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Appendix 1. Digital file slicing and contour generation  
The code for importing, manipulating, and slicing mesh geometry was developed in-house with 
the Julia scientific programming language. Visual representation of the graphics processing 
workflow and the contour generation algorithm are shown in Figures A.1 and A.2, respectively.  
  

 
Fig A.1. Graphics processing workflow for the physics-based rate model, which simulates part slicing and, 
conceptually, translation to machine-level print paths. (A) Digital part file is imported as an .stl mesh, (B) mesh is 
sliced by taking triangle-plane intersections at each print plane, (C) for each print plane, closed-loop contours are 
found, (D) a representative print strategy (i.e. laser scan paths for the skin and core) are superimposed onto the 
contours, (E) a part-specific total print length is output. For LPBF, total print length represents the total length of laser 
scanning required to print a given part. 

 
The slicing operation results in a list of unordered intersection edges for each slice plane. 
Assuming that the mesh is watertight and no errors have occurred in slicing, this list of 
unordered edges can be structured into closed-loop paths that represent the perimeter of material 
to be printed on a given layer. If the mesh is not watertight, the algorithm will attempt to match 
the remaining vertex to its closest neighbor within a tolerance limit (i.e. if the distance between 
two vertices are lower than 1E-6 mm, for example); if no neighbor is found, the algorithm will 
throw an exception. Details are shown in Figure A.2.  
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Figure A.2. (Left) State machine-based algorithm for contour generation. The algorithm begins by initializing the data 
structures to store the edges for a given slice plane. An edge is selected to begin the first contour, and the algorithm 
iterates through the remaining edges in the slice plane until a neighboring edge is found. If additional edges remain in 
the slice plane, a subsequent contour is started. The algorithm finishes when all edges for all layers have been assigned 
to contours. (Right) Raw output from the slicing (top) and contour generation (bottom) algorithms, shown against 
input part geometry. The area bounded by the closed-loop contour is shown in grey in the contour output example. 

 

 
Figure A.3. From directly interrogating the part geometry, we extract additional geometric parameters: mesh volume, 
mesh surface area, bounding box limits and volume, area per print layer, perimeter per print layer, and number of 
contours per print layer. This computational workflow therefore allows a more nuanced, part-specific estimation of 
to-print length (and therefore volume).  

 
Appendix 2. Parameterized, activity-based cost model for LPBF  
This section describes the formulation of our physics- and activity-based cost estimator, which 
estimates the per-part cost of additively manufacturing a single component. To do so, we begin 
with a production run of size N identical parts. The underlying assumptions are accordingly:  
 

• The run comprises identical parts, and thus costs associated with the full production run 
can be evenly distributed across each part. This scenario does not consider mixed-part 
builds as is done in industry to minimize cost.  

• The costs of build failure are negligible, i.e. no overhead is applied to account for non-
perfect yield.  

• The major contributor for production cost lies in the printing step; heat treatment, de-
powdering and post-processing costs are not considered in the model. However, we note 
that post-processing costs can be high and therefore an important consideration when 
assessing cost for LPBF.  

 



Gee et al, 2022 3 

Per-part cost is decomposed into four categories, and costs are assigned based on the 
corresponding activities and expenses to each category (Baumers et al., 2012). The four 
categories considered are: material cost, machine usage cost, consumables cost (i.e. inert gas, 
build plate), and labor cost. Thus, the estimated cost per part can be expressed as  
 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑚𝑚 + 𝐶𝐶𝑒𝑒 + 𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑎𝑎 
 
where 𝐶𝐶𝑚𝑚,  𝐶𝐶𝑒𝑒 ,  𝐶𝐶𝑐𝑐,  𝐶𝐶𝑎𝑎 are the costs due to material usage, equipment/machine utilization, 
consumables, and labor, respectively.  
 
First, we translate the production size n into the total number of builds required N. Assuming 
that the part footprint 𝐴𝐴𝑝𝑝 (i.e. the width and length of the part's bounding box) and build chamber 
area 𝐴𝐴𝑐𝑐 are known, the number of parts per layer nPartsPerLayer is estimated as: 
 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  �𝐴𝐴𝑐𝑐/𝐴𝐴𝑝𝑝˩ 
 
where ⌊𝑥𝑥˩ is the floor operator and denotes the greatest integer less than or equal to x. The part 
footprint 𝐴𝐴𝑝𝑝  is found in the graphics processing workflow described in the main body text. The 
number of layers per build nLayersPerBuild is set to one.   
 
In polymer SLS or other printing techniques where volumetric packing is used, the 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 could be calculated as:  
 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �𝐻𝐻𝑐𝑐/𝐻𝐻𝑝𝑝˩ 
 
where 𝐻𝐻𝑐𝑐 and 𝐻𝐻𝑝𝑝 are the absolute heights of the build chamber and part, respectively. 
Visualization of the simplified single-layer packing scheme is shown in Figure 4 of the main 
text.  
 
The number of parts per build is:  
 

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑛𝑛LayersPerBuild 
 
and the total number of builds N is  
 

𝑁𝑁 = ⌈𝑛𝑛/𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛c ˥  
 
 
where ⌈𝑥𝑥˥ is the ceiling function and denotes the lowest integer greater than or equal to x.  
 
The total volume of all print layers 𝑉𝑉𝑝𝑝 is therefore 
 

𝑉𝑉𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑐𝑐𝐻𝐻𝑝𝑝 
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where 𝐴𝐴𝑐𝑐𝐻𝐻𝑝𝑝 represents the volume of a single part layer. The total number of part layers 
nLayers  for the production run is 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ⌈𝑁𝑁/𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛˥ 
 
 
This approach simulates a simple 2d-packing approach, sensitive to the aspect ratio of the part's 
bounding box. Specifically, we implement single-layer (i.e. planar) packing. Volumetric packing 
(multiple part layers per print) is used in other processes, such as polymer SLS and in general the 
choice of packing depends on process, part geometry, and support structure design. We assume 
that the inclusion of supports modifies the print mass, but not the part's bounding box 
dimensions, and that parts can be stacked vertically. Distinguishing between number of part 
layers and number of builds allows more accurate estimations of activity-based cost (i.e. some 
operations are layer-based such as recoating while others are build-based such as gas flushing).  
 

 
Figure A.4. Schematic representation of volumetric packing (i.e. multiple part layers) for other AM processes such as 
polymer SLS.  

 
The following sections outline the analytical models for each categorical cost.  
 
A2.1 Material Cost 
Material cost has three components: (a) the cost of powder to produce the finished part, (b) the 
cost of powder to produce part supports, and (c) the cost of surrounding powder that cannot be 
recycled.  
 
For a part of volume V and final density ρ, the material cost to produce the finished part 𝐶𝐶𝑚𝑚𝑎𝑎   is:  
 

𝐶𝐶𝑚𝑚𝑎𝑎 = 𝑉𝑉𝑉𝑉 𝐶𝐶 𝑛𝑛 
 
where CP is the cost of powder in $/kg. Part volume V is defined as the volume bounded by the 
digital part file and is calculated using the graphics processing workflow described in the main 
text. The cost of powder to produce the supports 𝐶𝐶𝑚𝑚𝑏𝑏  is:  
 

    𝐶𝐶𝑚𝑚𝑏𝑏   =  0.2 𝑉𝑉 𝑉𝑉 𝐶𝐶𝑛𝑛   
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i.e. we assume that the mass of the supports is 20% of the part mass. Because the part and 
support are the same material, this implies that 𝑉𝑉𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 = 0.2V , i.e. that support volume is 20 % 
of part volume. Finally the cost of unrecycled powder 𝐶𝐶𝑚𝑚𝑐𝑐  is: 
 

𝐶𝐶𝑚𝑚𝑐𝑐 =
(1 − 𝛾𝛾)𝑉𝑉𝑉𝑉𝑠𝑠 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛
 

 
where γ is the recycling fraction, i.e. the portion of unused powder than can be recycled. For the 
purposes of this analysis, recycling fraction is 0.95 for all materials. 𝑉𝑉𝑠𝑠 is the volume of unused 
powder in a single part layer:  
 

𝑉𝑉𝑠𝑠 = 𝐴𝐴𝑐𝑐𝐻𝐻𝑝𝑝 − (𝑉𝑉 + 0.2𝑉𝑉) 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 
where 𝐴𝐴𝑐𝑐𝐻𝐻𝑝𝑝 is the volume of a single part layer, 𝑉𝑉 is the volume occupied by the part, and 0.2 V 
is the volume occupied by the supports. This approach assumes that the volume decreases from 
unsolidified to melted powder is negligible for estimating material cost. Therefore, we expect our 
estimate of material cost to be a slight underestimate.  
 
Total per-part material cost is:  
 

𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑚𝑚𝑎𝑎 + 𝐶𝐶𝑚𝑚𝑏𝑏 + 𝐶𝐶𝑚𝑚𝑐𝑐  
 
A2.2 Machine Cost 
Machine cost considers the capital investment required for the printer itself, its supporting 
infrastructure requirements, as well as ongoing maintenance costs. We use the subscript e for 
equipment. The cost of the machine is expressed as a yearly cost, from which an hourly 
utilization cost is derived. 
 
The yearly cost of machine ownership is approximated by the yearly depreciation cost in the first 
year of ownership:  
 

𝐶𝐶𝑒𝑒,𝑦𝑦𝑠𝑠 = (𝐶𝐶𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑒𝑒 + 𝐶𝐶𝑖𝑖)
𝑛𝑛

1 − (1 + 𝑛𝑛)𝐿𝐿 + 𝐶𝐶𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑒𝑒 

 
where 𝐶𝐶𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑒𝑒 is the up-front purchase cost of the machine, 𝐶𝐶𝑖𝑖 is the infrastructure cost, r is the 
discount rate, L is the predicted lifetime of the machine in years, and 𝐶𝐶𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖𝑡𝑡 is the maintenance 
rate defined as the portion of capital cost. The underlying depreciation model is shown below.  
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Figure A.5. Illustration of the residual value of the machine versus time in present-day dollars over time. In this 
example, capital machine cost is 248,000 USD and infrastructure costs are 124,000 USD (i.e. half of capital machine 
cost). The discount rate 𝑛𝑛 is 0.05 and the expected lifetime 𝑛𝑛 is 7 years. The yearly machine depreciation, and therefore 
yearly cost of machine ownership not including maintenance, is estimated to be 64,000 USD for the first year of 
machine ownership in this instance.   
 
From this, the cost of machine utilization per hour can be expressed as: 
 

𝐶𝐶𝑒𝑒,ℎ𝑠𝑠 =
𝐶𝐶𝑒𝑒,𝑦𝑦𝑠𝑠

ℎ𝑦𝑦𝑠𝑠𝑠𝑠
 

 
where ℎ𝑦𝑦𝑠𝑠 is the number of operating hours per year and 𝑛𝑛 is uptime, i.e. the fraction of 
operating hours wherein the machine is functional and utilized. A value of 𝑛𝑛 lower than 1 
simulates the machine being offline for maintenance or repairs.  
 
Next, we estimate the time associated with printing a single part, which is equivalent to the 
machine utilization time. A full build sequence includes: (a) build preparation wherein print 
parameters are selected and an engineer configures the physical layout of parts in the build 
chamber, (b) build chamber warm-up and gas flush, (c) the print itself, (d) cool-down, and (e) 
build plate removal and build exchange. Step (a) occurs only once per production run, and does 
not require machine time.  
 
The per-part time associated with build chamber warm-up and gas flush is:  
 

𝑛𝑛𝑏𝑏 = 𝑛𝑛𝑤𝑤𝑁𝑁/𝑛𝑛 
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where 𝑛𝑛𝑤𝑤 is a constant warm-up time for a machine. This approach amortizes the time associated 
with warming up 𝑁𝑁 times across the 𝑛𝑛 production parts. A similar approach is applied for cool-
down (i.e. 𝑛𝑛𝑑𝑑  =  𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎 𝑁𝑁 / 𝑛𝑛) and print exchange (i.e. 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑁𝑁/𝑛𝑛) where 𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛  is the time 
in hours required for machine cool-down and 𝑛𝑛𝑒𝑒𝑒𝑒𝑐𝑐ℎ  is the time in hours required for build 
exchange.  The time to print is estimated as:  
 

𝑛𝑛𝑐𝑐  =  𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑖𝑖 / 𝑁𝑁𝐿𝐿  +  𝑛𝑛𝑠𝑠 / 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 
where 𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑖𝑖 is the estimated total scanning time in hours required to produce a single part, 𝑁𝑁𝐿𝐿 is 
the number of lasers of the machine and 𝑛𝑛𝑠𝑠 is the total recoating time in hours associated with a 
given part layer (assuming that recoating time is independent of the number of parts per layer). 
Recoating time is therefore evenly distributed amongst all parts in a layer and is calculated as: 
 

𝑛𝑛𝑠𝑠 = (𝑛𝑛 − 1)�1.4𝑛𝑛𝑏𝑏𝑐𝑐�1/𝑣𝑣𝑓𝑓 + 1/𝑣𝑣𝑏𝑏� + 𝑛𝑛𝑣𝑣� 
 

 where 𝑛𝑛 is the number of print layers required to produce a part layer, 𝑛𝑛𝑏𝑏𝑐𝑐 is the length of the 
build chamber in the direction of recoat (i.e. the length over which the recoater travels), 𝑣𝑣𝑓𝑓 is the 
forward velocity of the recoater, 𝑣𝑣𝑏𝑏 is the backwards velocity of the recoater, and 𝑛𝑛𝑣𝑣 is the time 
taken for vertical travel of the build plate. We assume that the recoater travel length exceeds the 
length of the build chamber by a factor of 1.4 (i.e. such that edge effects of recoater travel does 
not impact the print area). This granularization of recoating time therefore is sensitive to print 
quality (i.e. print resolution as quantified by layer height) as well as machine capability (i.e. 
recoating velocity) and physical size.  
  
 Note that 𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑖𝑖 is a complex function of machine capability (laser power, spot size), print 
parameters (overmelt, hatch spacing, layer height) and machine properties. Therefore, the time to 
print 𝑛𝑛𝑐𝑐 is process- and machine-specific, and driven not by empirical data of machine-specific 
build rate but their base specifications. This approach enables us to estimate cost for a wider 
range of machine capabilities. The total, per-part production time is:  
 

𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑏𝑏 + 𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑 + 𝑛𝑛𝑒𝑒 
 

𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑖𝑖/𝑁𝑁𝐿𝐿 + 𝑛𝑛𝑠𝑠/𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎 + 𝑛𝑛𝑒𝑒𝑒𝑒𝑐𝑐ℎ)𝑁𝑁/𝑛𝑛 
  
 Taken in total, the cost of machine usage per part can therefore be expressed as: 
  

𝐶𝐶𝑒𝑒 = 𝑛𝑛𝑝𝑝𝐶𝐶𝑒𝑒,ℎ𝑠𝑠 
 

 m100 m290 m400 m400-4  
Laser power  200 400 1000 400 W, nominal laser wattage 

Laser spot 
size 

40 100 90 90 𝜇𝜇m 

A_chamber 25𝜋𝜋 252  402 402 cm2, area of build plate 
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H_chamber 9.5 32.5 40 50 cm, vertical height of build 
chamber 

C_printer 2.48E+05 5.00E+05 1.00E+06 1.76E+06  $ USD, capital cost of printer 

Lifetime 7 7 7 7 Years, overall lifetime of printer  

Discount rate  0.05 0.05 0.05 0.05 Discount rate used in yearly cash 
flow analysis 

Maintenance 
rate  

0.05 0.1 0.1 0.1 Maintenance rate of machine cost 
per year 

Uptime  0.9 0.9 0.9 0.9 Fraction of operating hours that 
yield productive output 

Infrastructure 
rate 

0.5 0.5 0.25 0.25 One-time capital cost for printer-
related infrastructure, in the form 
of a multiple of C_printer 

nLasers 1 1 1 4 Number of lasers on printer 
NhoursPerYear 7884 7884 7884 7884 Hrs, total operational hours per 

year  
Gas flow rate 10 3 3 3 L/hr, Volumetric gas flow, defined 

as a multiple of the build chamber 
volume flow per unit hour  

Table A.1. Machine-specific inputs to activity-based cost.   

A2.3 Consumables Cost 
For LPBF, the primary build consumables are (i) gas flow used to inert the build chamber before 
and during print, and (ii) the build plate, (iii) energy consumption of the machine. While energy 
consumption may have large implications for the environmental impact of LPBF, we argue that 
the cost of electricity is negligible in relation to other per-part costs. 
 
To approximate (i), we consider an initial gas flush at the beginning of every build, as well as 
continuous gas flow during print. The cost of the initial gas flush 𝑐𝑐𝑓𝑓 is 
 

𝑐𝑐𝑓𝑓 = 𝑞𝑞𝑉𝑉𝑏𝑏𝑐𝑐𝑁𝑁/𝑛𝑛𝐶𝐶𝑔𝑔𝑎𝑎𝑠𝑠 
 
Where 𝑉𝑉𝑏𝑏𝑐𝑐 is the volume of the build chamber and 𝐶𝐶𝑔𝑔𝑎𝑎𝑠𝑠 is the per-volume cost of inert gas. We 
assume that volume of gas used to flush the chamber sufficiently is 𝑞𝑞 times the build chamber 
volume. Gas flush will occur 𝑁𝑁 times per production run, normalized by the production quantity 
𝑛𝑛. The cost of gas flow during the print 𝑐𝑐𝑔𝑔𝑝𝑝 is 
 

𝑐𝑐𝑔𝑔𝑝𝑝 = 𝑉𝑉�̇�𝑔(𝑛𝑛𝑏𝑏 + 𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑)𝐶𝐶𝑔𝑔𝑎𝑎𝑠𝑠 
 
where Vġ is the volumetric gas flow rate, 𝑛𝑛𝑏𝑏 is per-part warm-up time, 𝑛𝑛𝑐𝑐 is per-part print time, 
and 𝑛𝑛𝑑𝑑 is per-part cool-down time. We assume that 𝑉𝑉�̇�𝑔 is a function of build chamber volume.  
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To approximate (ii), we consider a refurbishment model wherein build plates are reused a finite 
number of times. The amortized, per-part cost of build plate use is:  
 

𝑐𝑐𝑏𝑏𝑝𝑝 = �𝐶𝐶𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒/𝑛𝑛 + 𝐶𝐶𝑠𝑠𝑒𝑒𝑓𝑓𝑠𝑠𝑠𝑠𝑏𝑏�𝑁𝑁/𝑛𝑛 
 
where 𝐶𝐶𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 is the initial cost of the plate, 𝑛𝑛 is the number of times the plate can be reused and 
𝐶𝐶𝑠𝑠𝑒𝑒𝑓𝑓𝑠𝑠𝑠𝑠𝑏𝑏 is the cost to refurbish a plate.  
 
Combining (i) and (ii), i.e. the cost of gas flush, gas flow, and build plate use, gives:  
 

𝐶𝐶𝑐𝑐 = 𝑐𝑐𝑓𝑓 + 𝑐𝑐𝑔𝑔𝑝𝑝 + 𝑐𝑐𝑏𝑏𝑝𝑝 
 
Substituting and rearranging: 
 

𝐶𝐶𝑐𝑐 = 𝑉𝑉�̇�𝑔(𝑛𝑛𝑏𝑏 + 𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑)𝐶𝐶𝑔𝑔𝑎𝑎𝑠𝑠 + �10𝑉𝑉𝑏𝑏𝑐𝑐𝐶𝐶𝑔𝑔𝑎𝑎𝑠𝑠 + 𝐶𝐶𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒/𝑛𝑛 + 𝐶𝐶𝑠𝑠𝑒𝑒𝑓𝑓𝑠𝑠𝑠𝑠𝑏𝑏�𝑁𝑁/𝑛𝑛 
 
Therefore, consumable cost is a function of machine capability (through 𝑛𝑛𝑐𝑐 ) as well as size 
(through 𝑉𝑉𝑏𝑏𝑐𝑐 and Vġ).  
 
A2.4 Labor Cost  
Our last category is labor, accounting for the work of engineers and build operators in setting up, 
supervising and exchanging builds. We consider the labor associated with the physical build 
itself, not including the labor costs of part and process design in the product development phase.  
 
For this model, we assume that an engineer will configure the print (i.e. select appropriate build 
parameters and physically lay out the components in the print volume) and a build operator will 
handle printer warm-up (including gas purging), print supervision, printer cool-down and build 
exchange. For the printer warm-up, print supervision, and printer-cool down stages, we assume 
that the operator is only 10% dedicated to the print, i.e. that 90% of their labor costs can be 
attributed to other tasks the operator performs in parallel.  
 
The labor cost for setup 𝐶𝐶𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑝𝑝 is 
 

𝐶𝐶𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑝𝑝 = 𝑛𝑛𝑎𝑎𝐶𝐶𝑒𝑒𝑖𝑖𝑔𝑔/𝑛𝑛 
 
where 𝑛𝑛𝑎𝑎 is the time required to set up the print, and 𝐶𝐶𝑒𝑒𝑖𝑖𝑔𝑔 is the hourly wage of the engineer. 
Setup costs are distributed among the n parts of the production run.  
 
The warm-up, print, cool-down, and exchange costs are:  
 

𝐶𝐶𝑤𝑤𝑎𝑎𝑠𝑠𝑚𝑚 = 0.1𝑛𝑛𝑏𝑏𝐶𝐶𝑡𝑡𝑝𝑝 
 

𝐶𝐶𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡 = 0.1𝑛𝑛𝑐𝑐𝐶𝐶𝑡𝑡𝑝𝑝 
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𝐶𝐶𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎 = 0.1𝑛𝑛𝑑𝑑𝐶𝐶𝑡𝑡𝑝𝑝 
 

𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐ℎ = 𝑛𝑛𝑒𝑒𝐶𝐶𝑡𝑡𝑝𝑝 
 
where𝑛𝑛𝑏𝑏 , 𝑛𝑛𝑐𝑐, 𝑛𝑛𝑑𝑑and 𝑛𝑛𝑒𝑒 are the per-part times associated with machine warm-up, print, machine 
cool-down, and build exchange, respectively. 𝐶𝐶𝑡𝑡𝑝𝑝 is the hourly wage of the operator. Total per-
part cost of labor 𝐶𝐶𝑎𝑎 is:  
 

𝐶𝐶𝑎𝑎 = 𝐶𝐶𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑝𝑝 + 𝐶𝐶𝑤𝑤𝑎𝑎𝑠𝑠𝑚𝑚 + 𝐶𝐶𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐶𝐶𝑐𝑐𝑡𝑡𝑡𝑡𝑎𝑎 + 𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐ℎ 
 
Cost description  
Parameter  Value 
P Number of times a build plate can be refurbished 10 
C_refurb Cost of a single build plate refurbishment 25 $ USD 
C_gas Volumetric cost of inert gas   0.018 $ USD /L 
C_operator Fully burdened hourly wage for AM operator 40  $/hr 

C_engineer Fully burdened hourly wage for AM engineer 60 $/hr 

FTE_run Fraction of attention required for overseeing the print (i.e. 
one operator could supervise 5 machines at once) 

0.2 

Table A.2. Inputs to consumable and labor-related costs. 
 
A2.4 Total Production Cost  
 
The total per-part production cost is estimated as  
 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑚𝑚 + 𝐶𝐶𝑒𝑒 + 𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑎𝑎 
 
i.e. the linear sum of costs incurred from material, machine, consumables and labor expenses.  
 
Appendix 3. Re-melt analysis 
An analytical solution was developed to calculate the number of times each point in the build is 
re-melted, with simplifying assumptions. The approach is based on discretizing a given unit 
volume of a print based on in-layer overlap between adjacent melt tracks (i.e. horizontal) and 
inter-layer overlap between print layers (i.e. vertical).  
 
A3.1 Analytical form of a single melt track 
 Our model assumes that the user will specify layer height 𝑛𝑛ℎ and overmelt 𝜙𝜙 (i.e. the degree to 
which melt track extends past the layer height, defined as a multiple of layer height. In realistic 
printing conditions, overmelt will always be greater than 1. Therefore, the full depth of the melt 
track 𝑛𝑛  is  
 



Gee et al, 2022 11 

𝑛𝑛 = 𝜙𝜙𝑛𝑛ℎ 
 
The width of the parabola 𝑤𝑤 is an input parameter of this analysis. In integration with our rate 
model, width will be a dependent variable based on melt track depth 𝑛𝑛, laser scanning parameters 
and material thermodynamic properties. Assigning the minimum of the melt track parabola to the 
origin of a coordinate reference frame, we apply the constraint that the parabola would intersect 
with z(-w/2) = z(w/2) = 𝜙𝜙𝑛𝑛ℎ and z(x = 0) = 0 where the x-coordinate corresponds to melt track 
width (i.e. horizontal direction) and the z-coordinate corresponds to the melt track depth (i.e. 
vertical direction) 
 

 
Figure A.6. Melt track geometry of width 𝑤𝑤 and depth 𝜙𝜙𝑛𝑛ℎ. Grey window denotes unit cell.  

 
The analytical equation expressing the parabolic melt track is therefore:  
 

𝑧𝑧 = 𝜙𝜙𝑛𝑛ℎ 
4
𝑤𝑤2 𝑥𝑥

2 
 
This equation is specific to a melt track with a non-rotated scan direction, i.e. the laser scan 
speed is parallel to the y-axis and perpendicular to the x-y plane.  
 
A3.2 Analytical form of a rotated melt track 
To account for realistic scan strategy, the analytical form of a rotated melt track (i.e. melt track 
produced by a laser scanning in a rotated direction) is also required. Rotation occurs about the z-
axis (Figure A.7). 
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Figure A.7. Accounting for width of rotated melt tracks. (Left) Rotation of a melt track about the z-axis. (Right) The 
width of the rotated parabolic prism in the xz plane is given by (𝑤𝑤 cos (𝜃𝜃)).  

 
We can then write from rotational symmetry that:  
 

𝑤𝑤𝑅𝑅 = 𝑤𝑤/𝑐𝑐𝑐𝑐𝑛𝑛  
 
The analytical equation expressing the rotated, parabolic melt track is therefore:  
 

𝑧𝑧 = 𝜙𝜙𝑛𝑛ℎ
4

𝑤𝑤𝑅𝑅2𝑥𝑥2
 

𝑧𝑧 = 𝜙𝜙𝑛𝑛ℎ𝑐𝑐𝑐𝑐𝑛𝑛2𝜃𝜃 
4
𝑤𝑤2 𝑥𝑥

2 
 
 
A3.3 Mathematical definition of hatch spacing 
The ultimate goal is to quantify how the parabolas overlap, as overlap represents re-melting 
during print. With the analytical equations of the parabolas defined (i.e. their shape and 
curvature), the next step is to express how the parabolas are laid out in space (i.e. their horizontal 
placement within a print layer).  
 
We first define the intersection depth, which is the vertical depth at which two adjacent melt 
tracks intersect (Figure 2A of main text). Here, 𝛽𝛽 is the intersection parameter and drives the 
depth at which two adjacent parabolas intersect: 
 

𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 = 𝛽𝛽 𝑛𝑛ℎ 
 
Note that 𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 is defined relative to the bottom of the melt track, such that a lower value 
of 𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 (and therefore of 𝛽𝛽) corresponds to greater overlap.  
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Taking the analytical equation for a rotated, parabolic melt track and substituting intersection 
depth for z yields:  
 

𝛽𝛽 𝑛𝑛ℎ =
4𝜙𝜙𝑛𝑛ℎ𝑐𝑐𝑐𝑐𝑛𝑛2𝜃𝜃

𝑤𝑤2  𝑥𝑥𝑖𝑖2 
 
We solve for x:  
 

𝑥𝑥𝑖𝑖 = �
𝛽𝛽 𝑛𝑛ℎ𝑤𝑤2

4𝜙𝜙𝑛𝑛ℎ𝑐𝑐𝑐𝑐𝑛𝑛2 𝜃𝜃
 

 
Simplify:  
 

𝑥𝑥𝑖𝑖 =
𝑤𝑤 

2 𝑐𝑐𝑐𝑐𝑛𝑛 𝜃𝜃
�
𝛽𝛽
𝜙𝜙

 

 
Here, x is the distance between the centerline of the parabola to the intersection point and is 
therefore equal to half of the hatch spacing. Hatch spacing is therefore:  
 

𝐻𝐻
𝑤𝑤

𝑐𝑐𝑐𝑐𝑛𝑛 𝜃𝜃�𝛽𝛽𝜙𝜙

 

 
With the analytical forms of non-rotated and rotated parabolas established, along with parametric 
equations for melt pool dimensions and hatch spacing, the full horizontal layout of melt tracks 
can be defined as functions of 𝑤𝑤, 𝑛𝑛ℎ,ϕ, and θ as shown in Figure A8. The layout can be 
represented by a repeating width, i.e. a "slice" of the horizontal layout that captures the 
overlapping behavior of a parabola and its neighbors. The unit width is shown below in Figure 
A.8C (as the orange area). The left boundary of the width is x = 0, i.e. the center of a parabola. 
The right boundary of the width is x = H/2, i.e. the centerline of the intersection between the 
parabola and its neighbor. The re-melt profile of the region between 0 ≤ 𝑥𝑥 <  𝐻𝐻/2 therefore 
represents the re-melt profile of the entire part.  
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Fig A.8. (A) Output of vertical discretization is a unit-width melt track discretized into layer heights. (B) Proportion 
of area re-melted zero, one or two times for each layer increment, from evaluating area integrals. (C) Unit cell for area 
integral evaluation. Two integration regimes are required: one for evaluating above 𝑧𝑧 = 𝛽𝛽𝑛𝑛ℎ and one for evaluating 
below 𝑧𝑧 = 𝛽𝛽𝑛𝑛ℎ. (D) Illustration of integration between z-bounds. The upper integration regime relies on a symmetric 
boundary condition at x = H/2. 
 
A3.4 Vertical discretization 
Next we must consider the vertical dimension. A single melt track may span multiple layers, 
depending on its depth to layer height ratio (i.e. ϕ) (Figure A.9). For a given layer, the full re-
melt profile must consider subsequent layers that overlap -- from Figure A.9, the full-remelt 
profile must consider the contribution of layer i = 0, as well as layers i = 1, 2, and 3 (labelled 
here as 'partial'). An equivalent approach is discretizing a single melt track profile into layer 
height increments (wherein each increment represents the contribution of a layer to the melt track 
profile), and then superimposing them, thus accounting for all overlapping layers. We follow the 
latter approach.  
 

 
Fig A.9. Decomposition of overlapping melt tracks for a given layer height (i.e., black box). Since each melt track 
may span multiple layers, the number of times the material within a single layer is re-melted must consider the 
superposition of all intersecting melt tracks. The current layer is (𝑛𝑛 =  0) and the black box denotes a single layer 
height. Subsequent layers contribute to the melt profile of the layer height, and have individual melt profiles based on 
rotation. 

 
The unit cell of interest has the unit width described above (i.e.  0 ≤ 𝑥𝑥 <  𝐻𝐻/2 ) and spans the 
depth of the melt track (i.e. 0 ≤  𝑧𝑧 < 𝜙𝜙𝑛𝑛ℎ). The number of full layer heights encompasses in the 
unit cell is:  
 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ⌊𝜙𝜙˩ 
 
and the total number of layers to consider is: 
 

𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 = ⌈𝜙𝜙˥ 
 
Therefore, the absolute z-bounds of each full layer are:  
 

𝑧𝑧𝑎𝑎,𝑖𝑖 = (𝜙𝜙 − 𝑛𝑛)𝑛𝑛ℎ 
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𝑧𝑧𝑠𝑠,𝑖𝑖 = (𝜙𝜙 − 𝑛𝑛 + 1)𝑛𝑛ℎ 
 
for each ith layer with i ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. The bounds for the partial layer, if 𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, will be 
0  <  z  <  (ϕ –𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) ∗ 𝑛𝑛ℎ.  
 
Therefore, each layer increment is defined by x-bounds of 0 ≤  𝑥𝑥 <  𝐻𝐻/2 and z-bounds as 
described above. The next step is to compute the area proportions associated with each layer 
increment, i.e. the proportion of material within this window that is re-melted once, twice or zero 
times.  
 
A3.4 Computation of area proportions 
For each layer increment, regions are melted once (i.e., bounded by a single parabola), melted 
twice (i.e., bounded by the intersection of two parabolas) or not melted (i.e., at the bottom) of the 
view. Since the equations of the parabolas and their placements are known, precise areas can be 
calculated from computing integrals. Two integration regimes are required -- one to account for 
above the intersection and one for below (Figure A.8C and Figure A.8D).  
 
A3.5 Upper integral regime 
We begin with the upper integral regime, i.e. for β𝑛𝑛ℎ ≤ 𝑧𝑧 ≤ ϕ𝑛𝑛ℎ. The goal of this analysis is to 
integrate the analytical equation for parabolas and to quantify the area re-melted twice, once, or 
not at all within the layer increment. Since the width of our integration area is fixed at 𝐻𝐻/2 and 
the z-heights vary based on the layer, we choose to integrate over 𝑛𝑛𝑧𝑧.  
 
For bounds of integration 𝑧𝑧 = 𝑧𝑧𝑎𝑎 to 𝑧𝑧 = 𝑧𝑧𝑠𝑠, we observe that no area within the upper integral 
regime can be re-melted zero times from inspection:  
 

𝐴𝐴0(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) = 0 
 
Next, we consider the area re-melted twice, i.e. the dark orange region of Figure A.8C. The area 
between z = 0 and the yellow curve (which has the equation of our base parabola) is:  
 

𝑛𝑛2(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) = �
𝑤𝑤

2𝑐𝑐𝑐𝑐𝑛𝑛θ

𝑧𝑧𝑢𝑢

𝑧𝑧𝑙𝑙
�

𝑧𝑧
ϕ𝑛𝑛ℎ

𝑛𝑛𝑧𝑧 

 
We subtract the area of a rectangle bounded by 𝐻𝐻/2 and (𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎) (i.e. the area of a layer 
increment):  
 

𝐴𝐴2(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) = 𝑛𝑛2 − (𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎)
𝐻𝐻
2

 
 
Evaluating the integral and simplifying gives:  
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𝐴𝐴2(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) =
𝑤𝑤

2 𝑐𝑐𝑛𝑛 θ
�

2
3�ϕ𝑛𝑛ℎ

�𝑧𝑧𝑠𝑠
3/2 − 𝑧𝑧𝑎𝑎

3/2� − �β/ϕ(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎)� 

 
which is the absolute area between 𝑧𝑧 = 𝑧𝑧𝑎𝑎 and 𝑧𝑧 = 𝑧𝑧𝑠𝑠 that would be re-melted twice. The area re-
melted once is the remaining area in the layer increment:  
 

𝐴𝐴1(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) =
𝑤𝑤

2 𝑐𝑐𝑛𝑛 θ
�
β
ϕ

(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎) − 𝐴𝐴2 

 
A3.6 Lower integral regime 
The same analysis applies to the area underneath 𝑧𝑧 = β𝑛𝑛ℎ. First, observe that no area can be re-
melted twice below the intersection point, so the area re-melted twice for the lower integral 
regime 𝑛𝑛2 must be zero:  
 

𝑛𝑛2(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) = 0 
 
The area re-melted zero times within this reference frame 𝑏𝑏0 is simply the area under the 𝑥𝑥 =
𝑤𝑤𝑐𝑐𝑡𝑡𝑠𝑠θ
2 �𝑧𝑧ϕ𝑛𝑛ℎ curve:  

 

𝑏𝑏0(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) = �
𝑤𝑤

2𝑐𝑐𝑐𝑐𝑛𝑛θ

𝑧𝑧𝑢𝑢

𝑧𝑧𝑙𝑙
�

𝑧𝑧
ϕ𝑛𝑛ℎ

𝑛𝑛𝑧𝑧 

 
Evaluating gives the area re-melted zero times aka 𝑛𝑛0:  
 

𝑛𝑛0(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) =
𝑤𝑤

3 𝑐𝑐𝑛𝑛θ
�
β
ϕ
�𝑧𝑧𝑠𝑠

3/2 − 𝑧𝑧𝑎𝑎
3/2� 

 
This region of zero melting occurs only when considering a single layer increment and does not 
imply that any area of the printed part will be insufficiently melted. By superimposing the 
contributions of print layers, the final re-melt profile of the unit cell, assuming proper print 
parameter selection, will not contain any un-melted area.  
 
Finally, the area re-melted once is the unassigned, remaining area of the layer increment:  
 

𝑛𝑛1(𝑧𝑧𝑎𝑎, 𝑧𝑧𝑠𝑠) =
𝑤𝑤

2 𝑐𝑐𝑛𝑛 θ
��β/ϕ(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎) −

2
3�ϕ𝑛𝑛ℎ

�𝑧𝑧𝑠𝑠
3/2 − 𝑧𝑧𝑎𝑎

3/2�� 

 
A3.7 Area proportions 
The total area considered per increment has the width of 𝐻𝐻/2 and a height of 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎:  
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𝐴𝐴𝑇𝑇 =
𝑤𝑤

2𝑐𝑐𝑐𝑐𝑛𝑛 θ
�
𝛽𝛽
𝜙𝜙

(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑎𝑎) 

 
Therefore, for an area remelted 𝑛𝑛 times 𝐴𝐴𝑖𝑖, the corresponding area proportion 𝑘𝑘𝑖𝑖 is:  
 

𝑘𝑘𝑖𝑖 = 𝐴𝐴𝑖𝑖/𝐴𝐴𝑇𝑇 
 
The remainder of the analysis proceeds with area proportions instead of absolute area.  
 
A3.8 Superposition of layer increments 
The final step of the workflow is to superimpose the area proportions of each layer increment, 
with the end goal being the overall proportions of area re-melted 0 to 𝑛𝑛 times within the region, 
with 𝑛𝑛 being the maximum number of overlapping parabolas possible.  
 
 

 
Fig A.10. Superposition of layer increments to compute total melt profile. (A) Output of area proportion evaluation is 
the region melted 0, 1, or 2 times within each layer increment. (B) Superposition of two layers (i.e. blue and purple) 
yields the areas melted 0, 1, 2, 3, or 4 times. Note that the area melted zero times is zero once two layers are considered 
in this example. (C) Superposition of three layers. The algorithm will recursively combine all layer increments. (D) 
Final output of the model. The area proportions apply to a unit cell of width $H/2$ and height $L_h$.  

 
Starting with the simplest case, the overlap between two layer increments can produce area that 
is melted 4 to 0 times, from a strictly mathematical sense. Consider two vectors 𝑘𝑘 and 𝑞𝑞 
representing the area proportions for two layers: 
 

𝑘𝑘 = [𝑘𝑘0 𝑘𝑘1 𝑘𝑘2] 
 

𝑞𝑞 = [𝑞𝑞0 𝑞𝑞1 𝑞𝑞2] 
 
where 𝑘𝑘0 corresponds to the area proportion re-melted zero times for layer 𝑘𝑘, etc. Next, take the 
product of the two vectors 𝑊𝑊:  
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The resulting area proportions can be found from summing the antidiagonal elements of 𝑊𝑊. For 
example the area proportion re-melted twice 𝐴𝐴2̇ is: 
 

𝐴𝐴2̇ = 𝑊𝑊[3,1] + 𝑊𝑊[2,2] + 𝑊𝑊[1,3] 
 
This process is shown graphically in Figure A.10, and proceeds recursively until all layers (i.e. 
𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 layers) are considered. Pseudocode for computing the area proportions is:  
 
for i = 1:nTotal 
    define rotation* and z-bounds 
    calculate hatch  
    compute area proportions 
    save area proportions 
end 
 
*Rotation is defined as rotation angle between the y-axis and the scan direction. For example, the 
standard sequence θ =  0,π/3,−π/3 is common industry practice. 
 
The end result of the re-melt analysis is a 𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 by 3 matrix (i.e. called 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), with each row 
of the matrix corresponding to a layer, and each column corresponding to the area proportion 
melted zero, one or two times respectively. The layers are then superimposed using a recursive 
function: 
 
function recursiveCombine(areas) 
    if first row is longer than the second, lengthen second row with zeros** 
    compute dot product  
    total area proportions = sum along antidiagonals  
    remove first and second row from areas  
    if more rows remain in areas 
        add total area proportions to top of areas  
        recursiveCombine(areas) 
    end  
 
**This step accounts for the fact that the possible number of re-melted areas increases with each 
combination. For example, two layers superimposed could have a re-melt profile ranging from 0 
to 8 times. Three layers superimposed could have a re-melt profile ranging from 0 to 16 times re-
melted. However, the recursive algorithm requires that the two rows have the same number of 
elements.  
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The final output of this workflow is a vector wherein each 𝑛𝑛th element is the proportion of area 
within a unit cell of width 𝐻𝐻/2 and height 𝑛𝑛ℎ remelted 𝑛𝑛 times. This re-melt profile is 
parameterized by 𝑛𝑛ℎ,𝛽𝛽,𝜙𝜙,𝜃𝜃 and 𝑤𝑤. This unit cell is the minimum repeating window representing 
the re-melt profile of the entire print, such that this final vector represents the local number of 
times area is re-melted within a part. 
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