruggero et al., 2021), visual analysis (do Carmo Precci Lopes et al., 2019; Golwala et al.,
139	2021; Kawecki et al., 2020; Schwinghammer et al., 2020), and/or FTIR (Golwala et al.,
140	2021; Ruggero et al., 2021; Schwinghammer et al., 2020).
141	More studies (albeit still a relatively small number) have examined microplastics in
142	food waste-derived composts or digestates than in food waste itself (Tables 1 and 2).
143	Among studies reporting microplastic abundance on a count per weight basis, isolation
144	strategies included sieving (Edo et al., 2021; O'Brien, 2019; Schwinghammer et al., 2020;
145	Weithmann et al., 2018), organic matter oxidation with 30% H ₂ O ₂ (Edo et al., 2021; Gui et
146	al., 2021; Meixner et al., 2020; Schwinghammer et al., 2020) or Fenton's reagent
147	(Sholokhova et al., 2021), density separation with a saturated salt solution (Braun et al.,
148	2021; Edo et al., 2021; Gui et al., 2021; Meixner et al., 2020; Sholokhova et al., 2021), and
149	centrifugation (van Schothorst et al., 2021). Light microscopy was used in most cases to
150	identify and count putative microplastics based on morphology, color, and response to heat,
151	resulting in values on a count per weight basis. Subsequently, FTIR was used to confirm

152 and identify the polymer type of some or all of the putative microplastics (Edo et al., 2021; 153 Gui et al., 2021; Schwinghammer et al., 2020; Sholokhova et al., 2021; van Schothorst et 154 al., 2021; Weithmann et al., 2018). Studies reporting microplastic abundance in composts 155 and digestates on a w/w basis employed more variable methods, including quantification of 156 a single polymer type using alkaline extraction followed by liquid chromatography with 157 UV detection (Müller et al., 2020), direct weighing of larger size fractions (Bläsing and 158 Amelung, 2018; Braun et al., 2021; Kawecki et al., 2020; O'Brien, 2019; Schwinghammer 159 et al., 2020), and estimation based on polymer densities for smaller size fractions (Braun et 160 al., 2021). 161 Similar methods were used to measure microplastics abundance in agricultural soils. 162 The most common recovery methods included density separation (e.g., Chen et al., 2020; 163 Corradini et al., 2021; Hu et al., 2021) and organic matter oxidation (e.g., Piehl et al., 164 2018). Most studies reviewed used both a digestion and density separation step (e.g., Feng 165 et al., 2021; Huang et al., 2021, 2020; Isari et al., 2021; Q. Li et al., 2021; Liu et al., 2018; 166 Rafique et al., 2020; Kumar and Sheela, 2021; J. Wang et al., 2021; J. Yang et al., 2021; L. 167 Yu et al., 2021; B. Zhou et al., 2020). The most common identification methods included 168 visual inspection under a light microscope (e.g., Chen et al., 2020; Corradini et al., 2021; 169 Feng et al., 2021; Isari et al., 2021; J. Wang et al., 2021; B. Zhou et al., 2020) and 170 photographing for photo software visual analysis (e.g., Feng et al., 2021; van Schothorst et 171 al., 2021; L. Yu et al., 2021), often followed by FTIR (e.g., Corradini et al., 2021; Liu et al., 172 2018; J. Wang et al., 2021), Raman spectroscopy (Chen et al., 2020) or test of response to 173 heat (Beriot et al., 2021; Huerta Lwanga et al., 2017; Meng et al., 2020; van Schothorst et 174 al., 2021) to confirm a portion of or all putative microplastics. The most common soil depth

175	considered was 30 cm (e.g., Harms et al., 2021; Huang et al., 2021; Isari et al., 2021;
176	Kumar and Sheela, 2021; Meng et al., 2020; van Schothorst et al., 2021) and the deepest
177	was 80 cm (Hu et al., 2021).
178	There are several challenges associated with current approaches to quantifying
179	microplastics. First, some of the most common methods used to isolate plastics from
180	complex organic matrices may not be appropriate for all polymer types. High-density
181	plastics (e.g., PVC, PET) may not be recovered with density separation and flotation
182	methods (Liu et al., 2018), and organic matter oxidation with 30% H ₂ O ₂ has been shown to
183	cause visual changes to PA, PP, PC, PET and linear LDPE (Nuelle et al., 2014). Another
184	major challenge is the lack of standard units for measuring microplastic abundance. There
185	is no consistent way to convert between microplastic count per weight and w/w values
186	without knowing or assuming shape, size and polymer type (Braun et al., 2021; Leusch and
187	Ziajahromi, 2021). This is problematic not only because it prevents comparison between
188	studies, but also because microplastic ecotoxicity thresholds and regulatory limits are
189	typically determined on a <i>w/w</i> basis (Leusch and Ziajahromi, 2021; USEPA, 2021a). This
190	disconnect makes it difficult to design studies that evaluate microplastic ecotoxicity risk at
191	real world concentrations, or in ways that can contribute directly to existing policy.
192	Variation in microplastic size fractions complicate comparison between studies too.
193	While it is widely accepted that microplastics are defined as particles <5 mm in size, there
194	is far less consensus on other size-based delineations (Gigault et al., 2018). Macroplastics
195	are sometimes defined as plastic particles >5 mm (Zhang et al., 2018), although other
196	studies further divide into meso- (5–25 mm) and macro- (>25 mm) plastics (Braun et al.,
197	2021; Golwala et al., 2021; Gui et al., 2021). The term "nanoplastic" remains under debate

198 as well and has been used to refer to plastic particles less than 0.1, 1, or even 1000 μ m 199 throughout the literature (Gigault et al., 2018; R. Qi et al., 2020). Most of the studies 200 reviewed here focused on microplastics >1 mm (Tables 1 and 2). However, some studies 201 have used lower bounds as small as 30 μ m (van Schothorst et al., 2021), while others report 202 no lower limit of detection at all (Tables 1 and 2). On the other end of the spectrum, some 203 studies include or even exclusively measure macroplastics (e.g., Kawecki et al., 2020). 204 These methodological differences likely exert a strong influence on total counts of 205 microplastic abundance, and underscore the need to develop standard methods for 206 measuring microplastics in complex organic matrices. This should include standard 207 sampling, isolation and identification protocols as well as known lower thresholds and 208 efficiencies.

209 3. Microplastic Abundance in Food Wastes, Composts and Digestates 210 We used a systematic literature search to identify scientific articles providing 211 primary data on microplastic abundance in food wastes, composts, and/or digestates (Table 212 S1). We intentionally excluded studies focusing on biosolids-derived organic amendments 213 unless there was co-digestion with food waste because microplastic occurrence in 214 wastewater has been reviewed elsewhere (Sun et al. 2019). We included studies of green 215 waste-derived composts (e.g., yard and landscape trimmings) for comparison with food 216 waste-derived composts. The studies that report microplastic abundance in terms of particles per weight (standardized to particles kg⁻¹ dry material where possible) are 217 218 summarized in **Table 1** and the studies that report microplastic abundance in terms of w/w219 (standardized to w/w dry material where possible) are summarized in **Table 2**. For

220	composts, digestates and food wastes, we report plastic abundance values that include all
221	size fractions measured for a given study. In some instances, this includes or is solely
222	comprised of macroplastics. All the studies we reviewed reported finding plastics in
223	composts, digestates and/or food wastes, even in cases where the compost was derived
224	exclusively from green waste. The most frequently identified polymers included
225	polyethylene (PE), polypropylene (PP) and polystyrene (PS) (Tables 1 and 2), which are
226	also some of the most common plastics used in food packaging (Ncube et al., 2020).
227	"Biodegradable" or "compostable" bioplastics, including polylactic acid (PLA), Mater-
228	Bi®, and cellulose-based polymers were identified as well (Tables 1 and 2).
229	Plastic abundance in food waste alone spanned five orders of magnitude on a count
230	per weight basis (Table 1), and three orders of magnitude on a w/w basis (Table 2). Values
231	for homogenized food waste ranged from ~40 (Schwinghammer et al., 2020) to $1,400 \pm 150$
232	particles kg ⁻¹ dry material (Ruggero et al., 2021); however, the former study only
233	considered larger particles $(1-5 \text{ mm})$ and the latter only considered smaller particles $(0.1-2 \text{ mm})$
234	mm). A study of grocery waste in the US found 300,000 particles kg ⁻¹ dry material
235	(Golwala et al., 2021). On a mass basis, plastic abundance ranged from ~0.025% w/w in
236	homogenized food waste (Schwinghammer et al., 2020) to 5.6% w/w in source-separated
237	household biowaste (do Carmo Precci Lopes et al., 2019).
238	Reported values also varied widely both within and between studies measuring
239	plastic abundance in composts-spanning seven orders of magnitude on a count per mass
240	basis (Table 1), and four orders of magnitude on a <i>w/w</i> basis (Table 2.). Plastic abundance
241	ranged from 12 ± 8 (Braun et al., 2021) to $82,800 \pm 17,400$ (Huerta-Lwanga et al., 2021)
242	particles dry kg ⁻¹ green waste-derived composts and from 20 (Weithmann et al., 2018) to

243 30,000 (Edo et al., 2021) particles dry kg⁻¹ of composts made with food waste, with one 244 study reporting 4.28 x 10⁷ particles dry kg⁻¹ of a compost of unknown origin (Meixner et 245 al., 2020). On a mass basis, plastic abundance ranged from 0.00024% *w/w* in a green waste-246 derived compost (Bläsing and Amelung, 2018) to $0.1358 \pm 0.0596\%$ *w/w* in a compost 247 made from household biowaste (Braun et al., 2021).

248 Plastic levels in digestates were comparable to those found in composts in both 249 magnitude and variability—also spanning seven orders of magnitude on a count per mass 250 basis (**Table 1**), and just two orders of magnitude on a w/w basis (**Table 2**), albeit with fewer studies. Plastic counts typically ranged between 70 and 1670 particles dry kg⁻¹ in 251 252 digestates derived from commercial organic waste and co-digested manure and food waste, 253 respectively (O'Brien, 2019; Weithmann et al., 2018), with one study reporting up to 38.7 x 10^7 particles dry kg⁻¹ of a digestate of unknown origin (Meixner et al., 2020). On a *w/w* 254 basis, plastic estimates ranged from 0.01% w/w in digestate derived from the organic 255 256 fraction of municipal waste (Schwinghammer et al., 2020), to 0.25% w/w in digestate 257 derived from co-digested dairy manure and food waste (O'Brien, 2019).

With such a limited number of studies reporting microplastic abundance in composts, digestates and food wastes, caution should be taken when drawing any conclusions. Nonetheless, we observed the following patterns: 1) Microplastic abundance varies widely both within and between studies of food wastes, composts, and digestates, 2) The overlapping ranges of microplastic abundance in food-waste derived composts and digestates indicates that neither practice necessarily produces contaminant-free soil amendments, and 3) The presence of microplastics in green-waste derived composts

indicates that packaging from food waste is not the only possible source of plastics inorganic soil amendments.

267 4. Microplastic Inputs to Agricultural Soils 268 Land application of contaminated organic amendments is just one of multiple 269 potential pathways by which microplastics may enter agricultural soils. Primary 270 microplastics-those that are intentionally engineered to be small (Golwala et al., 2021)-271 are directly applied to agricultural soils in the form of plastic-coated controlled-release 272 fertilizers, treated seeds, and capsule suspension plant protection products (ECHA, 2020; 273 Stubenrauch and Ekardt, 2020). Secondary microplastics-which form from the breakdown 274 of macroplastics—can be unintentionally added to soils in the form of contaminated soil 275 amendments (e.g., biosolids, composts, digestates) or through the breakdown of plastic 276 mulching (Bläsing and Amelung, 2018; Corradini et al., 2021; Zhu et al., 2019). Plastic 277 mulching made with LDPE or biodegradable polymers is often used in agriculture to boost 278 crop yields, suppress weeds, retain water and fumigants and reduce fertilizer and herbicide 279 requirements (Brodhagen et al., 2017; Serrano-Ruiz et al., 2021). However, it can also 280 fragment over time and release microplastics into agricultural soils, and in some cases is 281 even tilled into soils intentionally at the end of the season (Brodhagen et al., 2017; Feng et 282 al., 2021; Serrano-Ruiz et al., 2021; B. Zhou et al., 2020). Other sources of secondary 283 microplastics include irrigation water (B. Zhou et al., 2020), roads (Chen et al., 2020; 284 Sommer et al., 2018), litter (de Souza Machado et al., 2018a), and atmospheric deposition 285 (Bianco and Passananti, 2020; Scheurer and Bigalke, 2018; J. Zhang et al., 2020).

However, these other sources will not all influence microplastic abundance at a specific site(Corradini et al., 2021; Yu et al., 2021) and are beyond the scope of this review.

288

5. Microplastic Abundance in Agricultural Soils

289 Understanding existing levels of microplastic pollution in agricultural soils is 290 required to assess potential future impacts of microplastics in food waste-derived compost 291 and digestates. We conducted a systematic literature search to identify studies providing 292 primary data on microplastic abundance in agricultural soils (Table S1). Because plastic 293 mulching contributes microplastics to agricultural soils (Feng et al., 2021; B. Zhou et al., 294 2020), we collated soil microplastic abundance values by plastic mulch use history. 295 Microplastic (<5 mm) abundance values are reported in Table S2 for soils where plastic 296 mulching was used, in Table S3 for soils where plastic mulching was not used, in Table S4 297 where plastic mulching was used on some but not all sites and in Table S5 where plastic 298 mulch use was not specified. Results from these studies are synthesized in **Table 3**. 299 Microplastic abundance in agricultural soils typically ranged in the 10s to 1000s of particles dry kg⁻¹ in soils where plastic mulching was used as well as soils where it was not 300 301 used (Table 3). These ranges overlap with the range of reported plastic content for food 302 waste-derived composts and digestates (Table 1). More research is needed to understand 303 the importance of different pathways of microplastics introduction to agricultural soils, 304 including the use of soil amendments derived from food waste. This will require knowledge 305 of the magnitudes of existing microplastic inputs from all possible sources and the use of 306 reference soils (i.e., experimental controls) to help delineate microplastic inputs from

various sources (e.g., distinguish between microplastics introduced by soil amendments
versus atmospheric deposition) (Harms et al., 2021; Kumar and Sheela, 2021).

309

6. Impact of Microplastics in Agricultural Soils

310 Recent peer-reviewed literature documents several negative effects of microplastics 311 in agricultural soils, but these effects are still not well understood. Microplastic impacts in 312 soil vary depending on several factors, including polymer type, size and shape, soil 313 characteristics, and microplastic dose and exposure time (de Souza Machado et al., 2018b; 314 Lozano et al., 2021; Zhao et al., 2021). Degradation times for plastic in soil are long (Roy 315 et al., 2011), resulting in accumulation through time, especially in surface soils (Yu and 316 Flury, 2021). Plastic degradation in soil can result in fragmentation of macroplastics into 317 micro- or nano-plastics and the release of toxic compounds through time (Rillig et al., 318 2021). Here we provide a brief overview of available information on microplastic impacts 319 on soil physical properties, crops and biota.

320 **6.1. Physical Effects**

321 Microplastics have variable effects on soil physical properties. They are shown to 322 increase soil water repellence (Y. Qi et al., 2020) and porosity (Y. Qi et al., 2020; Zhang et

- al., 2019). Soil bulk density (de Souza Machado et al., 2019, 2018b; Mbachu et al., 2021;
- Y. Qi et al., 2020) and aggregate size (Kim et al., 2021; Lozano et al., 2021) tend to
- 325 decrease with addition of microplastics. Microplastics have variable effects on water
- holding capacity (de Souza Machado et al., 2019, 2018b; Y. Qi et al., 2020). In most cases,
- 327 the observed physical effects vary depending on microplastic size, shape and polymer type
- 328 and soil conditions. Polymer type can, for example, determine the effects of microplastics

329	on soil bulk density, which in turn can influence water infiltration, surface runoff, and
330	erosion (de Souza Machado et al., 2018b; Jiang et al., 2017; Kim et al., 2021; Mbachu et
331	al., 2021; Y. Qi et al., 2020; Zhang et al., 2019). Plastic particle size may also mediate
332	effects on soil physical properties. For example, the saturated hydraulic conductivity of a
333	sandy soil increased with the addition of LDPE and starch-based macroplastics, but
334	decreased with the addition of the same polymers as microplastics (Y. Qi et al., 2020).
335	Other studies have found no significant effects on soil physical properties with the addition
336	of microplastics (Huerta-Lwanga et al., 2021).
337	6.2. Ecotoxicity
338	Ecotoxicity in soils may result from either introduction of microplastics themselves
339	or associated contaminants. Plastics contain additives such as plasticizers, pigments, and
340	thermal stabilizers which are not chemically bound to the polymers and can therefore be
341	lost more easily to the environment (Blackburn and Green, 2021; Billings et al., 2021;
342	Hahladakis et al., 2018). Plastics can also adsorb other chemical contaminants (e.g., per-
343	and polyfluoroalkyl substances) which may confound impacts on soil biota (Hahladakis et
344	al., 2018; Sobhani et al., 2021; J. Yang et al., 2021). While the release rates and
345	bioavailability of chemical contaminants associated with microplastics are not yet well
346	understood, there is evidence that microplastic effects on contaminant mobility are likely
347	negligible (Castan et al., 2021; Gouin et al., 2011, 2019).
348	Effects of microplastics on soil biota are documented in recent literature (Guo et al.,
349	2020; W. Wang et al., 2020). For example, microplastics affect species dominance,
350	diversity, and richness at microplastic doses in soils of 0.2–5% w/w (Fei et al., 2020; Ren et

351	al., 2020; J. Wang et al., 2020; Y. Wang et al., 2021; Yi et al., 2021) and overall microbial
352	biomass at 1% w/w (Blöcker et al., 2020). In some cases, observed effects are clearly
353	deleterious (J. Wang et al., 2020; Y. Wang et al., 2021). However, shifts in the soil
354	microbial community do not necessarily equate to changes in function. There is
355	considerable debate about the ability of microbial community composition and structure to
356	predict ecosystem function (Hicks et al., 2021). Soil macrofauna are also affected by
357	microplastics. For example, microplastics cause oxidative stress and abnormal gene
358	expression at a dosing level of 0.25% <i>w/w</i> for earthworms (<i>Eisenia fetida</i>) (Cheng et al.,
359	2020; B. Li et al., 2021). Microplastic exposure perturbs the gut microbiota of some soil
360	collembolans (Folsomia candida) (Zhu et al., 2018, Ju et al., 2019) and inhibits the
361	movement of others (Lobella sokamensis) (Kim and An, 2019). Microplastics consumed by
362	soil organisms can enter food chains and bioaccumulate, as was observed for earthworms
363	and chickens (Gallus domesticus) (Huerta-Lwanga et al., 2017). Microplastics introduced
364	into agricultural soils or in food waste can also be ingested by livestock and have been
365	found in the manure of sheep (Ovis aries) (Beriot et al. 2021) and pigs (Sus scrofa
366	domesticus) (J. Yang et al., 2021).
367	Recent research efforts also aim to assess the effect of microplastics on plant growth
368	in agroecosystems. Delayed or reduced germination rates have been observed for rye grass
369	(Lolium perenne) (Boots et al., 2019) and garden cress (Lepidium sativum) (Bosker et al.,
370	2019; Pflugmacher et al., 2020) in the presence of microplastics. Microplastics also reduced

- 371 root, shoot and/or total biomass growth at dosing rates of 1-2% w/w for wheat (*Triticum*
- 372 *aestivum*) (Pflugmacher et al., 2021; Qi et al., 2018), 0.1–10% *w/w* for garden cress
- 373 (Pflugmacher et al., 2020), 1–2% *w/w* for Chinese cabbage (*Brassica chinesis*) (M. Yang et

374 al., 2021), 0.1–1% w/w for corn (Zea mays) (F. Wang et al., 2020), 0.2–0.6% w/w for rice 375 (Oryza sativa) (Liu et al., 2021), 2% w/w for spring onion (Allium fistolsum) (de Souza 376 Machado et al., 2019), and 1% w/w for lime trees (Citrus aurantium) (Enyoh et al., 2020). 377 However, in some instances, biomass reductions were only observed for some polymer 378 types but not others (de Souza Machado et al., 2019; Qi et al., 2018; F. Wang et al., 2020; 379 M. Yang et al., 2021), at certain sizes but not others (Z. Li et al., 2020; M. Yang et al., 380 2021), or under certain soil pH conditions (Liu et al., 2021). Mechanisms by which 381 microplastics affect plant growth are being explored and could be linked to oxidative 382 damage (Dong et al., 2021; Jiang et al., 2019; Pignattelli et al., 2021). Recent studies report 383 finding nanoplastics in tissues of cultivated crops (Azeem et al., 2021), including wheat (L. 384 Li et al., 2020; Lian et al., 2020), radish (Raphanus sativus) (Tympa et al., 2021), lettuce 385 (Latuca sativa) (Li et al., 2019; L. Li et al., 2020), corn (Sun et al., 2021), and cucumber 386 (cucumis sativus) (Z. Li et al., 2021). Transpirational pull is credited as the main driving 387 force for uptake of nanoplastics from plant roots into above-ground biomass in wheat (L. Li 388 et al., 2020) and lettuce (Li et al., 2019). Nanoplastics have also been shown to translocate 389 from plant leaves to roots via vascular bundles in maize (Sun et al., 2021). Further research 390 is needed to better understand the effects of plastic size, shape, and charge on plastic uptake 391 by plants (Sun et al., 2020).

While several studies report potential negative effects of microplastics in soil-plant systems, the existing data are not sufficient to fully evaluate the risks of microplastics in agricultural soils (Gouin et al., 2019, USEPA, 2021a). For instance, the lack of common units between microplastic ecotoxicity and abundance studies precludes evaluation of the environmental relevance of the microplastic doses at which negative effects are observed

397	(Leusch and Ziajahromi, 2021). Connors et al. (2017) suggest nine areas of improvement to
398	advance the quality of environmental microplastic research, which we suggest should be
399	applied in the context of food waste-derived soil amendments and agricultural soils: "1)
400	Environmental relevance of test concentrations, 2) Provision of sufficient detail for
401	converting particle concentrations, 3) Thorough characterization and/or description of test
402	particles, 4) Detailed reporting of particle preparation techniques and [stability], 5)
403	Analytical verification of test concentrations, 6) Consideration of the environmental
404	relevance of particle size, 7) Inclusion of appropriate controls, 8) Consideration of endpoint
405	applicability to environmental risk assessment framework, and 9) Reporting findings
406	accurately, without conjecture beyond experimental limits."

7. Harmonizing Science and Policy

Prevailing scientific uncertainty creates a challenging context for policy design 408 409 related to microplastics and food waste diversion efforts. Scientists continue to debate the 410 risk posed by microplastics generally and the best course of action for risk management, 411 with differing viewpoints (Backhaus and Wagner, 2020; Burton, 2017; Coffin et al., 2021; 412 Gouin et al., 2019; Hale, 2018; Kramm et al., 2018). Most scientists continue to frame 413 microplastic risks as uncertain, which stands in contrast to the prevailing media narrative 414 that microplastics are emphatically harmful to humans and the environment (Völker et al., 415 2020). Multiple entities currently regulate microplastics in composts and/or digestates, 416 despite the lack of scientific consensus on the risks posed by microplastics in soils more 417 broadly and the relative contribution of contaminated organic amendments specifically. 418 Thirteen states in the US (California, Iowa, Maryland, Minnesota, Montana, New

419	Hampshire, New York, North Carolina, Ohio, Rhode Island, South Carolina, Washington,
420	and Wisconsin) have enacted regulatory limits on physical contaminants in compost, and
421	the state of California regulates physical contaminants in both composts and digestates
422	(USEPA, 2021a). Total physical contaminant limits (a category encompassing glass, metal,
423	and other human-made inert materials in addition to plastics) range from 0.5 to 6% w/w
424	with most falling in the 1–2% w/w range (USEPA, 2021a). Four of the thirteen states—
425	California, Maryland, Ohio, Washington-have additional limits specifically for plastics or
426	film plastics ranging from 0.1 to 2% <i>w/w</i> (USEPA, 2021a). Only five states specify a lower
427	size threshold for consideration—4 mm in all cases—though testing requirements and
428	detection limitations may implicitly determine the size fractions measured (USEPA,
429	2021a). Compost and digestate regulations tend to be more stringent outside the US, with
430	limits largely falling between 0.25 and 0.5% w/w for total physical contaminants and
431	between 0.05 and 0.5% w/w for plastics or film plastics (USEPA, 2021a). Most countries
432	set the lower size threshold for consideration at 2 mm except for Germany, which regulates
433	particles >1 mm (USEPA, 2021a).

434 There are multiple limitations to the existing regulatory approach to microplastic 435 contamination in composts and digestates. First, regulatory standards are in units of w/w, 436 while 50% of the studies we reviewed reported microplastic abundance in composts and/or 437 digestates exclusively on a count per weight basis (Table 1). This results in a mismatch 438 between science and policy whereby many existing studies cannot accurately inform 439 regulatory limits. Second, due to an incomplete understanding of the risks posed by microplastics in soils under different conditions (e.g., dosing rates, edaphic factors, polymer 440 441 types, size distributions etc.), allowable contamination levels and lower particles size

442 thresholds may instead be determined by aesthetic concerns and detection limits rather than 443 known risk (USEPA, 2021a). Third, regulating microplastics content in finished products, 444 without considering the fertilizer value of the material or application rate, does not limit the 445 ultimate flow of microplastics to soils via organic amendments. For example, under the 446 current regulatory structure, it may be permissible to land apply a large amount of 447 microplastics in a dilute form, but not a smaller amount of microplastics in a more 448 concentrated form. Finally, regulating contamination levels in organic amendments alone 449 may be insufficient to fully mitigate the flow of microplastics into agricultural soils given 450 the existence of other entry points. There are other examples of narrowly focused 451 microplastics policy that similarly do not address multiple pathways of introduction to the 452 environment. For example, current or proposed policies in the US, EU, China and South 453 Korea restrict the use of primary microplastics in cosmetic products, but exclude other 454 sources of microplastics (e.g., plastic mulching, plastic packaging, tires) (Mitrano and 455 Wohlleben, 2020).

456 There are, however, existing regulations that could be applicable to microplastics 457 and should be considered in current discussions. Certain heavy metals in biosolids, for 458 example, underwent rigorous toxicity assessments to determine allowable contamination 459 thresholds grounded in scientific evidence (Lu et al., 2012). Currently, the same is not true 460 for microplastics in composts and digestates; thus, current regulatory thresholds lack a 461 scientific basis, and the benefits of those thresholds are largely unknown. Given the 462 persistence of microplastics, uncertainties regarding toxicity, and the upward trend in both 463 plastic production and environmental detection, some have argued for a more precautionary 464 approach than the traditional regulatory paradigms for threshold contaminants (Coffin et

al., 2021). This type of approach would create tradeoffs in the context of present-day food
waste diversion efforts. For example, how should the more certain costs of methane
emissions from landfilled food waste be weighed against the uncertain impacts of terrestrial
microplastic pollution in cases where it is not possible to have 100% microplastic-free food
waste? It is critical to consider counterfactual scenarios given the options available to
clarify the consequences of microplastic regulations.

471 We propose the following path forward to better align efforts to quantify 472 microplastics in organic amendments, understand their effects in soils, and establish related 473 policy. First, standard methods for measuring microplastics in food wastes, composts, 474 digestates and soils must be developed (Figure 3A). Second, using these standard methods, 475 future studies should characterize both the extent of microplastic contamination in food 476 wastes, composts, digestates, and soils as well as the sources, impacts, and most effective 477 strategies to mitigate this contamination (Figure 3B). Third, if toxicity is well established, 478 evidence- and risk-based regulatory measures can be implemented to reduce microplastic 479 contamination from all sources (Figure 3C).

480

8. Conclusions

Microplastic abundance varies widely within and among studies of food wastes, composts, digestates, and agricultural soils. There is some evidence that microplastics may adversely affect soils and plants; however, lack of common units between microplastic ecotoxicity and abundance studies precludes rigorous assessment. Existing regulations establish weight-based limits in finished composts and digestates, which is incongruent with many scientific studies that use count-based estimates of microplastic abundance.

487	Further work is necessary to elucidate tradeoffs associated with diverting food waste to
488	agricultural soils and to design policies that maximize the benefits of recovering food waste
489	while minimizing risk of microplastic pollution in soils.
400	Aaknowledgements
490	Acknowledgements
491	This work was supported by the Gund Institute for Environment at the University of
492	Vermont (Gund Barrett PhD Fellowship for K.P.) and Casella Waste Systems, Inc.
493	(Sustainable Materials Management Graduate Fellowship for S.H.). The funders had no
494	role in the literature collection and interpretation, decision to publish, or preparation of the
495	manuscript.

497		References
498	1.	Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Jiangcuo, G.D., Azeem, K.,
499		Ishfaq, M., Shakoor, A., Ayaz, M., Xu, M., Rui, Y., 2021. Uptake and
500		accumulation of nano/microplastics in plants: a critical review. Nanomaterials
501		11, 2935. https://doi.org/10.3390/nano11112935
502	2.	Backhaus, T., Wagner, M., 2020. Microplastics in the environment: much ado about
503		nothing? a debate. Glob. Chall. 4, 1900022.
504		https://doi.org/10.1002/gch2.201900022
505	3.	Beriot, N., Peek, J., Zornoza, R., Geissen, V., Huerta Lwanga, E., 2021. Low
506		density-microplastics detected in sheep faeces and soil: A case study from the
507		intensive vegetable farming in Southeast Spain. Sci. Total Environ. 755,
508		142653. https://doi.org/10.1016/j.scitotenv.2020.142653
509	4.	Bianco, A., Passananti, M., 2020. Atmospheric Micro and Nanoplastics: An
510		Enormous Microscopic Problem. Sustainability 12, 7327.
511		https://doi.org/10.3390/su12187327
512	5.	Billings, A., Jones, K.C., Pereira, M.G., Spurgeon, D.J., 2021. Plasticisers in the
513		terrestrial environment: sources, occurrence and fate. Environ. Chem. 18, 111-
514		130. https://doi.org/10.1071/EN21033
515	6.	Blackburn, K., Green, D., 2021. The potential effects of microplastics on human
516		health: what is known and what is unknown. Ambio.
517		https://doi.org/10.1007/s13280-021-01589-9

518	7.	Bläsing, M., Amelung, W., 2018. Plastics in soil: analytical methods and possible
519		sources. Sci. Total Environ. 612, 422–435.
520		https://doi.org/10.1016/j.scitotenv.2017.08.086
521	8.	Blöcker, L., Watson, C., Wichern, F., 2020. Living in the plastic age - different
522		short-term microbial response to microplastics addition to arable soils with
523		contrasting soil organic matter content and farm management legacy. Environ.
524		Pollut. 267, 115468. https://doi.org/10.1016/j.envpol.2020.115468
525	9.	Boots, B., Russell, C.W., Green, D.S., 2019. Effects of microplastics in soil
526		ecosystems: above and below ground. Environ. Sci. Technol. 53, 11496-
527		11506. https://doi.org/10.1021/acs.est.9b03304
528	10.	Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P., Vijver, M.G., 2019.
529		Microplastics accumulate on pores in seed capsule and delay germination and
530		root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere
531		226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163
532	11.	Braun, M., Mail, M., Heyse, R., Amelung, W., 2021. Plastic in compost: prevalence
533		and potential input into agricultural and horticultural soils. Sci. Total Environ.
534		760, 143335. https://doi.org/10.1016/j.scitotenv.2020.143335
535	12.	Brodhagen, M., Goldberger, J.R., Hayes, D.G., Inglis, D.A., Marsh, T.L., Miles, C.,
536		2017. Policy considerations for limiting unintended residual plastic in
537		agricultural soils. Environ. Sci. Pol. 69, 81-84.
538		https://doi.org/10.1016/j.envsci.2016.12.014

539	13.	Burton, G.A., 2017. Stressor exposures determine risk: so, why do fellow scientists
540		continue to focus on superficial microplastics risk? Environ. Sci. Technol. 51,
541		13515-13516. https://doi.org/10.1021/acs.est.7b05463
542	14.	Buzby, J.C., Farah-Wells, H., Hyman, J. The Estimated Amount, Value, and
543		Calories of Postharvest Food Losses at the Retail and Consumer Levels in the
544		United States. EIB-121, US Department of Agriculture, Economic Research
545		Service, February 2014. https://doi.org/10.2139/ssrn.2501659
546	15.	Castan, S., Henkel, C., Hueffer, T., Hofmann, T., 2021. Microplastics and
547		nanoplastics barely enhance contaminant mobility in agricultural soils.
548		Commun. Earth Environ. 2, 193. https://doi.org/10.1038/s43247-021-00267-8
549	16.	Chen, Y., Leng, Y., Liu, X., Wang, J., 2020. Microplastic pollution in vegetable
550		farmlands of suburb Wuhan, central China. Environ. Pollut. 257, 113449.
551		https://doi.org/10.1016/j.envpol.2019.113449
552	17.	Cheng, Y., Zhu, L., Song, W., Jiang, C., Li, B., Du, Z., Wang, Jinhua, Wang, Jun,
553		Li, D., Zhang, K., 2020. Combined effects of mulch film-derived microplastics
554		and atrazine on oxidative stress and gene expression in earthworm (Eisenia
555		fetida). Sci. Total Environ. 746, 141280.
556		https://doi.org/10.1016/j.scitotenv.2020.141280
557	18.	Cheong, J.C., Lee, J.T.E., Lim, J.W., Song, S., Tan, J.K.N., Chiam, Z.Y., Yap,
558		K.Y., Lim, E.Y., Zhang, J., Tan, H.T.W., Tong, Y.W., 2020. Closing the food
559		waste loop: food waste anaerobic digestate as fertilizer for the cultivation of
560		the leafy vegetable, xiao bai cai (Brassica rapa). Sci. Total Environ. 715,
561		136789. https://doi.org/10.1016/j.scitotenv.2020.136789

562	19.	Coffin, S., Wyer, H., Leapman, J.C., 2021. Addressing the environmental and health
563		impacts of microplastics requires open collaboration between diverse sectors.
564		PLOS Biology 19, e3000932. https://doi.org/10.1371/journal.pbio.3000932
565	20.	Connors, K.A., Dyer, S.D., Belanger, S.E., 2017. Advancing the quality of
566		environmental microplastic research. Environ. Toxicol. Chem. 36, 1697-1703.
567		https://doi.org/10.1002/etc.3829
568	21.	Corradini, F., Casado, F., Leiva, V., Huerta-Lwanga, E., Geissen, V., 2021.
569		Microplastics occurrence and frequency in soils under different land uses on a
570		regional scale. Sci. Total Environ. 752, 141917.
571		https://doi.org/10.1016/j.scitotenv.2020.141917
572	22.	Dai, Y.C., Lin, Z.Y., Li, C.J., Xu, D.Y., Huang, W.F., Harder, M.K., 2016.
573		Information strategy failure: personal interaction success, in urban residential
574		food waste segregation. J. Clean. Prod. 134, 298-309.
575		https://doi.org/10.1016/j.jclepro.2015.12.104
576	23.	de Souza Machado, A.A., Kloas, W., Zarfl, C., Hempel, S., Rillig, M.C., 2018a.
577		Microplastics as an emerging threat to terrestrial ecosystems. Global Change
578		Biol. 24, 1405–1416. https://doi.org/10.1111/gcb.14020
579	24.	de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B.,
580		Faltin, E., Becker, R., Görlich, A.S., Rillig, M.C., 2019. Microplastics can
581		change soil properties and affect plant performance. Environ. Sci. Technol. 53,
582		6044-6052. https://doi.org/10.1021/acs.est.9b01339
583	25.	de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R.,
584		Rillig, M.C., 2018b. Impacts of microplastics on the soil biophysical

585		environment. Environ. Sci. Technol. 52, 9656–9665.
586		https://doi.org/10.1021/acs.est.8b02212
587	26.	do Carmo Precci Lopes, A., Robra, S., Müller, W., Meirer, M., Thumser, F., Alessi,
588		A., Bockreis, A., 2019. Comparison of two mechanical pre-treatment systems
589		for impurities reduction of source-separated biowaste. Waste Manag. 100, 66-
590		74. https://doi.org/10.1016/j.wasman.2019.09.003
591	27.	Dong, Y., Song, Z., Liu, Y., Gao, M., 2021. Polystyrene particles combined with di-
592		butyl phthalate cause significant decrease in photosynthesis and red lettuce
593		quality. Environ. Pollut. 278, 116871.
594		https://doi.org/10.1016/j.envpol.2021.116871
595	28.	DSM Environmental Services Inc, 2018. 2018 Vermont Waste Characterization.
596	29.	ECHA, 2020. Background Document to the Opinion on the Annex XV report
597		proposing restrictions on intentionally added microplastics, ECHA/RAC/RES-
598		O-000006790-71-01/F.
599	30.	Edo, C., Fernández-Piñas, F., Rosal, R., 2021. Microplastics identification and
600		quantification in the composted organic fraction of municipal solid waste. Sci.
601		Total Environ. 151902. https://doi.org/10.1016/j.scitotenv.2021.151902
602	31.	Edwards, J., Othman, M., Crossin, E., Burn, S., 2018. Life cycle assessment to
603		compare the environmental impact of seven contemporary food waste
604		management systems. Bioresour. Technol. 248, 156-173.
605		https://doi.org/10.1016/j.biortech.2017.06.070
606	32.	Enyoh, C.E., Verla, A.W., Verla, E.N., Enyoh, E.C., 2020. Effect of macro- and
607		micro-plastics in soil on quantitative phytochemicals in different part of

608		juvenile lime tree (Citrus aurantium). Int. J. Environ. Res. 14, 705–726.
609		https://doi.org/10.1007/s41742-020-00292-z
610	33.	Fei, Y., Huang, S., Wang, J., Luo, Y., Zhang, H., 2020. Microplastics contamination
611		in the protected agricultural soils and its effects on bacterial community
612		diversity. Chin. Sci. Bull. 66, 1592–1601. https://doi.org/10.1360/TB-2020-
613		0685
614	34.	Feng, S., Lu, H., Liu, Y., 2021. The occurrence of microplastics in farmland and
615		grassland soils in the Qinghai-Tibet plateau: different land use and mulching
616		time in facility agriculture. Environ. Pollut. 279, 116939.
617		https://doi.org/10.1016/j.envpol.2021.116939
618	35.	Friege, H., Eger, Y., 2021. Best practice for bio-waste collection as a prerequisite
619		for high-quality compost. Waste Manag. Res. 0734242X211033714.
620		https://doi.org/10.1177/0734242X211033714
621	36.	Gigault, J., ter Halle, A., Baudrimont, M., Pascal, P.Y., Gauffre, F., Phi, T.L., El
622		Hadri, H., Grassl, B., Reynaud, S., 2018. Current opinion: what is a
623		nanoplastic? Environ. Pollut. 235, 1030–1034.
624		https://doi.org/10.1016/j.envpol.2018.01.024
625	37.	Golwala, H., Zhang, X., Iskander, S.M., Smith, A.L., 2021. Solid waste: an
626		overlooked source of microplastics to the environment. Sci. Total Environ.
627		769, 144581. https://doi.org/10.1016/j.scitotenv.2020.144581
628	38.	Gouin, T., Becker, R.A., Collot, A.G., Davis, J.W., Howard, B., Inawaka, K.,
629		Lampi, M., Ramon, B.S., Shi, J., Hopp, P.W., 2019. Toward the development
630		and application of an environmental risk assessment framework for

631		microplastic. Environ. Toxicol. Chem. 38, 2087–2100.
632		https://doi.org/10.1002/etc.4529
633	39.	Gouin, T., Roche, N., Lohmann, R., Hodges, G., 2011. A thermodynamic approach
634		for assessing the environmental exposure of chemicals absorbed to
635		microplastic. Environ. Sci. Technol. 45, 1466–1472.
636		https://doi.org/10.1021/es1032025
637	40.	Gui, J., Sun, Y., Wang, J., Chen, X., Zhang, S., Wu, D., 2021. Microplastics in
638		composting of rural domestic waste: abundance, characteristics, and release
639		from the surface of macroplastics. Environ. Pollut. 274, 116553.
640		https://doi.org/10.1016/j.envpol.2021.116553
641	41.	Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo,
642		C.H., Wong, M.H., 2020. Source, migration and toxicology of microplastics in
643		soil. Environ. Int. 137, 105263. https://doi.org/10.1016/j.envint.2019.105263
644	42.	Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An
645		overview of chemical additives present in plastics: migration, release, fate and
646		environmental impact during their use, disposal and recycling. J. Hazard.
647		Mater. 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
648	43.	Hale, R.C., 2018. Are the risks from microplastics truly trivial? Environ. Sci.
649		Technol. 52, 931–931. https://doi.org/10.1021/acs.est.7b06615
650	44.	Harms, I.K., Diekötter, T., Troegel, S., Lenz, M., 2021. Amount, distribution and
651		composition of large microplastics in typical agricultural soils in northern
652		Germany. Sci. Total Environ. 758, 143615.
653		https://doi.org/10.1016/j.scitotenv.2020.143615

654	45.	Hicks, L.C., Frey, B., Kjøller, R., Lukac, M., Moora, M., Weedon, J.T., Rousk, J.,
655		2021. Toward a function- first framework to make soil microbial ecology
656		predictive. Ecology. https://doi.org/10.1002/ecy.3594
657	46.	Hu, C., Lu, B., Guo, W., Tang, X., Wang, X., Xue, Y., Wang, L., He, X., 2021.
658		Distribution of microplastics in mulched soil in Xinjiang, China. Int. J. Agr.
659		Biol. Eng. 14, 196–204. https://doi.org/10.25165/ijabe.v14i2.6165
660	47.	Huang, B., Sun, L., Liu, M., Huang, H., He, H., Han, F., Wang, X., Xu, Z., Li, B.,
661		Pan, X., 2021. Abundance and distribution characteristics of microplastic in
662		plateau cultivated land of Yunnan Province, China. Environ. Sci. Pollut. Res.
663		28, 1675–1688. https://doi.org/10.1007/s11356-020-10527-3
664	48.	Huang, Y., Liu, Q., Jia, W., Yan, C., Wang, J., 2020. Agricultural plastic mulching
665		as a source of microplastics in the terrestrial environment. Environ. Pollut.
666		260, 114096. https://doi.org/10.1016/j.envpol.2020.114096
667	49.	Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. de los A., Sanchez del
668		Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg,
669		M., Koelmans, A.A., Geissen, V., 2017. Field evidence for transfer of plastic
670		debris along a terrestrial food chain. Sci. Rep. 7, 14071.
671		https://doi.org/10.1038/s41598-017-14588-2
672	50.	Huerta-Lwanga, E., Mendoza-Vega, J., Ribeiro, O., Gertsen, H., Peters, P., Geissen,
673		V., 2021. Is the polylactic acid fiber in green compost a risk for Lumbricus
674		terrestris and Triticum aestivum? Polymers 13, 703.
675		https://doi.org/10.3390/polym13050703

676	51.	Iqbal, S., Xu, J., Allen, S.D., Khan, S., Nadir, S., Arif, M.S., Yasmeen, T., 2020.
677		Unraveling consequences of soil micro- and nano-plastic pollution on soil-
678		plant system: implications for nitrogen (N) cycling and soil microbial activity.
679		Chemosphere 260, 127578.
680		https://doi.org/10.1016/j.chemosphere.2020.127578
681	52.	Isari, E.A., Papaioannou, D., Kalavrouziotis, I.K., Karapanagioti, H.K., 2021.
682		Microplastics in agricultural soils: a case study in cultivation of watermelons
683		and canning tomatoes. Water 13, 2168. https://doi.org/10.3390/w13162168
684	53.	Jiang, X.J., Liu, W., Wang, E., Zhou, T., Xin, P., 2017. Residual plastic mulch
685		fragments effects on soil physical properties and water flow behavior in the
686		Minqin Oasis, northwestern China. Soil and Tillage Research 166, 100–107.
687		https://doi.org/10.1016/j.still.2016.10.011
688	54.	Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., Klobučar, G., 2019. Ecotoxicity and
689		genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ.
690		Pollut. 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055
691	55.	Ju, H., Zhu, D., Qiao, M., 2019. Effects of polyethylene microplastics on the gut
692		microbial community, reproduction and avoidance behaviors of the soil
693		springtail, Folsomia candida. Environ. Pollut. 247, 890-897.
694		https://doi.org/10.1016/j.envpol.2019.01.097
695	56.	Junhao, C., Xining, Z., Xiaodong, G., Li, Z., Qi, H., Siddique, K.H.M., 2021.
696		Extraction and identification methods of microplastics and nanoplastics in

697		agricultural soil: A review. J. Environ. Manag. 294, 112997.
698		https://doi.org/10.1016/j.jenvman.2021.112997
699	57.	Kawecki, D., Goldberg, L., Nowack, B., 2020. Material flow analysis of plastic in
700		organic waste in Switzerland. Soil Use Manag. 00, 1-12.
701		https://doi.org/10.1111/sum.12634
702	58.	Kelley, A., Wilkie, A.C., Maltais-Landry, G., 2020. Food-based composts provide
703		more soil fertility benefits than cow manure-based composts in sandy soils.
704		Agriculture 10, 69. https://doi.org/10.3390/agriculture10030069
705	59.	Kim, S.W., Liang, Y., Zhao, T., Rillig, M.C., 2021. Indirect effects of microplastic-
706		contaminated soils on adjacent soil layers: vertical changes in soil physical
707		structure and water flow. Front. Environ. Sci. 9, 681934.
708		https://doi.org/10.3389/fenvs.2021.681934
709	60.	Kim, S.W. and An, Y.J. 2019. Soil microplastics inhibit the movement of springtail
710		species. Environ. Int. 126: 699-706.
711		https://doi.org/10.1016/j.envint.2019.02.067
712	61.	Kramm, J., Völker, C., Wagner, M., 2018. Superficial or substantial: why care about
713		microplastics in the Anthropocene? Environ. Sci. Technol. 52, 3336-3337.
714		https://doi.org/10.1021/acs.est.8b00790
715	62.	Kumar, V.M. and Sheela, M.A., 2021. Effect of plastic film mulching on the
716		distribution of plastic residues in agricultural fields. Chemosphere 273,
717		128590. https://doi.org/10.1016/j.chemosphere.2020.128590

718	63.	Leusch, F.D.L., Ziajahromi, S., 2021. Converting mg/L to particles/L: reconciling
719		the occurrence and toxicity literature on microplastics. Environ. Sci. Technol.
720		55, 11470–11472. https://doi.org/10.1021/acs.est.1c04093
721	64.	Li, B., Song, W., Cheng, Y., Zhang, K., Tian, H., Du, Z., Wang, Jinhua, Wang, Jun,
722		Zhang, W., Zhu, L., 2021. Ecotoxicological effects of different size ranges of
723		industrial-grade polyethylene and polypropylene microplastics on earthworms
724		Eisenia fetida. Sci. Total Environ. 783, 147007.
725		https://doi.org/10.1016/j.scitotenv.2021.147007
726	65.	Li, J., Song, Y., Cai, Y., 2020. Focus topics on microplastics in soil: analytical
727		methods, occurrence, transport, and ecological risks. Environ. Pollut. 257,
728		113570. https://doi.org/10.1016/j.envpol.2019.113570
729	66.	Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J.G.M., Yin, N., Yang, J., Tu, C.,
730		Zhang, Y., 2020. Effective uptake of submicrometre plastics by crop plants via
731		a crack-entry mode. Nat. Sustain. 3, 929–937. https://doi.org/10.1038/s41893-
732		020-0567-9
733	67.	Li, L., Zhou, Q., Yin, N., Tu, C., Luo, Y., 2019. Uptake and accumulation of
734		microplastics in an edible plant. Chin. Sci. Bull. 64, 928–934.
735		https://doi.org/10.1360/N972018-00845
736	68.	Li, Q., Zeng, A., Jiang, X., Gu, X., 2021. Are microplastics correlated to phthalates
737		in facility agriculture soil? J. Hazard. Mater. 412, 125164.
738		https://doi.org/10.1016/j.jhazmat.2021.125164

739	69.	Li, Z., Li, Q., Li, R., Zhou, J., Wang, G., 2021. The distribution and impact of
740		polystyrene nanoplastics on cucumber plants. Environ. Sci. Pollut. Res. 28,
741		16042-16053. https://doi.org/10.1007/s11356-020-11702-2
742	70.	Li, Z., Li, R., Li, Q., Zhou, J., Wang, G., 2020. Physiological response of cucumber
743		(Cucumis sativus L.) leaves to polystyrene nanoplastics pollution.
744		Chemosphere 255, 127041.
745		https://doi.org/10.1016/j.chemosphere.2020.127041
746	71.	Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., Liu, W., 2020a. Impact
747		of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth
748		of wheat (Triticum aestivum L.). J. Hazard. Mater. 385, 121620.
749		https://doi.org/10.1016/j.jhazmat.2019.121620
750	72.	Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang,
751		X., He, D., 2018. Microplastic and mesoplastic pollution in farmland soils in
752		suburbs of Shanghai, China. Environ. Pollut. 242, 855-862.
753		https://doi.org/10.1016/j.envpol.2018.07.051
754	73.	Liu, Y., Huang, Q., Hu, W., Qin, J., Zheng, Y., Wang, J., Wang, Q., Xu, Y., Guo,
755		G., Hu, S., Xu, L., 2021. Effects of plastic mulch film residues on soil-
756		microbe-plant systems under different soil pH conditions. Chemosphere 267,
757		128901. https://doi.org/10.1016/j.chemosphere.2020.128901
758	74.	Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A., Rillig, M.C., 2021.
759		Microplastic shape, polymer type, and concentration affect soil properties and
760		plant biomass. Front. Plant. Sci. 12, 616645.
761		https://doi.org/10.3389/fpls.2021.616645

762	75.	Lu, Q., He, Z.L., Stoffella, P.J., 2012. Land application of biosolids in the USA: a
763		review. Appl. Environ. Soil Sci. 2012, e201462.
764		https://doi.org/10.1155/2012/201462
765	76.	Mbachu, O., Jenkins, G., Kaparaju, P., Pratt, C., 2021. The rise of artificial soil
766		carbon inputs: reviewing microplastic pollution effects in the soil environment.
767		Sci. Total Environ. 780, 146569.
768		https://doi.org/10.1016/j.scitotenv.2021.146569
769	77.	Meixner, K., Kubiczek, M., Fritz, I., 2020. Microplastic in soil-current status in
770		Europe with special focus on method tests with Austrian samples. AIMS
771		Environ. Sci. 7(2), 174–191. https://doi.org/10.3934/environsci.2020011
772	78.	Meng, F., Fan, T., Yang, X., Riksen, M., Xu, M., Geissen, V., 2020. Effects of
773		plastic mulching on the accumulation and distribution of macro and micro
774		plastics in soils of two farming systems in northwest China. PeerJ 8, e10375.
775		https://doi.org/10.7717/peerj.10375
776	79.	Mitrano, D.M., Wohlleben, W., 2020. Microplastic regulation should be more
777		precise to incentivize both innovation and environmental safety. Nat Commun.
778		11, 5324. https://doi.org/10.1038/s41467-020-19069-1
779	80.	Müller, A., Goedecke, C., Eisentraut, P., Piechotta, C., Braun, U., 2020.
780		Microplastic analysis using chemical extraction followed by LC-UV analysis:
781		a straightforward approach to determine PET content in environmental
782		samples. Environ. Sci. Eur. 32, 85. https://doi.org/10.1186/s12302-020-00358-
783		Х

784	81.	Ncube, L.K., Ude, A.U., Ogunmuyiwa, E.N., Zulkifli, R., Beas, I.N., 2020.
785		Environmental impact of food packaging materials: a review of contemporary
786		development from conventional plastics to polylactic acid based materials.
787		Materials 13, 4994. https://doi.org/10.3390/ma13214994
788	82.	Ng, E.L., Huerta Lwanga, E., Eldridge, S.M., Johnston, P., Hu, H.W., Geissen, V.,
789		Chen, D., 2018. An overview of microplastic and nanoplastic pollution in
790		agroecosystems. Sci. Total Environ. 627, 1377–1388.
791		https://doi.org/10.1016/j.scitotenv.2018.01.341
792	83.	Nuelle, M.T., Dekiff, J.H., Remy, D., Fries, E., 2014. A new analytical approach for
793		monitoring microplastics in marine sediments. Environmental Pollution 184,
794		161-169. https://doi.org/10.1016/j.envpol.2013.07.027
795	84.	O'Brien, B.J., 2019. Physicochemical properties of residuals from anaerobic
796		digestion of dairy manure and food waste: nutrient cycling implications and
797		opportunities for edible mushroom cultivation (Master's thesis, University of
798		Vermont, USA). Retrieved from https://scholarworks.uvm.edu/graddis/1015
799	85.	O'Connor, J., Mickan, B., Siddique, K.H.M., Rinklebe, J., Kirkham, M.B., Bolan,
800		N.S., 2022. Physical, chemical, and microbial contaminants in food waste
801		management for soil application: A review. Environ. Pollut. 118860.
802		https://doi.org/10.1016/j.envpol.2022.118860
803	86.	Pflugmacher, S., Sulek, A., Mader, H., Heo, J., Noh, J.H., Penttinen, O.P., Kim, Y.,
804		Kim, S., Esterhuizen, M., 2020. The influence of new and artificial aged
805		microplastic and leachates on the germination of Lepidium sativum L. Plants 9,
806		339. https://doi.org/10.3390/plants9030339

807	87.	Pflugmacher, S., Tallinen, S., Mitrovic, S.M., Penttinen, O.P., Kim, Y.J., Kim, S.,
808		Esterhuizen, M., 2021. Case study comparing effects of microplastic derived
809		from bottle caps collected in two cities on Triticum aestivum (wheat).
810		Environments 8, 64. https://doi.org/10.3390/environments8070064
811	88.	Piehl, S., Leibner, A., Löder, M.G.J., Dris, R., Bogner, C., Laforsch, C., 2018.
812		Identification and quantification of macro- and microplastics on an agricultural
813		farmland. Sci. Rep. 8, 17950. https://doi.org/10.1038/s41598-018-36172-y
814	89.	Pignattelli, S., Broccoli, A., Piccardo, M., Felline, S., Terlizzi, A., Renzi, M., 2021.
815		Short-term physiological and biometrical responses of Lepidium sativum
816		seedlings exposed to PET-made microplastics and acid rain. Ecotoxicol.
817		Environ. Saf. 208, 111718. https://doi.org/10.1016/j.ecoenv.2020.111718
818	90.	Qi, R., Jones, D.L., Li, Z., Liu, Q., Yan, C., 2020. Behavior of microplastics and
819		plastic film residues in the soil environment: a critical review. Sci. Total
820		Environ. 703, 134722. https://doi.org/10.1016/j.scitotenv.2019.134722
821	91.	Qi, Y., Beriot, N., Gort, G., Lwanga, E.H., Gooren, H., Yang, X., Geissen, V., 2020.
822		Impact of plastic mulch film debris on soil physicochemical and hydrological
823		properties. Environ. Pollut. 266, 115097.
824		https://doi.org/10.1016/j.envpol.2020.115097
825	92.	Qi, Y., Yang, X., Pelaez, A.M., Huerta Lwanga, E., Beriot, N., Gertsen, H.,
826		Garbeva, P., Geissen, V., 2018. Macro- and micro- plastics in soil-plant
827		system: effects of plastic mulch film residues on wheat (Triticum aestivum)
828		growth. Sci. Total Environ. 645, 1048-1056.
829		https://doi.org/10.1016/j.scitotenv.2018.07.229

830	93.	Rafique, A., Irfan, M., Mumtaz, M., Qadir, A., 2020. Spatial distribution of
831		microplastics in soil with context to human activities: a case study from the
832		urban center. Environ. Monit. Assess 192, 671.
833		https://doi.org/10.1007/s10661-020-08641-3
834	94.	Ren, X., Tang, J., Liu, X., Liu, Q., 2020. Effects of microplastics on greenhouse gas
835		emissions and the microbial community in fertilized soil. Environ. Pollut. 256,
836		113347. https://doi.org/10.1016/j.envpol.2019.113347
837	95.	Rillig, M.C., 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci.
838		Technol. 46, 6453-6454. https://doi.org/10.1021/es302011r
839	96.	Rillig, M.C., Kim, S.W., Kim, T.Y., Waldman, W.R., 2021. The global plastic
840		toxicity debt. Environ. Sci. Technol. 55, 2717–2719.
841		https://doi.org/10.1021/acs.est.0c07781
842	97.	Roy, E.D., 2017. Phosphorus recovery and recycling with ecological engineering: a
843		review. Ecol. Eng. 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076
844	98.	Roy, E.D., Esham, M., Jayathilake, N., Otoo, M., Koliba, C., Wijethunga, I.B.,
845		Fein-Cole, M.J., 2021. Compost quality and markets are pivotal for
846		sustainability in circular food-nutrient systems: a case study of Sri Lanka.
847		Front. Sustain. Food Syst. 5, 748391.
848	99.	Roy, P.K., Hakkarainen, M., Varma, I.K., Albertsson, A.C., 2011. Degradable
849		polyethylene: fantasy or reality. Environ. Sci. Technol. 45, 4217–4227.
850		https://doi.org/10.1021/es104042f

851	100.	Ruggero, F., Gori, R., Lubello, C., 2020. Methodologies for microplastics recovery
852		and identification in heterogeneous solid matrices: a review. J. Polym.
853		Environ. 28, 739-748. https://doi.org/10.1007/s10924-019-01644-3
854	101.	Ruggero, F., Porter, A.E., Voulvoulis, N., Carretti, E., Lotti, T., Lubello, C., Gori,
855		R., 2021. A highly efficient multi-step methodology for the quantification of
856		micro-(bio)plastics in sludge. Waste Manag. Res. 39, 956-965.
857		https://doi.org/10.1177/0734242X20974094
858	102.	Scheurer, M., Bigalke, M., 2018. Microplastics in Swiss floodplain soils. Environ.
859		Sci. Technol. 52, 3591-3598. https://doi.org/10.1021/acs.est.7b06003
860	103.	Schwinghammer, L., Krause, S., Schaum, C., 2020. Determination of large
861		microplastics: wet-sieving of dewatered digested sludge, co-substrates, and
862		compost. Water Sci. Tech. 84, 384–392. https://doi.org/10.2166/wst.2020.582
863	104.	Serrano-Ruiz, H., Martin-Closas, L., Pelacho, A.M., 2021. Biodegradable plastic
864		mulches: impact on the agricultural biotic environment. Sci. Total Environ.
865		750, 141228. https://doi.org/10.1016/j.scitotenv.2020.141228
866	105.	Sholokhova, A., Ceponkus, J., Sablinskas, V., Denafas, G., 2021. Abundance and
867		characteristics of microplastics in treated organic wastes of Kaunas and Alytus
868		regional waste management centres, Lithuania. Environ. Sci. Pollut. Res.
869		https://doi.org/10.1007/s11356-021-17378-6
870	106.	Short-lived climate pollutants: methane emissions: dairy and livestock: organic
871		waste: landfills, SB 1383. 2016.
872	107.	Sobhani, Z., Fang, C., Naidu, R., Megharaj, M., 2021. Microplastics as a vector of
873		toxic chemicals in soil: Enhanced uptake of perfluorooctane sulfonate and

874		perfluorooctanoic acid by earthworms through sorption and reproductive
875		toxicity. Environ. Technol. Innov. 22, 101476.
876		https://doi.org/10.1016/j.eti.2021.101476
877	108.	Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., Gieré, R.,
878		2018. Tire abrasion as a major source of microplastics in the environment.
879		Aerosol Air Qual. Res. 18, 2014–2028.
880		https://doi.org/10.4209/aaqr.2018.03.0099
881	109.	Stubenrauch, J., Ekardt, F., 2020. Plastic pollution in soils: governance approaches
882		to foster soil health and closed nutrient cycles. Environments 7, 38.
883		https://doi.org/10.3390/environments7050038
884	110.	Sun, H., Lei, C., Xu, J., Li, R., 2021. Foliar uptake and leaf-to-root translocation of
885		nanoplastics with different coating charge in maize plants. J. Hazard. Mater.
886		416, 125854. https://doi.org/10.1016/j.jhazmat.2021.125854
887	111.	Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., Ni, B.J., 2019. Microplastics
888		in wastewater treatment plants: detection, occurrence and removal. Water
889		Research 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050
890	112.	Sun, Q., Li, J., Wang, C., Chen, A., You, Y., Yang, S., Liu, H., Jiang, G., Wu, Y.,
891		Li, Y., 2022. Research progress on distribution, sources, identification,
892		toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil
893		environment. Front. Environ. Sci. Eng. 16, 1. https://doi.org/10.1007/s11783-
894		021-1429-z
895	113.	Sun, X.D., Yuan, X.Z., Jia, Y., Feng, L.J., Zhu, F.P., Dong, S.S., Liu, J., Kong, X.,
896		Tian, H., Duan, J.L., Ding, Z., Wang, S.G., Xing, B., 2020. Differentially

897		charged nanoplastics demonstrate distinct accumulation in Arabidopsis
898		thaliana. Nat. Nanotechnol. 15, 755-760. https://doi.org/10.1038/s41565-020-
899		0707-4
900	114.	Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G.,
901		McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic?
902		Science 304, 838-838. https://doi.org/10.1126/science.1094559
903	115.	Tympa, L.E., Katsara, K., Moschou, P.N., Kenanakis, G., Papadakis, V.M., 2021.
904		Do microplastics enter our food chain via root vegetables? a Raman based
905		spectroscopic study on Raphanus sativus. Materials 14, 2329.
906		https://doi.org/10.3390/ma14092329
907	116.	Universal recycling of solid waste. Sec. 6. 10 V.S.A. § 6605k. 2012.
908	117.	USEPA, 2021a. Emerging Issues in Food Waste Management: Plastic
909		Contamination (No. EPA/600/R-21/116).
910	118.	USEPA, 2021b. Inventory of US Greenhouse Gas Emissions and Sinks 1990-2019
911		(No. EPA430- R-21–005).
912	119.	USEPA, 2020. Advancing Sustainable Materials Management: 2018 Fact Sheet.
913	120.	van Schothorst, B., Beriot, N., Huerta Lwanga, E., Geissen, V., 2021. Sources of
914		light density microplastic related to two agricultural practices: the use of
915		compost and plastic mulch. Environments 8, 36.
916		https://doi.org/10.3390/environments8040036
917	121.	Völker, C., Kramm, J., Wagner, M., 2020. On the creation of risk: framing of
918		microplastics risks in science and media. Glob. Chall. 4, 1900010.
919		https://doi.org/10.1002/gch2.201900010

920	122.	Wang, F., Zhang, X., Zhang, Shuqi, Zhang, Shuwu, Adams, C.A., Sun, Y., 2020.
921		Effects of co-contamination of microplastics and Cd on plant growth and Cd
922		accumulation. Toxics 8, 36. https://doi.org/10.3390/toxics8020036
923	123.	Wang, J., Li, J., Liu, S., Li, H., Chen, X., Peng, C., Zhang, P., Liu, X., 2021.
924		Distinct microplastic distributions in soils of different land-use types: a case
925		study of Chinese farmlands. Environ. Pollut. 269, 116199.
926		https://doi.org/10.1016/j.envpol.2020.116199
927	124.	Wang, J., Liu, X., Dai, Y., Ren, J., Li, Y., Wang, X., Zhang, P., Peng, C., 2020.
928		Effects of co-loading of polyethylene microplastics and ciprofloxacin on the
929		antibiotic degradation efficiency and microbial community structure in soil.
930		Sci. Total Environ. 741, 140463.
931		https://doi.org/10.1016/j.scitotenv.2020.140463
932	125.	Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G., Zhang, P., 2019.
933		Microplastics as contaminants in the soil environment: a mini-review. Sci.
934		Total Environ. 691, 848-857. https://doi.org/10.1016/j.scitotenv.2019.07.209
935	126.	Wang, W., Ge, J., Yu, X., Li, H., 2020. Environmental fate and impacts of
936		microplastics in soil ecosystems: progress and perspective. Sci. Total Environ.
937		708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
938	127.	Wang, Y., Wang, X., Li, Y., Liu, Y., Sun, Y., Xia, S., Zhao, J., 2021. Effects of
939		coexistence of tetracycline, copper and microplastics on the fate of antibiotic
940		resistance genes in manured soil. Sci. Total Environ. 790, 148087.
941		https://doi.org/10.1016/j.scitotenv.2021.148087

942	128.	Weithmann, N., Möller, J.N., Löder, M.G.J., Piehl, S., Laforsch, C., Freitag, R.,
943		2018. Organic fertilizer as a vehicle for the entry of microplastic into the
944		environment. Sci. Adv. 4, eaap8060. https://doi.org/10.1126/sciadv.aap8060
945	129.	Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Zhijiang, He, Y., Wang, H., Lu,
946		Zhenmei, Brookes, P.C., Tang, C., Gan, J., Xu, J., 2020. Microplastics in the
947		soil environment: occurrence, risks, interactions and fate – a review. Crit. Rev.
948		Environ. Sci. Technol. 50, 2175–2222.
949		https://doi.org/10.1080/10643389.2019.1694822
950	130.	Xu, F., Li, Yangyang, Ge, X., Yang, L., Li, Yebo, 2018. Anaerobic digestion of
951		food waste - challenges and opportunities. Bioresour. Technol. 247, 1047-
952		1058. https://doi.org/10.1016/j.biortech.2017.09.020
953	131.	Yan, Y., Chen, Z., Zhu, F., Zhu, C., Wang, C., Gu, C., 2021. Effect of polyvinyl
954		chloride microplastics on bacterial community and nutrient status in two
955		agricultural soils. Bull. Environ. Contam. Toxicol. 107, 602-609.
956		https://doi.org/10.1007/s00128-020-02963-1
957	132.	Yang, J., Li, R., Zhou, Q., Li, L., Li, Y., Tu, C., Zhao, X., Xiong, K., Christie, P.,
958		Luo, Y., 2021. Abundance and morphology of microplastics in an agricultural
959		soil following long-term repeated application of pig manure. Environ. Pollut.
960		272, 116028. https://doi.org/10.1016/j.envpol.2020.116028
961	133.	Yang, M., Huang, D.Y., Tian, Y.B., Zhu, Q.H., Zhang, Q., Zhu, H.H., Xu, C., 2021.
962		Influences of different source microplastics with different particle sizes and
963		application rates on soil properties and growth of Chinese cabbage (Brassica

964		chinensis L.). Ecotoxicol. Environ. Saf. 222, 112480.
965		https://doi.org/10.1016/j.ecoenv.2021.112480
966	134.	Yi, M., Zhou, S., Zhang, L., Ding, S., 2021. The effects of three different
967		microplastics on enzyme activities and microbial communities in soil. Water
968		Environ. Res. 93, 24-32. https://doi.org/10.1002/wer.1327
969	135.	Yu, L., Zhang, J., Liu, Y., Chen, L., Tao, S., Liu, W., 2021. Distribution
970		characteristics of microplastics in agricultural soils from the largest vegetable
971		production base in China. Sci. Total Environ. 756, 143860.
972		https://doi.org/10.1016/j.scitotenv.2020.143860
973	136.	Yu, Y., Flury, M., 2021. Current understanding of subsurface transport of micro-
974		and nanoplastics in soil. Vadose Zone J. 20, e20108.
975		https://doi.org/10.1002/vzj2.20108
976	137.	Zhang, G.S., Liu, Y.F., 2018. The distribution of microplastics in soil aggregate
977		fractions in southwestern China. Sci. Total Environ. 642, 12-20.
978		https://doi.org/10.1016/j.scitotenv.2018.06.004
979	138.	Zhang, G.S., Zhang, F.X., Li, X.T., 2019. Effects of polyester microfibers on soil
980		physical properties: perception from a field and a pot experiment. Sci. Total
981		Environ. 670, 1-7. https://doi.org/10.1016/j.scitotenv.2019.03.149
982	139.	Zhang, J., Dong, P., Zhang, Y., Tian, Y., Liu, C., Sun, H., Wang, L., 2020.
983		Quantitative evaluation of non-active land input of microplastics: a case of
984		PET polymer. Chin. Sci. Bull. 66, 1563–1570. https://doi.org/10.1360/TB-
985		2020-0694

986	140.	Zhao, T., Lozano, Y.M., Rillig, M.C., 2021. Microplastics increase soil pH and
987		decrease microbial activities as a function of polymer type and exposure time.
988		Front. Environ. Sci. 9, 675803. https://doi.org/10.3389/fenvs.2021.675803
989	141.	Zhou, B., Wang, J., Zhang, H., Shi, H., Fei, Y., Huang, S., Tong, Y., Wen, D., Luo,
990		Y., Barceló, D., 2020. Microplastics in agricultural soils on the coastal plain of
991		Hangzhou Bay, east China: multiple sources other than plastic mulching film.
992		J. Hazard. Mater. 388, 121814. https://doi.org/10.1016/j.jhazmat.2019.121814
993	142.	Zhou, Y., Wang, J., Zou, M., Jia, Z., Zhou, S., Li, Y., 2020. Microplastics in soils: a
994		review of methods, occurrence, fate, transport, ecological and environmental
995		risks. Sci. Total Environ. 748, 141368.
996		https://doi.org/10.1016/j.scitotenv.2020.141368
997	143.	Zhu, D., Chen, Q.L., An, X.L., Yang, X.R., Christie, P., Ke, X., Wu, L.H., Zhu,
998		Y.G., 2018. Exposure of soil collembolans to microplastics perturbs their gut
999		microbiota and alters their isotopic composition. Soil Biol. Biochem. 116,
1000		302-310. https://doi.org/10.1016/j.soilbio.2017.10.027
1001	144.	Zhu, F., Zhu, C., Wang, C., Gu, C., 2019. Occurrence and ecological impacts of
1002		microplastics in soil systems: a review. Bull. Environ. Contam. Toxicol. 102,
1003		741-749. https://doi.org/10.1007/s00128-019-02623-z
1004		

Feedstock ^d	Abundance (particles kg ⁻¹ dry)	Sizes (mm)	Polymer Types ^d	Location	Reference
Compost		~ /			
Green waste	5733 ± 850 to 6433 ± 751	0.05–5	Mostly PP, also PE, nitrile rubber, PES	Lithuania	Sholokhova et al., 2021
Green waste	12 ± 8 to 46 ± 8	>0.0003	n/a	Germany	Braun et al., 2021
Green waste	1253 ± 561	0.03-2	PE, PP	Netherlands	van Schothorst et al., 2021
Green waste	82800 ± 17400	>1	PLA	Netherlands	Huerta-Lwanga et al., 2021
Household & green waste	20–24	>1	Mostly styrene-based polymers (PS etc.) & PE, also PES, PP, PET, PVC	Germany	Weithmann et al., 2018
Food waste	3783 ± 351 to 4066 ± 658	0.05–5	Mostly PE & PS, also PET, PP	Lithuania	Sholokhova et al., 2021
Household biowaste	32 ± 20	>0.0003	n/a	Germany	Braun et al., 2021
Rural domestic waste	2400 ± 358	0.05–5	Mostly PP, PE, also PES, PVC, PS, PE:PP, PU	China	Gui et al., 2021
OFMW digestate	39–102	1–5	Mostly PE & PVC, also PET, PS, PES, PUR, Other	Germany	Schwinghammer et al., 2020
OFMW	2800 ± 616	0.03-2	PE, PP	Netherlands	van Schothorst et al., 2021
OFMW	10000-30000	< 0.025	Mostly PE, also PS, PP, PES, PVC, ACR	Spain	Edo et al., 2021
Unknown	5.2–42.8 (15.4) Mil ^a	<1	n/a	Austria	Meixner et al., 2020
Digestate					
OFMW	75–326 °	1–5	Mostly PES & PVC, also PP, PE, PET, PS, PA, EVA	Germany	Schwinghammer et al., 2020
Commercial biowaste	895	>1	n/a	Germany	Weithmann et al., 2018
Household biowaste	70–146	>1	Mostly styrene-based polymers (PS etc.), also PES, PE, PP, PET, PVC, PVDC, PA, PUR, latex- & cellulose-based polymers	Germany	Weithmann et al., 2018
Food Waste &	1670	>1	n/a	USA	O'Brien, 2019
Dairy Manure					
Unknown	0.6–38.7 (7.1) Mil ^a	<1	n/a	Austria	Meixner et al., 2020
Food Waste	· · · ·				
Grocery store	300000 a	n/a	n/a	USA	Golwala et al., 2021
Pulped food waste	$1400\pm150~^{\rm a}$	0.1–2	Mostly Mater-Bi®, also PP, PE, PS, CE	Italy	Ruggero et al., 2021

Table 1. Plastic abundance in composts, digestates and food wastes on a count basis.

Homogenized	40 °	1–5	Mostly PE, also PP, PS	Germany	Schwinghammer et al., 2020
food waste					
^a dry/as-is not reco cellophane; PA: po	nciled; ^b as-is; ^c estimate plyamide; EVA: ethylen	d from graph; e vinyl acetate	^d Abbreviations: OFMW: organic fraction mu e; PE: polyethylene; PES: polyester; PET: pol	unicipal waste; AC	R: acrylic polymers; CE: alate; PLA: Polylactic acid; PP:
polypropylene; PS	: polystyrene; PU/PUR:	polyurethane	PVC: polyvinyl chloride; PVDC: polyvinylid	dene chloride	
	Homogenized food waste a dry/as-is not reco cellophane; PA: po polypropylene; PS	Homogenized 40 ° food waste ^a dry/as-is not reconciled; ^b as-is; ^e estimate cellophane; PA: polyamide; EVA: ethylene polypropylene; PS: polystyrene; PU/PUR:	Homogenized 40 ° 1–5 food waste ^a dry/as-is not reconciled; ^b as-is; ^c estimated from graph; cellophane; PA: polyamide; EVA: ethylene vinyl acetate polypropylene; PS: polystyrene; PU/PUR: polyurethane;	Homogenized 40 ° 1–5 Mostly PE, also PP, PS food waste ^a dry/as-is not reconciled; ^b as-is; ^c estimated from graph; ^d Abbreviations: OFMW: organic fraction m cellophane; PA: polyamide; EVA: ethylene vinyl acetate; PE: polyethylene; PES: polyester; PET: pol polypropylene; PS: polystyrene; PU/PUR: polyurethane; PVC: polyvinyl chloride; PVDC: polyvinylic	Hongenized 40° 1-5 Mostly PE, also PP, PS Germany food waste ^a dry(as-is not reconciled; ^b as-is; ^c estimated from graph; ⁴ Abbreviations: OFMW: organic fraction municipal waste; AC cellophane; PA: polyamide; EVA: ethylene vinyl acetate; PE: polyethylene; PES: polyester; PET: polyethylene terephth polypropylene; PS: polystyrene; PU/PUR: polyurethane; PVC: polyvinyl chloride; PVDC: polyvinylidene chloride

Feedstock ^d	ock ^d Abundance Sizes (mm) Polymer Types ^d (% w/w dry)		Location	ion Reference	
Compost	•				
Green waste	0.00024-0.0065	>0.5	n/a	Germany	Bläsing and Amelung, 2018
Green waste	0.0048 ± 0.0089 to 0.053 ± 0.05 °	>0.0003	n/a	Germany	Braun et al., 2021
Green waste	0.0237	1–5	Mostly PP, also PE, nitrile rubber, PES	Lithuania	Sholokhova et al., 2021
Food waste	0.0845	1–5	Mostly PE & PS, also PET, PP	Lithuania	Sholokhova et al., 2021
Biowaste	0.018	>0.5	n/a	Germany	Bläsing and Amelung, 2018
Household biowaste	0.1358 ± 0.0596	>0.0003	n/a	Germany	Braun et al., 2021
Urban organic waste	0.001–0.0102 ^a	All	PET	Germany	Müller et al., 2020
OFMW digestate	0.005 – 0.05 °	1–5	Mostly PE & PVC, also PET, PS, PES, PUR	Germany	Schwinghammer et al., 2020
Digestate					
Kitchen & green waste	0.12 ± 0.12 b	>6	n/a	Switzerland	Kawecki et al., 2020
Organic waste	0.0209–0.0776 ^a	All	PET	Germany	Müller et al., 2020
Food Waste + Dairy	0.25	>1	n/a	USA	O'Brien, 2019
Manure					
OFMW	0.01–0.0350 °	1–5	Mostly PES & PVC, also PP, PE, PET, PS, PA, EVA	Germany	Schwinghammer et al., 2020
Food Waste					
Kitchen & green waste	0.5 ± 0.46 ^b	>6	n/a	Switzerland	Kawecki et al., 2020
Homogenized food waste	0.025 °	1–5	Mostly PE, also PP and PS	Germany	Schwinghammer et al., 2020
Household biowaste	3.0-5.6 ^d	>2	n/a	Austria	do Carmo Precci Lopes et al., 2019
Household biowaste (mechanically sorted)	0.04–2.9	>2	n/a	Austria	do Carmo Precci Lopes et al., 2019

Table 2. Plastic abundance in composts, digestates and food wastes on a w/w basis.

^a dry/as-is not reconciled; ^b as-is; ^c estimated from graph; ^d calculated by mass balance; ^e Abbreviations: OFMW: organic fraction municipal waste; PA:

polyamide; EVA: ethylene vinyl acetate; PE: polyethylene; PES: polyester; PET: polyethylene terephthalate; PP: polypropylene; PS: polystyrene; PUR: polyurethane; PVC: polyvinyl chloride

1047

Plastic Mulch Practice	Agriculture Type	Mean Range (particles kg ⁻¹ dry)	Typical Order of Magnitude (particles kg ⁻¹ dry)	Sizes (mm)	Common Plastic Types Identified ^a	Soil Depth (cm)	Locations	References
Mulched	Mixed vegetable, Tomatoes, Beans, Cotton, Watermelon, Rice, Corn, Sorghum	63–18760	10's–1000's	0.02-5, 0.05-5, 1- 5, 0.0011- 5, 0.00045- 5, 0.007-5, 0.02-5, 0.02-2, 0.03-2	PE, PP, PA, PS, PES, PVC, ACR	0–6, 0–10, 0–30, 0–40, 0–80	China, Spain, India, Greece	Beriot et al., 2021; Hu et al., 2021; Huang et al., 2020, 2021; Isari et al., 2021; Liu et al., 2018; Meng et al., 2020; van Schothorst et al., 2021; Kumar and Sheela, 2021; J. Wang et al., 2021; Zhang and Liu, 2018; B. Zhou et al., 2020
Non- mulched	Mixed crop, Pasture, Grasslands, Peanut, Wheat, Paddy, Woodland, Orchard, Unspecified	0.34–5490	10's–1000's	0.0004–2, 0.02–1, 1– 5, 0.03–2, 0.02–5	PE, PP, PES, PA, ACR, PVC, EVA, rayon	$\begin{array}{c} 0-5, \\ 0-10, \\ 0-20, \\ 0-30 \end{array}$	China, Germany, Netherlan ds, Chile	Corradini et al., 2021; Q. Li et al., 2021; Piehl et al., 2018; van Schothorst et al., 2021; J. Wang et al., 2021; J. Yang et al., 2021; B. Zhou et al., 2020
Some mulched	Mixed crop, Farm / Grassland	4–1444	10's–1000's	0.00045–2, 1–5, 0.02–5	PE, PP, PA, PS	0–6, 0–25, 0–30	China, Germany	Feng et al., 2021; Harms et al., 2021; Yu et al., 2021
Not Specified	Mixed vegetable, Mixed crop, Unspecified	870–3712	100's– 1000's	0.02–5, 0.01–2, 0.05–5	PA, PP, PS, PE, PVC	0–5, 0–20, n/a	China, Mexico, Pakistan	Chen et al., 2020; Huerta Lwanga et al., 2017; Rafique et al., 2020

1050 Table 3. Summary of microplastic abundance in agricultural soils by mulching practice.

1051 1052 ^a Abbreviations: ACR: acrylic polymers; EVA: ethylene vinyl acetate; PA: polyamide; PE: polyethylene; PES: polyester; PP: polypropylene; PS:

polystyrene; PVC: polyvinyl chloride

Figure 1. Visible plastic contamination in (A) organic municipal solid waste compost

- 1055 windrows prior to screening (credit: E.D. Roy, S. Asia), (B) screw-press separated solid
- 1056 digestate from co-digestion of dairy manure and food waste (credit: E.D. Roy, United
- 1057 States), and (C–F) Putative microplastics found in food waste digestate (credit: K.K.
- 1058 Porterfield, United States).
- 1059

- 1061 Figure 2. Conceptual diagram showing flows of food waste and microplastics to
- 1062 composting and anaerobic digestion and on to agricultural soils.

- 1065 Figure 3. Schematic illustrating a design process to harmonize food waste microplastics
- 1066 science and policy.

Microplastics in Composts, Digestates and Food Wastes: A Review

Katherine K. Porterfield, Sarah A. Hobson, Deborah A. Neher, Meredith T. Niles,

Eric D. Roy

Supplementary Material

We conducted a systematic review using the Web of Science core collection to identify studies providing primary data on microplastics abundance in composts and digestates, food wastes and agricultural soils. One search focusing on composts and digestates was conducted on July 22nd, 2021 and another focusing on agricultural soils was conducted on September 8th, 2021 (**Table S1**). The two searches resulted in 172 and 159 articles, respectively. If the article abstract included quantification or discussion of microplastics in an organic waste stream, organic amendment, fertilizer derived from an organic waste stream, or an agricultural soil, the article was selected for further review, if not, it was excluded. Of the original articles, 32 and 94, respectively, were found to be relevant and 11 and 21, respectively, were found to contain primary data on microplastic abundance in composts and/or digestates and agricultural soils. Articles that focused on microplastic abundance in marine or aquatic environments were excluded, as were papers that focused on sewage sludge and biosolids. Additional studies beyond the ones identified by the systematic literature search were included if they were found to meet the established criteria.

Table S1.	Web	of Science	search	terms
-----------	-----	------------	--------	-------

Compost & Digestate Search						
Topic	"organic waste*" OR "organic residual*" OR "solid waste*" OR "compost*" OR "digestate*"					
	OR "organic amendment*" OR "organic fertilizer*"					
Topic	AND microplastic* OR nanoplastic*					
Agriculture Search						
Topic	"agricultur*" OR "farm*" OR "horticultur*" OR "cultivat*" OR "agro"					
Topic	AND microplastic* OR nanoplastic*					
Topic	NOT "biosolid*" OR "wastewater*"OR "marine*" OR "aquatic" OR "wetland*"					

Cropland Type	Abundance (particles kg ⁻¹ dry)	Sizes (mm)	Plastic Type ^a	Soil Depth (cm)	Location	Reference
Mixed vegetable	78 ± 13	0.02–5	Mostly PE & PP, also PES	0-3	China	Liu et al., 2018
Mixed vegetable	63 ± 13	0.02–5	Mostly PE & PP, also PES	3-6	China	Liu et al., 2018
Rice, corn, sorghum	571	0.05–5	Mostly PE & PE:PP, also PE:PP:Polydiene, PP:Vistalon, PP, nylon, PES, rayon, ACR, PA	0-10	China	B. Zhou et al., 2020
Mixed vegetable	2116 ± 1024	n/a	n/a	0-10	Spain	Beriot et al., 2021
Tomatoes, Beans	8-30	1-5	n/a	0-30	India	Kumar & Sheela, 2021
Cotton	1615 ± 52	0.0011-5	PE	0-30	China	Hu et al., 2021
Cotton	112 ± 11	0.0011-5	PE	40-80	China	Hu et al., 2021
Mixed vegetable	9000–40800 (9800)	0.00045–5	n/a	0-30	China	Huang et al., 2021
Mixed	80 ± 49 to 1076 ± 347	0.007–5	РЕ	0-40	China	Huang et al., 2020
Watermelon	301 ± 140	0.02–5	PE	0-30	Greece	Isari et al., 2021
Canning tomatoes	69 ± 38	0.02–5	PE	0-30	Greece	Isari et al., 2021
Mixed	0-2200	0.02–2	n/a	0-30	China	Meng et al., 2020
Mixed vegetable	2242 ± 984	0.03–2	РЕ	0-30	Spain	van Schothorst et al., 2021
Mixed vegetable	7100–42960 (18760)	0.05–10 ^b	n/a	0-10	China	Zhang and Liu, 2018
Mixed vegetable	5386 ± 835	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES, ACR, other	n/a	China	J. Wang et al., 2021
Mixed vegetable (greenhouse)	5124 ± 632	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES ACR, other	n/a	China	J. Wang et al., 2021

Table S2. Microplastic abundance in plastic mulched agricultural soils. 1

^a Abbreviations: ACR: acrylic polymers; PA: polyamide; EVA: ethylene vinyl acetate; PE: polyethylene; PES: polyester; PP: polypropylene; PS: polystyrene; PVC: polyvinyl chloride, ^b macroplastics included 2 3

Cronland Type	Abundance (particles kg ⁻¹ drv)	Sizes (mm)	Polymer Types a	Soil Depth	Location	Reference
Mixed croplands	306 ± 360	0.0004–2	Mostly ACR, PUR, varnish, PE & EVA, also PP, Nitrile rubber, PS, Polyethylene chlorinated, PES, PA, PLA	0-20	Chile	Corradini al., 2021
Pasture	184 ± 266	0.0004–2	ACR, PUR, varnish, PE, EVA, PP, Nitrile rubber, Polyethylene chlorinated, PES	0–20	Chile	Corradini et al., 2021
Grass/ rangelands	none observed	0.0004–2	n/a	0–20	Chile	Corradini et al., 2021
Wheat	380–1093	0.02–1	Mostly PP, PE, PA & PET, also PS, PTFE, PVC, EVA	0-10	China	Li et al., 2021
Mixed vegetable farmlands; greenhouse	1000–3786	0.02–1	Mostly PP, PE, PA & PET, also PS, PTFE, PVC, EVA	0-10	China	Li et al., 2021
Unspecified Agricultural soils	$0-1(0.34\pm0.36)$	1–5	Mostly PE, also PP, PS, PVC, PMMA, PET	0-5	Germany	Piehl et al., 2018
Mixed croplands	888 ± 500	0.03–2	PE, PP	0–30	The Netherlands	van Schothorst et al., 2021
Unspecified agricultural soils	16 ± 3	0.02–5	PES, PP, PE, rayon, PET	0–20	China	Yang et al., 2021
Peanut (pig manure mulched)	44 ± 16	0.02–5	PES, PP, PE, rayon, PET	0–20	China	Yang et al., 2021
Mixed croplands	263	0.05–5	Mostly PE & PE:PP, also PE:PP:Polydiene, PP:Vistalon, PP, nylon, PES, rayon, ACR, PA	0-10	China	B. Zhou et al., 2020
Wheat	3910 ± 1031	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES, ACR	n/a	China	J. Wang et al., 2021
Paddy	5490 ± 573	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES, ACR	n/a	China	J. Wang et al., 2021
Woodland	3683 ± 362	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES, ACR	n/a	China	J. Wang et al., 2021
Orchard	3386 ± 593	0.02–5	Mostly PE & PA, also PVC, PP, PS, PES, ACR	n/a	China	J. Wang et al., 2021

Table S3. Microplastic abundance in agricultural soils where no plastic mulching was used. 4

5 6 ^a Abbreviations: ACR: acrylic polymers; PA: polyamide; EVA: ethylene vinyl acetate; PE: polyethylene; PES: polyester; PET: polyethylene terephthalate;

PLA: Polylactic acid; PP: polypropylene; PS: polystyrene; PUR: polyurethane; PVC: polyvinyl chloride

	Abundance (particles kg ⁻¹			Soil Depth		
Cropland Type	dry)	Sizes (mm)	Polymer Types ^a	(cm)	Location	Reference
Farm/grassland	53 ± 30	0.00045-2	Mostly PE, PP, PS & PA, also PET, PC, PVC	0-3	China	Feng et al., 2021
Farm/grassland	44 ± 22	0.00045-2	Mostly PE, PP, PS & PA, also PET, PC, PVC	3-6	China	Feng et al., 2021
Mixed croplands	0-218 (4 ± 12)	1–5	Mostly PE, also PP, nylon, PA, PVDF, PDAP, PMMA, PET, PVF, poly(1.4- Butylene Adipate), PVA, PVS	0-30	Germany	Harms et al., 2021
Mixed croplands	310-5698 (1444 ± 986)	0.02–5	PP, ethylene-propylene copolymer, PE	0–25	China	Yu et al., 2021

Table S4. Microplastics abundance in agricultural soils where plastic mulching was used on some but not all sites. 7

^a Abbreviations: ACR: acrylic polymers; PA: polyamide; EVA: ethylene vinyl acetate; PC: polycarbonate; PDAP: polydiallylpthalate; PE: polyethylene;

8 9 PES: polyester; PET: polyethylene terephthalate; PLA: Polylactic acid; PMMA: polymethyl methacrylate; PP: polypropylene; PS: polystyrene; PUR:

10 polyurethane; PVA: polyvinyl acetate; PVC: polyvinyl chloride; PVDF: polyvinylidene fluoride; PVF: polyvinyl formal; PVS: polyvinyl stearate

Cropland Type	Abundance (particles kg ⁻¹ dry)	Sizes (mm)	Polymer Types ^a	Soil Depth (cm)	Location	Citation
Mixed vegetable croplands	320–12560 (2020)	0.02–5	Mostly PP & PA, also PS, PE, PVC	0-5	China	Chen et al., 2020
Mixed crop gardens	870 ± 1900	0.01–2	n/a	0–20	Mexico	Huerta Lwanga et al., 2017
Unspecified agricultural soils	2200-6875 (3712 ± 2156)	0.05–5	n/a	n/a	Pakistan	Rafique et al., 2020

Table S5. Microplastic abundance in agricultural soils where plastic mulch use was unspecified.

^a Abbreviations: PA: polyamide; PE: polyethylene; PP: polypropylene; PS: polystyrene; PVC: polyvinyl chloride