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Structured abstract 
Purpose - We present a framework to estimate throughput and cost of additive manufacturing 
(AM) as related to process parameters, material thermodynamic properties, and machine 
specifications. Taking a 3D model of the part design as direct input, the model uses a 
parametrization of the rate-limiting physics of the AM build process—herein focusing on laser 
powder bed fusion (LPBF) and scaling of melt pool geometry —to estimate part- and material- 
specific build time. From this estimate, per-part cost is calculated using a quantity-dependent 
activity-based production model.  
 
Design/methodology/approach - Analysis tools that assess how design variables and process 
parameters influence production cost increase our understanding of the economics of AM, 
thereby supporting its practical adoption. To this aim, our framework produces a representative 
scaling among process parameters, build rate, and production cost.  
 
Findings - For exemplary alloys and LPBF systems, predictions reveal the underlying tradeoff 
between production cost and machine capability, and look beyond the capability of currently 
commercially available equipment. As a proxy for build quality, the number of times each point 
in the build is re-melted is derived analytically as a function of process parameters, showcasing 
the tradeoff between print quality due to increased melting cycles, and throughput.  
 
Originality/value - For exemplary alloys and LPBF systems, predictions reveal the underlying 
tradeoff between production cost and machine capability, and look beyond the capability of 
currently commercially available equipment. As a proxy for build quality, the number of times 
each point in the build is re-melted is derived analytically as a function of process parameters, 
showcasing the tradeoff between print quality due to increased melting cycles, and throughput.  
 
 
Keywords: additive manufacturing, laser powder bed fusion, cost estimation, process parameters, 
productivity 
 
Plain language summary: The rate and cost of additive manufacturing varies widely depending 
on which part, material, machine, and set of process parameters are chosen. Our analysis tools 
show how these variables affect build throughput and production cost, herein for laser-based 
metal 3D printing.  
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1 INTRODUCTION 

The tradeoffs among design, manufacturability, and cost for additive manufacturing (AM) are 
difficult to assess, especially at the early stage of ideation and product development.  

Each AM process has its own overall design constraints, such as the requirement for support 
structures (Kranz et al., 2014) or the density of packing parts in two- or three-dimensions (Oh et 
al., 2018). Designers must also address the myriad implications of part geometry, build 
configuration, and/or material selection (Cheng and To, 2019). In order to accurately estimate 
AM cost and to bound the practical design space, it is critical for us to understand how these 
factors are interrelated in addition to the intrinsic process physics and machine specifications.  

Among a growing portfolio of AM processes, laser powder bed fusion (LPBF) of metals can 
fabricate highly complex components and is compatible with many conventional and specialty 
alloys. Qualified commercial applications of LPBF include jet engine nozzles (James, 2021), 
components of hip implants, cutting tools with enhanced performance, and bespoke decorative 
fixtures. While LPBF and many other AM processes are still largely limited to high-value 
applications that can tolerate costly and lengthy qualification, wider use of LPBF requires tight 
integration of design capabilities, manufacturability constraints, and cost analysis. In this study, 
we focus on two metrics of AM capability that determine its utility: throughput (i.e. volumetric 
build rate) and production cost.  

As with LPBF, the throughput of an AM process—i.e., the build rate achieved by the associated 
equipment—is a primary determinant of its overall productivity, and the ultimate component 
cost. Therefore, understanding the factors influencing throughput is key to early-stage design 
guidance, and to evaluating potential business cases and strategies for adoption of AM. Build 
time estimations can be general, i.e., reflecting an approximate rate for a process or machine, or 
tailored to a specific component based on the 3D CAD file. Early examples in the literature are 
found for stereolithography (Chen and Sullivan, 1996; Giannatsis et al., 1999), selective laser 
sintering (Choi and Samavedam, 2002), electron beam melting (Baumers et al., 2016), and 
laminated object manufacturing (Kechagias et al., 2004), among others. For stereolithography, 
rate models are commonly built off the Beer-Lambert law of absorption to characterize the 
photopolymerization of resin (Jacobs, 1993), but rate estimation for LPBF involves a more 
complex coupling among process physics, build rate and part quality (Meier et al., 2018; 
Mukherjee et al., 2018). For LPBF, a key determinant of rate is the relationship between process 
parameters (e.g., laser power, spot size, scanning speed, layer thickness), melt pool geometry, 
and process instabilities such as keyholing or lack of fusion (Cunningham et al., 2019; Gusarov 
and Smurov, 2010; King et al., 2014; Rubenchik et al., 2018; Thomas et al., 2016). The 
correlation between processing parameters and achievement of full-density parts with LPBF is 
often performed by a parametric study of laser power and scan speed while holding other 
parameters constant (e.g., layer thickness, material, and powder size). Empirical studies have 
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shown that the microstructure evolution and mechanical properties of LPBF-produced metals are 
strongly correlated to the printing process parameters (KOTADIA, 2021; Kruth et al., 2004; 
Nath et al., 2021; Yadroitsev et al., 2007). Therefore, such correlations can be valuable input to 
models that evaluate tradeoffs between cost and component quality, via considering how process 
parameters influence both build rate and desired properties and/or the formation of defects 
during AM. 

Accurate cost estimation is essential to assess viable business cases for AM. In order to 
accurately relate process performance to AM economics, cost estimation should be based in the 
fundamental limits of the process physics, despite the fact that the underlying dynamics of LPBF 
process stability are difficult to quantify accurately (Oliveira et al., 2020). AM cost modeling has 
most commonly adopted activity-based methods (Alexander et al., 1998; Costabile et al., 2017), 
wherein cost is decomposed into constituent direct and indirect components, and time estimates 
of the build process itself informs the net production cost per unit. The main drivers for cost are 
machine and material expenses (Lindemann et al., 2012; Thomas et al., 2016). Moreover, while 
the cost advantages of AM for small-volume, and/or customized products are well-documented 
(Awad et al., 2018; Tofail et al., 2018; Tuck et al., 2008; Weller et al., 2015), the relationship 
between production quantity and unit cost  requires careful implementation of activity-based 
models along with consideration of the part- and process-dependent throughput, among many 
other factors (Ding et al., 2021). Most commonly and conveniently, a constant build rate is 
assumed due to the intricacies of rate estimation or lack of available empirical data (Lindemann 
et al., 2012). Estimates of cost are therefore most easily based on nominal build rate estimates 
that capture the bulk volumetric print rate of a particular AM machine which has been 
parameter-optimized to a specific material and quality output. In this sense, our current 
understanding of AM cost is constrained to the machine and process capability of currently 
existing AM systems. As such, it is challenging to obtain a parametric understanding of how AM 
process parameters relate to cost, and how tradeoffs between throughput and machine capability  

The goals of this study are first to explore the influence of process parameter selection on overall 
build rate for LPBF. Integrating digital mesh processing, scaling laws of melt pool geometry, and 
representative approximations of laser scan strategy, we construct a parametrized model of the 
rate-limiting physics of LPBF to estimate part-specific build time. Second, we interrogate the 
relationship between build rate and cost over a range of commercial machines and materials, 
enabling parametric analysis of tradeoffs among resolution, throughput, and cost. Finally, we 
extrapolate these models to forecast the cost effectiveness of LPBF beyond the capabilities of 
current AM systems.   
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2 METHODS 
 
We developed a purpose-built numerical pipeline to enable end-to-end parametric build rate and 
cost analysis. An overview of the coupled digital file analysis and physics-based process 
modeling is shown in Figure 1, depicting parallel workflows for digital geometry processing and 
physical melt pool scaling. This pipeline couples process and materials data to established 
physical models for LPBF.  Code was developed in-house using the Julia scientific programming 
language.  
 

 
Figure 1. Graphics processing workflow for the physics-based LPBF rate model, which 
performs part slicing and calculates a part-specific print length as a proxy for the laser toolpath. 
Model inputs are: a digital part file, machine specifications (such as laser power, laser spot size, 
and build chamber volume, Table 3), and thermophysical properties of the feedstock metal 
powder (Table 1). The geometry processing workflow digitally slices the part file based on a 
specified layer height h, and generates closed-loop contours bounding the area to be printed on 
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each layer. After superimposing a representative scan strategy, an estimate of the total linear 
length of scanning and number of recoating layers is produced. The process physics uses 
empirically determined scaling laws between laser and material inputs to estimate the desired 
scan speed u to produce a melt track of depth d and width w. Accounting for the overlap of melt 
tracks both horizontally (i.e. adjacent, in-layer) and vertically, this workflow combines the 
geometry processing outputs to yield total build time specific to part geometry, machine 
specification, and material properties.  
 
2.1 Melt pool scaling model 
Estimation of process throughput (i.e. volumetric build rate) is predicated on the underlying 
physics of the rate-limiting step in the process. For LPBF, the volumetric rate at which the 
feedstock powder can be transformed into an ultimately solidified melt track is the core element, 
subject to the required input energy to melt the powder. For a user-selected laser power, laser 
spot size (i.e. Gaussian beam half-width), feedstock material, layer height and desired melt pool 
depth, our code computes the appropriate laser scan speed and hatch spacing 
 
We configure our code such that the model of melt pool-laser dynamics requires the following 
user inputs: (1) laser power, (2) laser spot size (i.e. Gaussian beam half-width), (3) absorptivity 
of the laser by the build surface, (4) layer height, and (5) desired melt pool depth. The melt pool 
depth is parametrized by the ratio of the melt pool depth to the printed layer height, herein 
termed overmelt 𝜙𝜙. The printed layer height in the model represents the thickness of the 
solidified, fully dense layer. Definition of melt track parameters are shown in Figure 2.  
 
For melt pool depth (i.e. the solidified depth of the melt track), we adopt the scaling proposed by 
Ye et al, which was determined experimentally using in situ optical absorptivity measurements 
coupled to a hydrodynamic finite element model (Ye et al., 2019). From Ye et al, the laser scan 
speed is calculated as: 

𝑢𝑢 =  
𝐾𝐾𝐾𝐾𝐾𝐾
𝜋𝜋𝐻𝐻𝑚𝑚𝑎𝑎𝑎𝑎

 

 
where u is laser scan velocity, 𝐾𝐾 is a empirically-determined geometrical factor that accounts for 
the differences between actual melt pool geometry and the simplified model, 𝐴𝐴 is the minimal 
material absorptivity, 𝑃𝑃 is laser power (W), 𝐻𝐻𝑚𝑚 is the volumetric melting enthalpy (J/m3), 𝑎𝑎 is 
laser beam radius (𝜇𝜇m), and 𝑑𝑑 is the depth of the melt pool (𝜇𝜇m).  
 
For melt pool width, we employ the scaling law of Groβmann et al (Großmann et al., 2019), 
which was derived using dimensional analysis in conjunction with an averaged energy balance, 
and validated with empirical data.  
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where 𝑤𝑤 is the width of the melt track (i.e., perpendicular to the scan direction), 𝐶𝐶 is a material-
specific proportionality constant, 𝑃𝑃 is laser power, 𝑢𝑢 is laser scanning speed, 𝜌𝜌 is density, 𝐶𝐶𝑝𝑝 is 
specific heat capacity, and ∆𝑇𝑇𝑙𝑙 is the change in temperature between the initial and liquid state of 
powder. For the following results, ∆𝑇𝑇𝑙𝑙  is set to 𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 , where 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 is the ambient 
temperature of the build chamber and assumed to be 100 deg C. The parameter 𝐶𝐶 is equivalent to 
�𝛼𝛼/𝜀𝜀 where 𝛼𝛼 relates to the material’s absorptivity and 𝜀𝜀 is a geometry factor describing the 
shape of the melt pool. Values of 𝐶𝐶 were determined using calculations of the non-linear 
geometry factor 𝜀𝜀 followed by regression analysis to yield 𝐶𝐶 (Großmann et al., 2019). 
 
 𝜌𝜌 𝑇𝑇𝑚𝑚 𝐶𝐶𝑝𝑝 𝐷𝐷* 𝐶𝐶 

(Großm
ann et 
al., 
2019) 

𝐻𝐻𝑚𝑚 𝐾𝐾 
(Großm
ann et 
al., 
2019) 

𝐴𝐴𝑚𝑚 (Ye 
et al., 
2019) 

 g/cc K J/kg-K m2/s - kJ/cm3 - - 

AlSi10Mg 2.67 870 910 4.90e-5 0.49 2.11 0.6 0.18 
Ti6Al4V 4.41 1933 526.3 2.85e-6 0.64 4.48 0.6 0.26 
1.2709 
Steel 

8.05 1445 450 4.86e-6 0.48 5.23 0.6 0.28 

Table 1. Material-specific inputs for selected alloys. 𝑇𝑇𝑚𝑚 is the desired melting temperature, 𝐶𝐶𝑝𝑝 is 
specific heat, 𝐶𝐶 is an empirically determined scaling constant, 𝐻𝐻𝑚𝑚 is the enthalpy of fusion, and 
𝐴𝐴𝑚𝑚 is the absorptivity between the metal powder and laser. *While thermal diffusivity 𝐷𝐷 is not 
necessary for the computation of laser scan speed and melt track width, it is required for 
calculation of normalized enthalpy in later sections.   
 
These scaling laws provide accurate, straightforward approximations of the scaling between laser 
control parameters, material properties and melt track dimensions, as validated by empirical data. 
As analytical and explicit equations, these functions can be implemented in our larger 
computational workflow. The modular structure of our approach is such that alternate models 
can be incorporated as desired. For instance, our use of two independent scaling models for melt 
pool width and depth can be replaced by a single (albeit more computationally intensive) 
numerical model for the melt pool dynamics in future work, from which the melt pool 
dimensions or the full shape can be extracted for further analysis. 
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Figure 2. Definition of melt track parameters for physics-based LPBF rate model. (A) Cross-
section of overlapping melt tracks, orthogonal to build direction. (B) Parabolic melt track. (C) 
Cross-section of multiple print layers, showing the assumed vertical and lateral overlap. Laser 
scan direction is rotated by 120 deg between print layers.  
 
2.2 Geometry processing  
Three-dimensional models of components for build rate and cost analysis are imported as .STL 
files using the FileIO and MeshIO libraries (“GitHub - JuliaIO/MeshIO.jl: IO for Meshes”, 
2019). After the file is imported, the following operations are performed: (1) storing the vertices 
and faces of each triangle, (2) scaling vertices to convert units, (3) extracting bounding box 
limits, (4) resetting the mesh origin to (0.0, 0.0 ,0.0) in Cartesian coordinates, (5) computing 
mesh volume (Zhang and Chen, 2001), and (6) computing mesh surface area (i.e. sum of all 
triangle areas). Key metrics such as mesh volume and surface area become outputs of the 
processing workflow. An in-house algorithm slices the mesh by computing triangle-plane 
intersections at each layer height, and generates in-layer contours using a state machine-enabled 
approach to assign edges to closed loops.  
 
To calculate the build time for each layer of a digital model, as related to LPBF, a simple laser 
scan strategy is simulated. A single pass around the perimeter of each contour (i.e., skin) and a 
standard zig-zag scan pattern for the area (i.e., core) is specified for each print layer. The number 
of contour passes and the core scan parameters can be modified as desired by the user, and 
especially the contour parameters are known to influence surface roughness and subsurface 
porosity (Artzt et al., 2020).  
 
For LPBF, hatch spacing (i.e., the in-plane distance between the centerlines of adjacent melt 
tracks), along with overmelt, determines the number of times each location is re-melted as 
consecutive tracks and layers are scanned. Our model assumes, disregarding effects from skin-
core overlap, that each internal melt track overlaps with two other melt tracks in each layer, i.e. 
one on the right side and one on the left. Hatch 𝐻𝐻 is bounded as 0 < 𝐻𝐻 ≤ 𝑤𝑤/2 where 𝑤𝑤 is the 
width of the melt track. Therefore, the effective melt track width, i.e. the width of printed 
material from a single pass of the laser is equal to the hatch, i.e. 𝐻𝐻 = 𝑤𝑤∗. Collectively, melt track 
width, melt track depth, layer height, overmelt and hatch spacing describe the physical 
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dimensions and layout of overlapping melt tracks within the printed part. This is shown in Figure 
2A. 
 
Moreover, overlap between the skin and core scan paths is considered, such that the total laser 
scan length for a given layer is:  

𝐿𝐿𝑖𝑖 =
𝑎𝑎𝑖𝑖
𝑤𝑤∗ + 𝑝𝑝𝑖𝑖 − 𝜇𝜇𝑤𝑤∗𝑝𝑝𝑖𝑖 

 
where 𝑖𝑖 is the print layer of interest, 𝐿𝐿𝑖𝑖 is the predicted total scan length required, 𝑎𝑎𝑖𝑖 is the total 
area bounded by all contours in the layer, 𝑤𝑤∗ is the modified width of the melt track (i.e. the 
additional print width due to the current melt track, not accounting for the overlap between the 
current and previous melt track) and 𝑝𝑝𝑖𝑖 is the total perimeter of all contours in the layer. We 
define a 𝜇𝜇 factor to account for the overlap between the area and perimeter scans; for the 
following analysis, it is set to 0.8. The total scan length is calculated for each layer:  
 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝑎𝑎𝑖𝑖
𝑤𝑤∗

𝑁𝑁

𝑖𝑖=1

+ 𝑝𝑝𝑖𝑖 − 𝜇𝜇𝑤𝑤∗𝑝𝑝𝑖𝑖 

 
where 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the total scanning length required to produce the part geometry and 𝑁𝑁 is the total 
number of layers in the print. Thus, the ultimate output of the geometry processing workflow is 
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, which conceptually translates input part volume into the series and length scale of actions 
required to produce that volume.  
 
The effective melt track width is used in the geometric processing workflow to output 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, i.e. 
the total scan length required to produce the part geometry. Assuming the same scan parameters 
throughout the print (i.e., no modulation of power or scan speed), the total scanning time is 
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑢𝑢. Mechanistically, 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 captures the physical dimensions and layout of melt 
tracks, is driven by 𝑑𝑑, 𝑤𝑤, 𝐻𝐻,ℎ, overmelt, and material parameters, and considers the nuances of 
the print process such as scanning of the skin and core separately. Moreover, the determination 
of 𝑢𝑢 through the scaling model captures the physical laser-material interactions that melt the 
powder. Together, these variables produce an estimate of total scanning time for a desired 
geometry. Notably, in this analysis we do not consider the motion dynamics of the 
galvanometers used to position the laser beam(s), i.e., the time necessary to accelerate and 
decelerate the scanning mirrors at the beginning and end of each scan segment.  
 
2.3 Build time estimation 
The total time required to print 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the sum of the total time to scan all layers 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. To 
determine an effective build rate 𝐵̇𝐵, we divide the input mesh volume 𝑉𝑉 by total print time 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 
i.e. 𝐵̇𝐵 = 𝑉𝑉/𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. While the following cost model includes time for inter-layer recoating, 
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machine warm-up, cool-down and build exchange, only the scanning time is represented by the 
volumetric build rate 𝐵̇𝐵. From the adopted scalings for melt pool width and depth, we compute 
maps that show the dependence of volumetric build rate on the above listed input parameters, as 
described in the Results section. 
 
For Figure 4, showing the scaling of 𝐵̇𝐵 with laser power and scan speed, a cube of 𝑉𝑉 =1cc is 
used. For Figures 5 and 6 showing cost scalings as a function of production quantity, an 
exemplary bracket geometry is used. The bounding box of the bracket is 7.5 x 1.25 x 5 cm and 
the material volume of the bracket is 29.1 cc. 
 
2.4 Incorporation of physical build limits 
Importantly, this physics-based build rate estimation can run without bound. It accordingly 
suggests that arbitrarily high combined values of power and scan speed, for the same spot size, 
will lead to greater build rate. However, it is well known that the energy density applied to the 
melt pool is limited by the formation of keyhole porosity. Keyholing is widely studied in 
welding, and can be desired when a deep weld is required (i.e. for joining two materials). The 
keyhole melt pool shape is deep and narrow. Keyhole pores form as the surface temperature of 
the melt pool increases, the recoil pressure due to evaporation at the surface forms a depression 
in the melt pool, and the resulting depression penetrates further into the material. This has been 
visualized via high-speed X-ray scattering (Cunningham et al., 2019).  The dynamics of keyhole 
formation, and potential means of process control for mitigation, are subjects of ongoing 
research; nevertheless, we can apply a threshold to the rate map to identify a potential upper-
bound on the build rate in LPBF.  
 
We use the parameter normalized enthalpy as an indication of the proximity of the process 
parameters to a practical build rate limit. Normalized enthalpy Δ𝐻𝐻/ℎ𝑠𝑠 is defined as the enthalpy 
input into powder by the laser, normalized by the enthalpy of the material at its melting 
temperature (Hann et al., 2011): 
 

Δ𝐻𝐻
ℎ𝑠𝑠

=
𝐴𝐴𝐴𝐴

𝜋𝜋ℎ𝑠𝑠√𝐷𝐷𝐷𝐷𝑎𝑎3
 

 
where 𝐴𝐴 is laser absorptivity, 𝑃𝑃 is laser power, 𝐷𝐷 is the material’s thermal diffusivity, 𝑢𝑢 is the 
laser scan speed, and 𝑎𝑎 is laser beam diameter. Values of 𝐷𝐷 are shown in Table 1. Normalized 
enthalpy therefore considers both laser control parameters (i.e., laser power, scan speed, and spot 
size) and the thermodynamic properties of the feedstock material.  
 
2.5 Activity-based cost modeling  
The physics-based LPBF rate model allows us to build a parameterized cost model that reflects 
(i) the relationship between machine capability (i.e. laser power, laser spot size) and per-part 
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cost, and (ii) the key contributors of cost based on activity within the print sequence.  The cost 
model considers a single part geometry with a total production quantity of 𝑁𝑁 parts. In this model, 
parts are packed within each virtual build in a single layer, based on simple division of the build 
area by the in-plane bounding box area of the part defined by the desired print orientation (Figure 
3). Yield losses are captured by the assumed uptime of the machine, i.e., uptime denotes all 
machine utilization time resulting in successful prints. This model only considers the printing 
cost; post-processing costs including de-powdering, support removal, and heat treatment are not 
included. 
 
Per-part cost is decomposed into material cost, machine usage cost, consumables cost, and labor 
cost. Costs are assigned based on the corresponding activities and expenses to each category 
(Baumers et al., 2016). Thus, the estimated cost per part can be expressed as 
 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑚𝑚 + 𝐶𝐶𝑒𝑒 + 𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑙𝑙 
 
where Cm, Ce, Cc, and Cl are the costs due to material usage, equipment/machine utilization, 
consumables, and labor, respectively. As such, this framework is adaptable to include the rate 
model for any AM process, with application here to LPBF. A detailed description of the activity-
based cost model is included in the supporting information.  
 
In brief, the formulation of the cost model for each category of expenses is as follows.  

- Material cost has three components: (i) the cost of powder to produce the finished part, 
(ii) the cost of powder to produce part supports, and (iii) the cost of surrounding powder 
that cannot be recycled.  

- Machine cost considers (i) the capital cost of the printer, (ii) supporting infrastructure 
requirements, and (iii) yearly maintenance costs. The cost of the machine is discounted 
by yearly cash flows, from which an hourly utilization cost is derived. Utilization time 
considers the time for printing (part-dependent, scanning and recoating time) as well as 
time allocation for printer warm-up, cool-down post-print, and build exchange. Per-layer 
recoat time is approximated by the time required for the build platform to move 
vertically, and for the recoating device to travel horizontally, multiplied by the number of 
layers required to produce the part. 

- The build consumables considered by the LPBF model are (i) gas flow used to inert the 
build chamber before and during printint, (ii) the build plate, and (iii) energy 
consumption of the machine. While energy consumption may have important 
implications for the environmental impact of LPBF, we argue that the cost of electricity 
is negligible in relation to other per-part costs.  

- Labor cost accounts for the work required to setup, supervise and exchange builds. We 
consider the labor associated with the physical build itself, not including the labor costs 
of part and process design in the product development or qualification phases.  
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Figure 3. Visualization of simplified packing scheme for the cost model. We consider a 
rectangular build volume with area 𝐴𝐴𝑐𝑐 and height 𝐻𝐻𝑝𝑝 (left). The in-layer packing scheme 
considers the ratio of build chamber cross-sectional area to part footprint (center). The grey box 
denotes the part footprint while the black shape represents actual part geometry. The vertical 
packing scheme considers the ratio of build chamber height to part height (right). The grey 
shape denotes the part's bounding box while the black shape represents actual part geometry.  
we consider only a single layer of parts (as is typical in LPBF) and therefore a portion of the 
build chamber is unused. We assume powder is filled to the height of the parts to be printed, 
and therefore the powder surrounding that parts (dark green) remains unfused and is recycled 
with a small fixed loss fraction. The total print volume used in calculating powder usage is 
denoted in dark green, noting that our model considers the possibility that a portion of the print 
height will not be used. In this example, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is 16, and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is 1. 
 
While exemplary values for cost parameters are presented here, we note that the model is 
intentionally built parametrically and is agnostic to empirical machine performance. For 
example, build time is derived using the physics-based melt pool scalings described previously, 
such that a machine- and material-specific build time is calculated for each part geometry. 
Because the rate model is bounded by the physical limits of the printing process, the cost 
estimates reflect the fundamental process limits as well.  
 
2.6 Melting history analysis 

Toward further application of the rate model to ascertain tradeoffs between throughput and 
material quality, an analytical solution was also developed to calculate the number of times each 
point in the build is re-melted, with simplifying assumptions. For the above-mentioned parabolic 
melt track cross-section profile (i.e. perpendicular to scan direction) and hatch spacing such that 
two adjacent melt tracks overlap, the integrals of the area bounded by two, one, or zero melt 
tracks are calculated. Then, for a single layer height interval, the number of intersecting melt 
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tracks is computed, i.e., because within each print layer, the melting history of the prior, current 
and future material contribute to the melt history of that single layer. For a given unit volume 
within the print, the proportion of area occupied by the melt tracks horizontally and vertically 
adjacent are combined to output the proportion of area melted each integer number of times 
across the depth of the melt track.  

Additional assumptions are as follows:  

− Laser power, spot size, and scan velocity remain the same for all melt tracks, i.e. this 
analysis does not account for adapting print strategy and melt pool morphology for 
different regions of the print (i.e. scanning skin versus core), nor variation in melt track 
geometry due to varying local temperature of the surrounding tracks/layers. 

− Melt tracks can be approximated as perfect parabolic cylinders (i.e. extruded parabolas in 
space), and therefore balling or lack of fusion are not considered.   

Model aspect Modelling approach 

Physics-based rate model  

Melt pool shape Parabolic cross-section, with pre-defined scaling of width and depth 

Melt pool depth Designated as twice the specified layer height  

Build orientation Specified by user, via input CAD file 

Print resolution User-specified layer height set equal to half of laser spot size; laser spot size 
determined by machine specifications  

Hatch spacing Calculated proportionally to melt track width 

Scan strategy Laser scans perimeter (skin) and area (core) of each contour; area follows a 
standard zig-zag pattern 

Scan speed Constant and determined by user inputs, machine specifications and rate model; 
galvanometer precision and laser/mirror dynamics not considered  

Nominal build rate Based on scanning time required to produce 1cc of printed material, with 
designated spot size, layer thickness, and hatch spacing, excluding recoat time 

Activity-based cost model  

Support structures Increase part mass by a given percentage; support geometry not considered 

Packing strategy Single-layer (in-plane) packing only, by simple division of build area by part 
bounding box area 

Build cycle non-productive time Machine requires time to warm up and inert, print and cool down for each build  

Process gas flow Required inert gas flow scales with the volume of the build chamber 

Recoating time Per-layer recoating time based on a constant spreading velocity and build plate 
length 

Powder recycling  A fixed fraction of unused powder is recycled  

Build plate refurbishment Build plates can be refurbished a finite number of times  

Build plate removal Assume constant time; costs of labor and machine utilization are applied  

Build failure Captured via uptime assumption 

Post-processing  Not considered (i.e., support removal, heat treatment, surface finishing) 

Table 2. Summary of modeling approaches for the physics-based rate model and activity-based 
cost model.  
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3 RESULTS AND DISCUSSION 
 
3.1 Build rate scaling  
Using the rate scaling model described above, we present rate maps for three selected materials 
in Figure 4, AlSi10Mg, Ti6Al4V, and 1.2709 (maraging) steel. Each map covers a range of laser 
power (100-1100 W) and spot size (30-150 um), representative of the process parameter space 
for LPBF. Layer height is equal to half of laser spot size, such that overall print resolution varies 
in the x-dimension. The color scale (background) shows the volumetric build rate in cc/hr, and 
the isolines represent normalized enthalpy (dimensionless, red) and laser scan speed (m/s, white). 
Isolines of build rate are additionally shown in black.  
 

 

Figure 4. Map of predicted LPBF build rate (cc/hr, in color) as related to laser power and laser 
spot size for (A) AlSi10Mg, (B) Ti6Al4V, and (C) 1.2709 (maraging) steel. Build rate here is 
equivalent to total scanning time normalized by part volume. Build rates were calculated by 
running the complete model (Fig. 1) for a cube geometry (1 cm side length) with layer height set 
equal to half of laser spot size (note that both layer height and spot size vary proportionally 
across the x-dimension of each plot). Black lines represent laser scan speed; white lines show 
normalized enthalpy as a proxy for tendency to produce keyhole pores. All calculations are 
performed with target melt pool depth equal to 2x layer height and constant ambient 
temperature of the build chamber and powder at 100 deg C. The predicted operating points 
corresponding to the maximum laser power and nominal laser spot size for selected commercial 
LPBF machines (EOS ‘s-m100’, m290, and m400, where ‘s’ denotes simulated), are shown in 
yellow, white, and blue respectively.  
 
3.1.1 Interpretation of parameter-rate relationships 
The lower-right area of the P-a space indicates a combination of low power, large laser spot size, 
and high laser scanning speeds. Lack of fusion would be most likely to occur in this area, 
whereas the top-left (i.e., high power, small spot size, and slow scanning speeds) would be most 
likely to produce keyhole-mode defects. As described above, the build rate estimates do not 
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consider these defects, i.e., the rate is calculated for a self-similar parabolic melt pool shape and 
therefore will have highest accuracy within a stable process parameter window. 
 
Moreover, the overall trends of build rate can be deduced: build rate can vary significantly 
according to the chosen process parameters, and is systematically higher or lower depending on 
the material properties that determine the amount of energy required for heating and melting. 
Build rate is strongly correlated to laser power, more so than spot size. Additionally, for a fixed 
laser power, as is common in industrial LPBF systems, our model predicts that a low-speed, 
small-spot size parameter set and a high-power, large-spot size parameter set would produce 
similar build rates. For LPBF practitioners, these plots could guide the selection of process 
parameters for a given material and system, such that build rate is maximized while print quality 
(i.e. avoidance of keyhole pores, lack of fusion defects, etc.) are avoided based on experience or 
material-specific experiments.   
 
Additionally, we use the rate maps to contextualize the performance of exemplary commercial 
LPBF equipment. In Figure 4, we place markers representing the nominal maximum laser power 
and spot size from the data sheets of selected machines from EOS GmbH, and the background 
color at these points gives the corresponding build rate. The corresponding parameters and 
output values from the rate model are given in Table 3. Note that the commercial machine 
models are appended with ‘S’ (e.g., S-m-100 for the EOS m-100) to indicate that the rate is 
simulated through model and not measured directly.  
 
 

Material ALSI10MG TI6AL4V 1.2709 STEEL 

Machine S-m100 S-m290 S-m400 S-m100 S-m290 S-m400 S-m100 S-m290 S-m400 

Laser power (W) 200 400 1000 200 400 1000 200 400 1000 

Spot size (um) 40 100 90 40 100 90 40 100 90 

Layer height (um) 20 50 45 20 50 45 20 50 45 

Melt pool depth (um) 40 100 90 40 100 90 40 100 90 

Melt pool width (um) 139 349 314 128 320 287 96 240 216  
Scan speed (m/s) 2.04 0.65 0.20 1.39 0.44 0.14 1.28 0.41 0.13 
          

Scanning time (hr/cc) 0.10 0.05 0.21 0.16 0.08 0.33 0.23 0.12 0.47 

Build rate (cc/hr) 13.92 26.27 66.72 8.68 16.47 41.78 6.08 11.67 29.54 

VED 122.8 122.8 122.8 180.4 180.4 180.4 195.6 195.6 195.6 

          

Table 3. Exemplary print parameters for simulated EOS LBPF systems. Data pertains to a 1cc 
cube. These operating points are shown in Figure 4. Hatch spacing is half of melt track width. 
Ratio of width to depth is 3.495, 3.195, and 2.405 for AlSi10Mg, Ti6Al4V, and 1.2709 steel, 
respectively.  
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3.1.1 Incorporation of physical build limits 
The transition from conduction to keyhole-mode melting, and the eventual appearance of 
keyhole pores is typically a main consideration when maximizing LPBF build rate while 
maintaining low as-built porosity. For 316L stainless steel, King et al. observed that the 
transition to keyhole mode melt tracks began above a normalized enthalpy value of ~26, and 
were clearly observed above a normalized enthalpy value of ~34 (King et al., 2014). An 
additional study characterizing single tracks of 316SS observed that the transition to keyhole 
mode occurred around a normalized enthalpy value of ~6 (Scipioni Bertoli et al., 2017). 
Constant normalized enthalpy at values 6, 12 and 18, are reported across the P-a space in Figure 
4. 
       
Importantly, we note that normalized enthalpy is material-dependent, i.e. AlSi10Mg’s lower 
enthalpy at melting and melt temperature result in lower normalized enthalpy values compared to 
Ti6Al4V and 1.709 steel, when process parameters are otherwise identical. This analysis 
additionally implies that, in the case where some operating points of machines are fixed (e.g., the 
S-m100, S-m290, and S-m400 each have a fixed spot size regardless of material), the underlying 
process physics are distinct between materials, and the precise relationships between material 
properties and energy input must be balanced to ensure high-quality prints.  
 
This analysis also sheds light on the utility of normalized enthalpy as compared to volumetric 
energy density (VED):  
 

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑃𝑃

𝑢𝑢 ∗ 𝐻𝐻 ∗ ℎ
 

 
where P is laser power (W), u is scan speed (mm/s), H is hatch spacing (mm) and h is layer 
thickness (mm). Combining the scaling law between machine parameters, material parameters, 
and scan speed, and the formulation of VED shows: 
 

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝜋𝜋𝐻𝐻𝑚𝑚𝜙𝜙
𝐾𝐾𝐾𝐾

 

 
where Hm is enthalpy at melting, K is an empirical scaling constant (Ye et al., 2019), 𝜙𝜙 is the 
overmelt parameter (i.e., the ratio between the melt track depth and the print layer height, and A 
is laser absorptivity. This formulation assumes that the layer thickness h is half of laser spot size 
𝑎𝑎 and that the depth of the melt track 𝑑𝑑 is twice the layer thickness ℎ. Each build rate map in 
Figure 4 has a constant value of VED: 122.8 J/mm3 for AlSi10Mg, 180.4 J/mm3 for Ti6Al4V, 
and 195.6 J/mm3 for 1.2709 steel. VED is constant across all power-spot size combinations, 
suggesting   that VED alone is insufficient to predict build rate and gain qualitative insights as to 
the process window according to the normalized enthalpy criterion. 
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Therefore, while we do not suggest a specific value of normalized enthalpy that bounds the build 
rate for each specific material, the representation of Figure 4 can be used to select LPBF 
parameters that may be used to obtain a maximum build rate under a notmalized enthalpy 
constraint. With this, we show how process limits can be incorporated to threshold the maximum 
print rate, thus enabling AM process engineers to straightforwardly identify process parameters 
to increase printing throughput. 
 
3.2 Material- and machine-specific cost dependencies 
The parametric rate model, geometry processing pipeline, and process-based cost model can be 
integrated to provide cost estimates for component manufacturing by LPBF. These cost estimates 
can be rapidly computed versus material choice, machine capability, process parameters, and 
other user-defined inputs. As an example, here we compute the cost of a bracket component 
versus production quantity, LPBF machine selection, and feedstock material (Figure 5). As 
above, we consider the simulated build rate for a series of commercial machines. Input terms are 
shown in Tables 1 and 3, as well as the supporting information.  
 

 
Figure 5. Exemplary output relationships between cost per cc and production quantity. Cost 
declines with increasing production quantity. (A) Bracket geometry in orthogonal, top, and side 
view. Bounding box of bracket is 7.5cm x 1.25cm x 5cm and the material volume of the bracket 
is 29.1 cc. (B) Influence of material on production cost per cc using the S-m400 machine. (C) 
Influence of machine capability (i.e., four emulated EOS LPBF machines) on per-part production 
cost using AlSi10Mg feedstock.  
 
As shown in Figure 5B, cost per part decreases with production quantity, and becomes constant 
when the cost of an incremental build is small relative to the total run cost. The observed 
“sawtoothing” pattern reflects the fact that additional builds become necessary as production 
quantity increases. Build-specific cost constituents are amortized over the full production 
volume, such that an additional build will increase the per-cc cost. These increases become less 
pronounced at high volumes, because the relative contribution of per-build (i.e. variable) costs 
becomes negligible compared to the contribution of per-part (i.e. fixed) costs under this 
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perspective. For similar reasons, the cost curves appear linear at low production quantities due to 
the fact that per-part, variable cost is much less than the fixed cost per build. Additionally, these 
trends are geometry-specific, such that a larger part occupying more of the build chamber would 
have a different relationship between fixed and variable costs.  
 
Comparing materials, volumetric cost is lowest for AlSi10Mg (2.51 $/cc), second-lowest for 
Ti6Al4V (5.04 $/cc) and highest for Steel 1.2709 (5.64 $/cc) for the S-m400 at a production 
quantity of 10,000 (Figure 5B). The difference in cost can be partially explained by the assumed 
price of raw materials (57, 200, and 50 $ USD/kg for AlSi10Mg, Ti6Al4V and 1.2709 steel, 
respectively). Additionally, material properties have a large bearing on rate, which in turn has a 
large bearing on cost: the lower melt temperature and higher specific heat and thermal diffusivity 
of AlSi10Mg result in a higher build rate and therefore lower cost than the other materials 
considered here. For high-performance applications, such as lightweighted structures, the 
selection of feedstock accordingly impacts the ultimate value of the final product as well as its 
manufacturing cost. Further cost competitiveness could be attained by developing next-
generation alloys with lower melting temperatures and more favorable thermal properties.  
 
Figure 5C shows the influence of machine capability on per-part production cost. At low 
production quantities, smaller machines (S-m100, S-m290) are more cost-effective, although 
these machines produce fewer components per build at a slower volumetric build rate. The per-
build costs, such as build plate usage, inerting gas flow, utilization time for machine warm-up 
and cool down, are lower for smaller machines due to their smaller build volume. Moreover, the 
per-hour machine utilization cost for the smaller machines is lower due to lower capital costs. 
 
At high production quantity, however, machine capability dictates cost competitiveness. For 
example, for AlSi10Mg at n = 10,000, the cost asymptotes to 6.01 $/cc for the S-m100 and 2.57 
$/cc for the S-m400-4, showing the cost advantage of a larger and higher-throughput LPBF 
machine for component production, despite the significantly higher capital cost. These results 
indicate that machine capability should be selected to match expected production quantity, and 
could guide the configuration and allocation of equipment in real-world factory environments.  
 
3.3 Forecasting production cost asymptotes  
Additionally, the physics- and process-based approach enables the extrapolation of cost beyond 
the performance limits of commercially available AM equipment. To date, the main means to 
increase the throughput of LPBF equipment is to increase the number of independently scanned 
lasers within the machine, which incurs additional capital cost from the lasers and the required 
scanning optics and control hardware for each laser, and for coordination of the laser scanning 
overall. An alternative approach, among others that may emerge, is to provide a single laser 
beam with much higher power than each laser in the current LPBF machine architecture, and to 
expose a relatively large area of the powder bed via spatial modulation of the single beam, such 
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as proposed in (Roehling et al., 2021). Ultimately, to gain increased market share, these 
machines will be reliant upon reducing the capital cost per unit of laser power (i.e., $/W). 
 
As a limiting thought experiment we query the influence of reducing the power-normalized 
capital cost ($/W), by successive orders of magnitude, while assuming no changes to other 
process costs (Figure 6). This is equivalent to increasing the build rate of an individual machine, 
without increasing its capital cost, starting from the current economics of LPBF production using 
the S-m400-4. While artificial, and beyond presently envisioned technology developments, this 
provides an economic limit to the scaling of LPBF printing cost as machine capability improves. 
 

 
Figure 6. (A) Prospective scaling analysis of the limiting economics of LPBF, via scaling down 
the machine cost per unit laser power (W) for AlSi10Mg. This analysis is equivalent to assuming 
that a machine of identical size and capital cost can incorporate additional laser power (and 
therefore, proportionally, build rate) while maintaining a stable process, We see the asymptotic 
costs of the LPBF process, relative to material cost. (B) Articulation of the resulting improvement 
in build time to produce the bracket geometry show in in Fig. 5A. In both (A) and (B) the labels k 
= 1, 10… indicate the multiple of laser powder that achieves the normalized machine cost ($/W) 
indicated on the x-axis.  
 
 
This analysis is equivalent to assuming that a machine of identical size and capital cost can 
incorporate additional laser power (and therefore, proportionally, build rate) while maintaining a 
stable process. We see the asymptotic costs of the LPBF process, relative to material cost, shown 
here for AlSi10Mg. From this, production cost (i.e. $/cc) and normalized machine capital cost 
(i.e. $/W) are positively, but weakly, correlated (R2 = 0.598, plot not shown). From this analysis, 
we make two key conclusions: first, the $/cc asymptotes to a lower-bound as $/W surpasses 
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~0.1x that of current technology; second, material cost represents a significant fraction of the 
asymptotic cost of LPBF. This limiting analysis, while rooted in coarse assumptions and not 
considerate of other required (and enabling) productivity enhancements (e.g., process 
automation, increased machine capacity), sheds light on the long-range economics of LPBF. 
Such analyses are useful for strategic planning, and for drawing comparisons to both 
conventional metal shaping processes (e.g., machining, casting), and alternative AM processes 
(e.g., binder jetting) in the future. 
 
3.4 Melting history analysis 
While the above analysis is based on the net build rate for both nominal unit volumes of material, 
and part-specific geometries, the geometric approach by which melt tracks are overlapped in the 
model enables a bounding analysis of the cyclic thermal history. Here, as described in Section 
2.6, we consider the geometric intersection of each consecutive melt track with adjacent tracks 
both laterally and into the substrate (i.e., the build plate and/or previous layer(s) of solidified 
material), to provide a lower-bound on the number of times that the material is melted during the 
LPBF process. Our analysis provides a lower-bound because the model assumes that the material 
surrounding each melt track returns to the starting temperature, i.e., there is no residual heat 
build-up. The number of melt cycles is therefore a proxy for the degree of intrinsic, cyclic heat 
treatment in LPBF, and can be adjusted for a different objective function such as the number of 
times that each point within the build exceeds a specific transition temperature. 
 
Due to the parabolic melt track geometry, and the assumed rotation of scan pattern from layer to 
layer, the number of melt cycles is represented by a distribution, which is presented versus the 
overmelt parameter (phi) in Figure 7C. Increasing phi results in a deeper melt pool, and therefore 
material is re-melted more times on average. Using this analysis, it becomes feasible to identify 
parameters that would produce a desired minimum number of melting cycles for each point in 
the build. A minimum value of Φ = 1.34 (i.e., the melt track depth must extend past the intended 
layer height by 34%) is required to ensure that all area is melted at least once, here for beta β = 
Φ/4, h = 50 um, w = 200 um. Moreover, to melt all material at least twice, a minimum value of Φ 
=  2.69 is required, subject to the same parameters, as shown in Figure 7C. Increasing hatch 
distance results in lower average number of melting cycles, but the effect of increasing hatch is 
less dramatic than increasing overmelt (Figure 7D). Increasing the number of melting cycles may 
be desirable for improving microstructure homogeneity or refining microstructure in situ, but 
will also decrease build rate.  
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Figure 7. Geometric analysis of overlapping melt tracks in conduction mode LPBF. (A) 
Decomposition of overlapping melt tracks for a given layer height (i.e., black box). Since each 
melt track may span multiple layers, the number of times the material within a single layer is re-
melted must consider the superposition of all intersecting melt tracks. (B) Tradeoff between 
build rate and overmelt parameter, which represents the ratio of nominal melt pool depth to 
layer thickness. Line shows average number of melting-freezing cycles experienced by each 
point within the build. Values are computed for laser P = 1000W and a = 90m, simulating the 
specifications of the EOS m400 system. Build rates apply to a simple rectangular prism (5mm x 
5mm x 2.5mm). Melt track width is 200 um and layer height is 50um. (C) Influence of overmelt 
(i.e. vertical overlap between print layers) on distribution of number of melting-freezing cycles. 
Colors represent the proportion of unit area of the print that was melted once, twice, etc, 
disregarding edge effects at component surface. (D) Influence of hatch spacing on number of 
melt cycles.  
 
This analysis relies solely on the geometry of the melt tracks, and therefore these results can be 
applied to any material subject to these dimensions. However, in practical implementation, the 
values of h, w, and H may be chosen differently for various materials, and should include the 
influence of heat retention in adjacent tracks and consecutive layers which would increase the 
average number of melting cycles under any nominal LPBF parameter set. Nevertheless, this 
analysis can identify process parameters that guarantee a minimum number of melting cycles at 
all points throughout a build, and rationalize inhomogeneity in thermal history due to heat flow 
intrinsic to the LPBF process. 
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3.5 Future work 
We see a number of opportunities to build upon the initial capabilities presented here. First, for 
LPBF, a more accurate estimate of the build rate can be obtained by incorporating (or, validating 
the scaling model against), more advanced models of melt track scaling. Along with this, the 
process window (e.g., power, speed, spot size) can be thresholded where undesired instabilities 
occur, such as balling or keyhole pore formation (Grasso and Colosimo, 2017). 
 
At a system-level, this model can be incorporated in a factory-level simulation that considers the 
performance of individual machines, along with discrete events such as print jobs, part 
assignment, and labor allocation (Shakirov et al., 2021). Such a simulation can give a more 
practical understanding of the operating cost of an AM facility, while remaining informed by 
part-, process-, and machine-specific details. Including post-processing steps—namely heat 
treatment, part removal, and support removal, as well as CNC machining in relevant cases (Atia 
et al., 2017)—will also enrich the utility of the model for AM practitioners across the product 
lifecycle (Asensio Dominguez et al., 2020; Boschetto et al., 2020). 
 
Last, this framework of physics-driven rate and cost estimation can be translated to other printing 
processes by substituting the core rate-limiting physical model. For instance, with 
stereolithography, the model can consider vat photopolymerization of resin instead of powder 
melting for LPBF, wherein the exothermic polymerization process would impose rate limitations 
(Walker et al., 2019). Similarly to LPBF, the framework can be further extended to apply a 
preliminary physical simulation, such as reaction-diffusion or multi-physics process analysis, 
before geometrical processing to approximate the underlying process physics. Applications of 
the framework to other AM processes would enable present and future comparisons of 
economics and industrial viability for production (Westbeek et al., 2020; Wu et al., 2018).  
 
4 Conclusion 
In this paper, we present a numerical framework for quantitative analysis of AM cost, in support 
design exploration and business-oriented decision-making. The framework involves: (1) a build 
rate estimator that considers the first-order scaling of the process as related to its fundamental 
parameters, applied to LPBF; and (2) a cost estimator that quantitatively links machine 
specifications, process parameters and build rate, to cost for LPBF. This model explores the 
interrelations between cost, throughput, resolution and production quantity for accessible process 
parameter combinations, namely tradeoffs between throughput (build rate) and resolution, going 
beyond the fixed operating points that are interpreted from commercial machine data. As such, 
the rate and cost estimators can be used for screening large libraries of components for AM 
suitability, and informing equipment design and selection as related to production objectives 
(e.g., total volume, required lead time, etc). It is our hope that, with the development of 
parameterized, granularized models of rate, cost, quality and flexibility, we can enable 
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innovative designers, engineers and production managers to unlock the full benefits of AM and 
digital manufacturing as a whole. 
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