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A B S T R A C T   

Currently, there are differences in the quality loss between individual fruit upon arrival at retail. These differ-
ences in fruit quality stem from pre-harvest biological variability between individual fruit at harvest and post-
harvest variations in hygrothermal conditions between refrigerated shipments. The impact of these pre-harvest 
biological and postharvest variability on the final quality of each fruit that reaches the consumers remains largely 
uncharted. In this study, we addressed this knowledge gap by developing physics-based digital twins of orange 
fruit to unveil how pre-harvest and postharvest variability affect the final fruit quality upon arrival at retail. 
Markov chain Monte Carlo method was used to generate a realistic ’virtual’ population of 1000 individual orange 
fruits at harvest. Afterwards, the impact of pre-harvest biological variability and variations in hygrothermal 
conditions between shipments on several orange quality metrics, including mass loss, fruit quality index (FQI), 
remaining shelf life (RSL), chilling injury severity (CI), total soluble solids (TSS), color, and Mediterranean fruit 
fly (MFF) mortality was quantified. Results showed that pre-harvest biological variability causes variations in 
mass loss of oranges at retail by up to 1.2%, FQI by up to 5% and RSL by more than 2 days. The postharvest 
variability between shipments causes high variations in mass loss of oranges at retail by up to 4%, FQI by more 
than 20%, RSL up to 3 days, and CI up to 5%. The study also revealed that compared to pre-harvest biological 
variability, postharvest variability between shipments could increase the variations in RSL of oranges at retail by 
75%, FQI by 50%, and mass loss by ~10%. This work helps improve our understanding of the variability in the 
end fruit quality upon arrival at retail.   

1. Introduction 

Every year, about one-third of the world’s fresh produce is lost 
within the food supply chain, from farm to consumer (Bellù, 2017; 
Gustavsson et al., 2011). Such a remarkable level of food loss amounts to 
an enormous loss in resources, including water, labor, and investment, 
and also contributes to 5 - 10% of global greenhouse gas emissions 
(Cassou et al., 2020; Garnett, 2006; Lake et al., 2015). Reducing food 
loss, therefore, implies improving resource conversation, enhancing 
food security, increasing access to food, reducing the environmental 

impact of food systems, and a shift towards a sustainable food system 
(Thyberg and Tonjes, 2016; Shoji et al., 2022; Onwude et al., 2020). 
Still, it is not fully understood when or why food loss occurs within 
hundreds of fresh produce shipments in a supply chain, let alone the best 
way to reduce such loss. One reason is that each fruit has unique 
pre-harvest biological properties with which it starts its postharvest 
journey, depending on its growing conditions and harvest time. These 
fruit properties result from biochemical and physiological processes, 
such as pigment synthesis and carbohydrate accumulation influenced by 
growing conditions (Cronje et al., 2016; Lado et al., 2019). Due to 
varying growing conditions, the differences in the biological properties 

* Corresponding authors. 
E-mail addresses: daniel.onwude@empa.ch (D. Onwude), thijs.defraeye@empa.ch (T. Defraeye).  

Contents lists available at ScienceDirect 

Resources, Conservation & Recycling 

journal homepage: www.elsevier.com/locate/resconrec 

https://doi.org/10.1016/j.resconrec.2022.106585 
Received 22 February 2022; Received in revised form 22 July 2022; Accepted 27 July 2022   

mailto:daniel.onwude@empa.ch
mailto:thijs.defraeye@empa.ch
www.sciencedirect.com/science/journal/09213449
https://www.elsevier.com/locate/resconrec
https://doi.org/10.1016/j.resconrec.2022.106585
https://doi.org/10.1016/j.resconrec.2022.106585
https://doi.org/10.1016/j.resconrec.2022.106585
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resconrec.2022.106585&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Resources, Conservation & Recycling 186 (2022) 106585

2

of individual fruits at harvest affect the quality of fresh produce in the 
subsequent stages of the postharvest supply chain, especially at the 
consumer (Sibomana et al., 2016; Di Vittori et al., 2018; Lufu et al., 
2020). 

The postharvest supply chain is often characterized by refrigerated 
storage and transport logistics during the entire journey of fresh produce 
(Onwude et al., 2020). These refrigerated shipments contain environ-
mental air temperature and humidity sensors. Data from these sensors 
are often used as the first indicator to map the quality evolution in such 
shipments. For these, the low temperatures maintained decrease the rate 
of temperature-driven biochemical degradation reactions, thereby 
increasing the quality and remaining shelf life of fresh produce. How-
ever, every refrigerated shipment encounters a distinct hygrothermal 
journey. The reasons for this include variability in environmental air 
temperature and humidity, delays at ports, routing changes, or possibly 
cooling breakdowns (Mercier et al., 2017). Since the time-varying 
environmental air temperature and humidity profile is different for 
every shipment, each shipment has a peculiar food quality evolution. 
This variability is another reason why there are large variations between 
individual fruits upon arrival at the retailer; that is to say, some fruits 

will degrade sooner than others. Excessive decay could lead to the 
complete discard of the full shipment of fruits or require laborious 
sorting out of the spoiled products. 

Research has been conducted on how biological variability of fresh 
produce at harvest (Hertog et al., 2009; Joshi et al., 2018; Joshi et al., 
2019; Hertog et al., 2004; Duret et al., 2015; Gwanpua et al., 2014; 
Hertog et al., 2007) and postharvest variability between shipments 
(Shoji et al., 2022; Joshi et al., 2019) affect the quality of fruits. The 
authors mostly showed how pre-harvest variability affects cultivar, 
color, and maturity age of fruits and vegetables. Rarely, the impact of 
several pre-harvest biological properties of fruits at harvest and hygro-
thermal differences between shipments are accounted for. Additionally, 
in most cases, the targeted cold chain scenarios do not reflect the fluc-
tuations in air temperature or the duration of actual transcontinental 
cold chains and their impact on storage life variability. To the best of our 
knowledge, information on why and when food loss occurs at the end of 
the fresh produce supply chain does not exist. To this end, the relevant 
question is what has the highest impact on the quality of fruits that a 
consumer receives. It is important to ascertain if (i) the variability in the 
initial quality at the onset of the cold chain or (ii) the variability in 

Nomenclature 

Symbols 
ρi Density of material [kg•m− 3] 
Cpi Specific heat capacity of material [J•kg− 1•K− 1] 
λi Thermal conductivity of the material [W•m− 1•K− 1] 
Qresp Volumetric heat of respiration [W•m− 3] 
n Unit vector normal to the surface [-] 
hc Convective heat transfer coefficient [W•m− 2•K− 1] 
Tair Delivery air temperature [K] 
jm Moisture flux at the surface [kg•m− 2•s− 1] 
Hvap Latent heat of evaporation [J•kg− 1] 
ϕ Porosity in a pallet of orange fruits [%] 
Qair Delivery air flow rate [m3•h− 1] 
usuperficial Superficial airspeed [m•s− 1] 
Across Cross-sectional area of the bottom of the cargo space [m2] 
uphysical Speed of the air confined in the porous medium [m•s− 1] 
Dfruit Diameter of the orange fruit [m] 
rpulp Radius of pulp [mm] 
rindthick Rind thickness [mm] 
Nu Nusselt number [-] 
Re Reynolds number [-] 
νair Kinematic viscosity of air [m2 s− 1] 
Pr Prandtl number for air [-] 
µair Absolute viscosity of air [kg m− 1 s− 1] 
µair, wall Viscosity of air at the wall [kg m− 1 s− 1] 
Tini Initial air temperature [ ◦C] 
aw Water activity below the fruit surface [%] 
δwv, air Diffusion coefficient of water vapor in the air [m2 s− 1] 
kt Convection mass transfer coefficient [ms− 1] 
Pv,rind Surface/rind vapor pressure [Pa] 
Pv,air Ambient vapor pressure [Pa] 
krind Moisture migration through the rind [s•m− 1] 
kair Air film mass transfer coefficient [s•m− 1] 
Sc Schmidt number [-] 
Psat Saturated vapor pressure [Pa] 
Patm Atmospheric pressure [Pa] 
Y Absolute humidity [kg/kg] 
h Enthalpy [kJ/kg] 
Trind Surface/rind temperature [K] 
T Temperature [K] 
Cpair Specific heat capacity of air [J•kg− 1•K− 1] 

RHair Relative humidity of the air [%] 
As Surface area of the fruit [m2] 
mini Initial mass of the fruit [kg] 
ki Rate constant [s− 1] 
ni Order of the reaction [-] 
Ai Quality attributes [-] 
Ea,i Activation energy [J mol− 1] 
R Ideal gas constant [J mol− 1 K− 1] 
Fcumulative, Tref Cumulative process lethality [-] 
Tcore Core temperature [K] 
Tref Reference temperature [K] 
Tdb Dry bulb temperature of air [ ◦C] 
t Time (s) 
DTref Time required to obtain a log reduction of fruit fly (a 

specific temperature) [days] 
N0 MFF survivors at the start (t=0) [-] 
N(t) MFF survivors at any time instant (t) of the process [-] 
Ω(t) Damage integral as a function of time [-] 
k0,ci Pre-exponential factor [s− 1] 
Ea,ci Activation energy for chilling injury [J•mol− 1] 
CIincidence Incidence of chilling injury [%] 
I Respiration-driven quality indicator [%] 
A0 Initial fruit quality [%, score, ◦Brix] 
k0,quality Quality rate constant [s− 1] 
Ea,quality Activation energy for fruit quality [J•mol− 1] 
Q10 Ratio of the rate constants at temperatures T and T + 10 K 

(=kT+10/kT) [-] 
TSS Total soluble solids [◦Brix] 
Col Color [score 1–5] 

Abbreviations 
SHR Sensible heat ratio 
IQR interquartile range 
RSL Remaining shelf life 
STDev Standard deviation 
MCMC Markov chain Monte Carlo 
CI Chilling Injury 
FQI Fruit quality index 
ML Mass loss 
MFF Mediterranean Fruit Fly 
SC Supply chain 
DC Distribution center  
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environmental conditions the fruit experiences between different ship-
ments has the most significant impact on the quality of fruits the con-
sumer receives. 

To answer these questions, this study aims to quantify the impact of 
pre-harvest biological variability of fresh fruits at harvest and post-
harvest variability due to hygrothermal differences between shipments 
on the end quality evolution of orange fruit. A Markov Chain Monte 
Carlo (MCMC) sampling method and physics-based mechanistic digital 
twin were used to unveil the impact of the pre-harvest biological vari-
ability of Valencia oranges on fruit quality evolution in a single ship-
ment. A mechanistic digital twin of fruit is a ’virtual’ model linked to 
real-world processes via sensor data, containing all essential product 
characteristics and simulating relevant hygrothermal and metabolic 
processes of the fruit (Fig. 1) (Defraeye et al., 2021; Verboven et al., 
2020; Ivanov and Dolgui, 2020). MCMC was used to generate a realistic 
’virtual’ population of orange fruits with different physical and 
geometrical properties. With this approach, digital twins of 1000 
’Valencia’ oranges (16 cartons-1/5 pallets of oranges) were developed to 
simulate ongoing quality evolution in a single shipment. These simula-
tions indicate how much the biological variability in the shipment af-
fects the end quality. The impact of postharvest variability due to 
hygrothermal differences between shipments on the quality evolution of 
oranges was then quantified. These simulations indicate how much the 
specific shipment of fruits affects the end quality. Finally, the impact of 
pre-and postharvest variability on the quality of oranges at the retail 
were compared to identify the value chain with the most impact. 

2. Materials and methods 

2.1. Data collection 

2.1.1. Biological properties of fruit at harvest 
The study was carried out for ’Valencia’ orange over the 2019 season 

in the Citrusdal production area, Western Cape, South Africa. Except 
where stated otherwise, all fruit were harvested at commercial har-
vesting maturity determined by producers. Five fruits per tree were 

harvested from two trees in five different orchards. A total of fifty or-
anges were sampled and data were collected for different physico-
chemical properties. 

The external fruit properties, such as fruit weight (g) and rind weight 
(g), were determined at harvest using an electronic scale (ADW, UWE 
Scales and Calibrations, Cape Town, South Africa). The fruit size (mm) 
and rind thickness (mm) were measured using a caliper (CD-6′’ C, 
Mitutoyo Corp, Tokyo, Japan) after the seven-day shelf-life period. The 
rind color for each fruit replicate was obtained using the standard CRI 
color plate (CRI, 2004) for orange, where a visual color score is assigned 
to each fruit. 

The internal properties of the fruit were assessed by cutting along the 
longitudinal plane of the fruit for juice extraction using a citrus juicer (8- 
SA10, Sunkist®, Chicago, USA). The total sugar content of the fruit pulp 
(measured as ◦Brix and expressed as% TSS in the pulp) was determined 
using a digital refractometer (PR-32 Palette, ATAGO CO, Tokyo, Japan). 

2.1.2. Measurement of air temperature in actual cold chain 
The air temperature on the cold chain of oranges was monitored and 

data from TempTale®4 (TT4) GEO Eagle Extended (SENSITECH, Bev-
erly, MA, USA) sensors with an accuracy of ±0.5 ◦C were acquired. Data 
acquired are for 43 shipments from packhouse in Durban, South Africa, 
to a distribution center (DC) in Western Europe spanning an entire 
season (August 2018 to September 2019). This data provides realistic 
temperature data for overseas cold chain. The air temperature sensors 
were positioned in the second last row of pallets from the door on the 
left-hand side of the container at half the height of the pallet (see sup-
plementary material for details). The position of the sensors (USDA3) in 
the pallet (say x) close to the fruits ensured that the air temperature 
collected represents that sensed by the fruit in pallet x (see supple-
mentary material #1). As such, the digital fruit twin is representative of 
fruit near the location where the air temperature is sensed. For hygro-
thermal variability between shipments, each shipment has a unique 
temperature profile and length. The delivery air temperature, therefore, 
represents only the fruits in the pallets from the door on the left-hand 
side of the container for different shipments (pallet x). The targeted 

Fig. 1. A digital twin of a typical citrus supply chain from the farm to the consumer at the retail level.  
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delivery air temperature for these shipments was between − 1 ◦C to 0 ◦C. 
Note that a sample size of 43 shipments of ’Valencia’ oranges was found 
sufficient for this study using a modified Cochran’s formula with 95% 
confidence level and ±5% precision (Shoji et al., 2022). This was also 
demonstrated by examining the minimum required sample size that 
stabilizes the average air temperature value. Specifically, for this study, 
the minimum amount of dataset with 95% confidence interval for the 
average air temperature values ( ◦C) is 5 and above. Details of the 
estimation procedure are provided in the supplementary material. 

To further extend the monitored supply chain from the DC to retail 
stores, three days of retail sales conditions were assumed and added to 
the sensor data, with a daily time interval of 3600 s for each shipment. 
This was simulated stochastically based on the average air temperature ( 
◦C) at several retail locations in Rotterdam, Netherlands, collected via 
NASA POWER (August 2018 to September 2019). The average air 
temperature for the locations was for specific retail storage days and 
times of the month based on each shipment time stamp at DC. In addi-
tion, the standard deviation of the measured cold chain air temperature ( 
◦C) was also used for the stochastic simulation. 

2.2. Markov chain Monte Carlo sampling 

A population of 1000 realistic ‘virtual’ Valencia orange fruits pro-
duced in South Africa was generated, which was fed into a physics-based 
digital twin as input data for the stochastic simulation (see Sections 2.3 
and 2.4). To do this, a prior probability distribution of ’Valencia’ orange 
(i.e., the mean and standard deviation of different pre-harvest biological 
properties from literature) was considered (Goedhals-Gerber and Khu-
malo, 2020; Goulas and Manganaris, 2012; Bai et al., 2016; Khalid et al., 
2012; Rehman et al., 2018). A population of 1000 oranges was gener-
ated in this study to reduce the computational time and enable fast 
post-processing when simulating the digital twins of oranges throughout 
the transcontinental citrus supply chain. Furthermore, the generated 
population, representing 1/5 orange pallets (16 cartoons), is already a 

very large sample size for quality measurement compared with the 
current standard in the industry. The representative visual and 
destructive sampling of citrus per consignment throughout the trans-
continental supply chain is a minimum of 30 oranges and a maximum of 
100 (USDA 2005; Adans, 2020). A field sample dataset of 50 ’Valencia’ 
oranges of different pre-harvest biological properties with 10 oranges 
each from five different orange orchards in Citrusdal, South Africa, was 
considered. The pre-harvest biological properties of fruit at harvest 
include fruit size (mm), fruit weight (g), TSS (◦Brix), fruit color (color 
chart 1–5 scale), rind thickness (mm), rind weight (g), initial quality 
(%), fruit density (kg m− 3), and rind density (kg m− 3). The MCMC al-
gorithm was developed using Gibbs sampling with package NMixMCMC 
in Rstudio software (version 1.4.1106) (Team, 2020). More details about 
the MCMC method and steps are given in the supplementary material. 
Fig. 2 illustrates a flowchart of the methodology from data collection to 
MCMC sampling. 

2.3. Digital twin configuration 

A physics-based mechanistic model based on the finite element 
method was developed to simulate the quality evolution of 1000 
’Valencia’ oranges (Citrus sinensis (L.) Osbeck) in a refrigerated 
container. A single fruit was modeled as a two-dimensional axisym-
metric geometry of a sphere (Fig. 3). The domain was divided into two 
sections of the fruit – the rind (base case thickness (rindthick) = 5.9 mm) 
and the fruit pulp (base case radius (rpulp) = 30.7 mm). The configura-
tion was simplified, and the fruit-fruit interaction was ignored. This is 
because of the limited thermal interaction with other fruit, due to the 
few contact points between fruits, and the fact that the surrounding fruit 
is at a similar temperature. Based on experimental and literature data, 
the model was calibrated with the same geometrical and material 
properties as the real fruit (see Section 4, Table 1, and supplementary 
material). The model was then linked to a sensor and virtual orange 
data, thus forming digital twins of oranges in a supply chain. 

Fig. 2. A flowchart of the overall methodology implemented from data collection to Markov chain Monte Carlo sampling for a citrus supply chain (NB: SA = South 
Africa; EU = Europe). 
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2.4. Mechanistic multiphysics model 

A mechanistic model was developed to calculate heat transfer inside 
the orange fruit and its convective exchange with the environment 
throughout the supply chain from farm to retail. In addition, physics- 
based models for predicting mass loss, thermally-driven fruit quality 
index, pest mortality, and chilling injury were also coupled with the 
thermal model for heat transfer. 

2.4.1. Thermal model 
The energy conservation equation was solved in the fruit, with 

temperature (T, K) as the time-dependent variable (Eq.. (1)). 

ρiCp,i
∂T
∂t

+∇⋅( − λi∇T) = Qresp,i (1)  

where ρi is the density (kg•m− 3), Cp,i is the specific heat capacity 
(J•kg− 1•K− 1), λi is the thermal conductivity of the material 
(W•m− 1•K− 1), with the subscript i corresponding to the rind and fruit 
pulp. Qresp (W•m− 3) is the volumetric heat of respiration, which is the 
product of heat of respiration (W kg− 1), multiplied by the pulp density 
(kg m− 3). The heat of respiration was estimated from a correlation be-
tween the carbon dioxide production rate of orange and the temperature 
(Becker et al., 1996) (see supplementary material for details). Thermal 
equilibrium between all components and phases was assumed in this 
model. The material properties are given in Table 1. 

The convective boundary condition for heat transfer based on flux 
continuity is presented in Eq.. (2). The conductive flux within the fruit is 
balanced by the heat flux due to convection and evaporation at the 
surface. 

n.(λ∇T) = hc(Tair − T) − jm.Hvap (2)  

where n is the unit vector normal to the surface (-), hc is the convective 

heat transfer coefficient (W•m− 2•K− 1), Tair is the delivery air tempera-
ture (K). Here jm is the moisture flux at the surface (kg•m− 2•s− 1) derived 
from the moisture transport model (Section 2.4.2) and Hvap is the latent 
heat of evaporation (Hvap = − 2364.2T+3,147,175.2 J•kg− 1) (Ferrua 
and Singh, 2009). 

The radiation exchange between different fruit inside the ventilated 
boxes was considered limited compared with convective heat transfer. 
This is because of the small temperature difference between adjacent 
fruit during cooling in actual cold chains. Thus, radiation exchange was 
not modeled. 

Since the airflow field around the fruit was not explicitly modeled, its 
influence on the hygrothermal behavior of the fruit was accounted for 
using the convective heat and mass transfer coefficients (hc, kair). A 
representative airspeed in the porous stack of products, namely a pallet 
of orange fruit, was estimated based on the airflow rate inside a refrig-
erated container (Wu and Defraeye, 2018). Eq. (3) was employed to 
estimate the physical airspeed in the porous medium (Dehghannya et al., 
2010)(see supplementary material for details). This physical airspeed is 
the actual speed around the orange fruit, which was 0.11 m•s− 1 in the 
present study. 

uphysical =
usuperficial

φ
=

Qair

Across × φ
(3)  

where uphysical, (m•s− 1) is the actual airspeed around the orange fruit, 
usuperficial, (m•s− 1) is the superficial airspeed, ϕ (%) is the porosity in a 
pallet of orange, Across, (m2) is the cross-sectional area of the cargo 
bottom, and Qair (m3•h− 1) is the delivery air flow rate. 

In this study, spatially-constant heat transfer coefficient (hc, 
W•m− 2•K− 1) around the fruit in a container was assumed over the entire 
fruit surface, as a simplified representation even though hc could 
spatially be distributed over the fruit surface (Tagliavini et al., 2019). 
The dependency of heat transfer coefficient (hc, W•m− 2•K− 1) on 

Fig. 3. Geometry and boundary conditions of an orange in a refrigerated shipping container (figure not to scale).  

Table 1 
Base case input and thermal parameters of orange fruit.  

Properties Tini 

[ 
◦C] 

uphysical 

[m s− 1] 
hc [W 
m− 2 

K− 1] 

kair 

(10− 3) 
[ms− 1] 

xkrind 
(10− 9) 
[sm− 1] 

aw 

[%] 
Р [kg 
m− 3] 

λ [W 
m− 1 

K− 1] 

Cp [KJ 
kg− 1 

K− 1] 

νair 

(10− 5) 
[m2 

s− 1] 

Pr Re Nu Sc µair 

(10− 5) 
[kg m− 1 

s− 1] 

δwv, air 

(10− 5) 
[m2 s− 1] 

Pulp  – – – – 100 1004.30 0.58 3.66 – –    – – 
Rind – – – – 1.72 – 800.00 0.40 3.30 – –    – – 
Air 20 0.11 4.58 4.65 – – 1.25 0.02 1.01 1.46 0.74 540.11 13.87 0.67 1.79 2.19 

Note: Tini = Initial air temperature [ ◦C], uphysical = Speed of the air confined in the porous medium [m•s− 1], hc = Convective heat transfer coefficient [W•m− 2•K− 1], kair 
= Air film mass transfer coefficient [s•m− 1], krind = Moisture migration through the rind [s•m− 1], aw = Water activity below the fruit surface [%], ρ = Density of 
material [kg•m− 3], λ = Thermal conductivity of the material [W•m− 1

•K− 1], Cp = Specific heat capacity of material [J•kg− 1
•K− 1], νair = Kinematic viscosity of air [m2 

s− 1], pr = Prandtl number for air [-], Re = Reynolds number [-], Nu = Nusselt number [-], Sc = Schmidt number [-], µair = Absolute viscosity of air [kg m− 1 s− 1], and 
δwv, air = Diffusion coefficient of water vapor in the air [m2 s− 1].  
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airspeed is accounted for using the Nusselt number (Nu) correlation for 
flow around a single sphere presented in Eq. (4) (Whitaker, 1972). 

Nu =
hc Dfruit

λfruit
= 2 +

(
0.4Re0.5 + 0.06Re0.667)Pr0.4

(
μair

μair,wall

)0.25

(4)  

where Dfruit[=2(rpulp+rindthick)] is the diameter of the orange fruit (m), 
Re (=Dfruit•uphysical•νair

− 1) is the dimensionless Reynolds number as a 
function of the air speed (-), Pr is the Prandtl number for air (-), and νair is 
the kinematic viscosity of air (m2 s− 1). µair and µair, wall correspond 
respectively to the absolute viscosity of air (kg m− 1 s− 1) and the viscosity 
of air at the wall (kg m− 1 s− 1), which were considered to be equal in this 
study. The base case hc value for this study is 4.6 (W•m− 2•K− 1). 

2.4.2. Mass loss model 
Mass loss, also called moisture loss, is a crucial metric in the cold 

citrus chains because it directly influences market value. As citrus is a 
product sold by weight, a loss in saleable weight implies a direct loss in 
profits. The mass flux (jm), or moisture flux at the surface of the fruit 
(kg•m− 2•s− 1), was calculated as the product of the convective mass 
transfer coefficient (kt), and the difference between surface vapor 
pressure (Pv,rind, Pa) and ambient vapor pressure (Pv,air, Pa) Eq. (5)). 
These vapor pressures were estimated based on the surface temperature, 
ambient temperature, and ambient relative humidity (Eqs. (8)-(10). The 
mass transfer coefficient, kt was determined from the contribution of the 
resistance due to moisture migration through the rind (krind, s•m− 1) and 
the resistance to mass transfer due to the air boundary layer (kair s•m− 1) 
(Eq. (6)) (Becker et al., 1996; Cogné et al., 2013). 

j̇m = kt.
(
Pv,rind − Pv,air

)
(5)  

kt =

(
1

kair
+

1
krind

)− 1

(6) 

The air film mass transfer coefficient (kair) was estimated based on 
the airspeed (uair, m•s− 1) using the Sherwood correlation for a sphere, as 
presented in Eq. (7) (Becker et al., 1996; ASHRAE 2018). 

Sh =
kairDfruit

δwv,air
= 2 +

(
0.552Re0.53⋅Sc0.33) (7)  

where Dfruit is the diameter of the citrus fruit (m), Re (=Dfruit•uair•νair
− 1) is 

the dimensionless Reynolds number as a function of the airspeed. Here, 
νair corresponds to the kinematic viscosity of air [m2 s− 1], Sc (=νair• δwv, 

air
− 1) is the Schmidt number (-), δwv,air is the diffusion coefficient of 

water vapor in the air [m2 s− 1]. The base case Sherwood number (Sh) for 
this study is 15.56 (see supplementary material for more explanation). 

The vapor pressure was dynamically linked with temperature using 
the Antoine equation (Becker et al., 1996), expressed in Equation 8: 

Psat = exp
(

23.4795 −
3990.5

T − 39.317

)

(8) 

Specifically, the vapor pressure just below the rind (Pv,rind) was 
computed using Eq. (9). 

Pv,rind = Psat(Trind)x aw (9)  

where aw is the water activity below the fruit surface [-] (Table 1). 
While the vapor pressure of the air around the fruit (Pv,air, Pa) was 

estimated using the relative humidity of the air (RHair,%), as shown in 
Eq. (10). 

Pv, air = RHair x Psat(Tair) (10) 

The relative humidity of the air within the refrigerated container 
(RHair,%) was estimated using the principles of psychrometry by 
assuming a constant sensible heat ratio (SHR) within the refrigerated 
container. Details of the calculation steps are included in the 

supplementary material. 
Additionally, the transpiration-driven mass loss (ML,%) was 

computed using Eq. (11). 

ML =
Δjm.As

mini
x 100 (11)  

where As is the surface area of the fruit (m2) computed from the ge-
ometry and mini is the initial mass of the orange (kg) which was 
measured as 0.21 kg. Note that the threshold for citrus moisture loss 
during shipment is between 7 – 10% (Ladaniya, 2008). 

2.4.3. Thermally-driven model for fruit quality attributes 
The quality of the fruit, which often determines consumer accept-

ability, is affected by temperature conditions during the cold chain from 
farm to retail. Most of the temperature-induced underlying biochemical 
reactions responsible for quality changes of oranges can be adequately 
modeled. The evolution of multiple quality attributes such as total sol-
uble solids (TSS [◦Brix]), color (Col [scale 1–5]), and fruit quality index 
[%] of the orange fruit can thereby be predicted. 

For this purpose, kinetic rate law models were implemented in order 
to quantify the change with shipment time for each of the above- 
mentioned specific quality attributes Ai (Robertson, 2016; Van Boe-
kel, 2008), as in Equation 12: 

− dAi

dt
= kiAni

i (12)  

where the subscript i indicates the specific attribute, ki is the corre-
sponding rate constant (s− 1), and ni is the order of the reaction (-), which 
depends on the attribute’s decay kinetics. The order of the reaction was 
chosen based on the best fit of the model with the data or the inherent 
order of the decay reaction (e.g., TSS is a first-order reaction, Table 2). 
However, little differences were often present between first- and zero- 
order approximations. 

In Eq. (12), for a constant value of k, i.e. at a constant temperature, 
the quality attribute decreases linearly over time (for zero-order re-
actions, where indeed the magnitude of the slope equals to k, Eq. (13)), 
or shows an exponential decrease (for first-order reactions, Equation14): 

Ai(t) = A0,i − ki(T)t (13)  

Ai(t) = A0,ie− ki(T)t + Ci (14)  

where A0,i is the quality attribute at the start of the cooling process (t =
0 s) for a specific attribute i and Ci is an integration constant. 

However, in reality, the rate constant ki is not constant, and so Eq. 
(12) needs to be explicitly solved over time. The temperature de-
pendency of the quality attribute was therefore incorporated into the 
rate constant through an Arrhenius relationship (Robertson, 2016) as in 
Equation 15: 

ki(T) = k0,ie
− Ea,i

RT (15)  

where k0,i is a constant (s− 1), Ea,i is the activation energy (J mol− 1), R is 
the ideal gas constant (8.314 J mol− 1 K− 1), and T is the absolute tem-
perature (K). For fruit quality index, color and total soluble solids of 
degree fruits, the constants k0,i and Ea,i, were calibrated from quality 
attribute data as a function of time at (at least) two different tempera-
tures. More details are available in the supplementary material. 

The fruit quality index (I,%), which is linked to the remaining shelf 
life at the retail, serves as a general indicator of the marketability of the 
fruit. The quality threshold value of 10% was assumed as a point where 
the product has not lost its quality completely, but first visual damage 
occurs, below which the product is not acceptable anymore to the 
consumer. This quality metric was modeled using a first-order kinetic 
model, which quantifies the respiration-driven, temperature-dependent 
change in overall quality from the point of harvest until the point where 
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the fruit is considered to be lost (Valentas et al., 1997). Details of the 
model calibration are presented in the supplementary material. 

The remaining days of shelf life (RSL) for a shipment were predicted 
based on the same kinetic rate model, by storing the fruit in-silico at 
retail air condition of 20 ◦C. Here, typical dynamic conditions encoun-
tered during retail were also considered. RSL was computed until the 
remaining quality of the respiration-driven quality indicator (I) attained 
the threshold of acceptable quality (≥10%). The base case quality 
parameter values used for the physics-based simulation of orange fruit 
are presented in Table 2. 

2.4.4. Lethality model for pest mortality 
The efficacy of the cold disinfestation treatment against Mediterra-

nean fruit fly (MFF) was modeled based on a lethality model (Zaragozá, 
2019). This was done based on knowledge of the time-temperature 
history of the fruit at its most critical location, with the highest tem-
perature during cooling. For citrus fruit, the most critical location cor-
responds to the core of the fruit. This model, described in the 
supplementary material, was calibrated based on the death kinetics of 
Mediterranean fruit fly (Animal and Plant Health Inspection Service 
2014). 

2.4.5. Thermal damage model for chilling injury 
Chilling injury is a physiological disorder caused by suboptimal low 

storage temperature beyond a threshold duration that alters the tissues 
in the rind, leading to symptoms such as peel pitting or discolorations 
that render the fruit unmarketable (Biswas et al., 2016; Chalutz et al., 
1985). The incidence of chilling injury on the surface of the fruit was 
computed similarly to the thermal damage model for the human skin 
during skin burn (Moritz and Henriques, Sep. 1947). The model, 
described in the supplementary material, quantifies thermal damage as a 
dimensionless damage integral (Ω) based on the combined effect of rind 
temperature (Trind,) (K) and exposure time (t). 

2.5. Numerical simulation 

The physics-based digital twin was implemented in COMSOL Mul-
tiphysics (version 5.6), which is a finite element-based commercial 
software. The transient conductive heat transfer and thermal damage 
model in the fruit during convective air cooling was solved using the 
‘Bioheat Transfer’ physics. Ordinary Differential Equations’ and ’Dif-
ferential Algebraic Equations’ interfaces were used to solve for moisture 
transport, total soluble solids, color, fruit quality index, and mortality of 
fruit fly. Quadratic Lagrange elements were used together with a fully- 
coupled direct solver, relying on the MUMPS (MUltifrontal Massively 
Parallel sparse direct Solver) solver scheme. The solver tolerance was set 
to 10− 5 based on sensitivity analysis. Adaptive time-stepping based on 
the Backward Differentiation Formula (BDF) was used for the simula-
tion, with the maximum step set to automatic to maintain the desired 
relative tolerance. A grid sensitivity analysis was conducted to ensure 
that the results were grid-independent (see supplementary material for 
details). The grid consisted of triangular and quadrilateral finite ele-
ments, with a total element size of 6504. To stochastically simulate the 
quality evolution of 1000 ’Valencia’ oranges via the digital twins, a 

parametric sweep was performed over the wide range of pre-harvest 
biological properties of fruit generated from MCMC. The parametric 
sweep feature in COMSOL Multiphysics® runs calculations for several 
parameter cases in a single instance. Note that the various physical 
models of the digital twin (i.e., from Section 2.4.1 – 2.4.5) are individ-
ually validated with experimental data or were empirically calibrated 
with experimental data on real fruit (as detailed in supplementary ma-
terial). As there is no interaction between the sub-models and they have 
also been validated, the full digital twin can be considered validated 
(Shrivastava et al., 2022). However, due to seasonal differences between 
the oranges in this study and those used for the calibration, there could 
be some differences between our validated digital twin and actual fruit. 

2.6. Statistical data and sensitivity analysis 

The actionable quality metrics from the digital twins were analyzed 
and presented as median (center line), 75th upper and 25th lower 
quartiles (box limits) and 1.5 × the interquartile range (IQR, whiskers) 
with a 0.95 confidence level. Levene’s test at p ≤ 0.05 significant level 
and 95% confidence interval was also used to assess the equality of 
variances at farm level, port in South Africa (SA), port in Europe (EU), 
and retail storage within a single shipment. 

The combined pre-harvest biological and postharvest variability 
assessment was presented based on mean values of the different quality 
metrics at retail. A fitted probability distribution function and rug plot 
were applied to visually determine the statistical differences in quality 
evolution due to pre and postharvest variability at the end of the supply 
chain. Additionally, a two-sample t-test, assuming equal variances at p 
≤ 0.05 significant level, was used to compare the mean significant dif-
ference of the quality evolutions. 

Sensitivity analysis was carried out to assess the impact of each pre- 
harvest biological property on the fruit quality variability at the end of 
the cold chain (see supplementary material for details). This is important 
to identify the cultural practices that have the highest impact on 
different quality metrics as a basis for future study. The descriptive test, 
probability distribution function and sensitivity analysis were all con-
ducted using ORIGIN 2020b (Government) (OriginLab, Northampton, 
Massachusetts, USA) and Microsoft Excel (2016). 

3. Results and discussion 

3.1. Markov chain Monte Carlo (MCMC) analysis 

To assess the variability of the oranges due to pre-harvest conditions 
at harvest, MCMC sampling method was first employed. MCMC used 
measured data to generate a statistically-representative set of fruit 
properties for individual fruits. MCMC was used to generate a realistic 
virtual population of orange fruit used for stochastic simulations via 
digital twins. 

Fig. 4 shows the correlation matrix between the different parameters 
of the sample data and also the generated virtual population. The point 
estimates, range, mean and standard deviation of the posterior distri-
bution of the variance components were calculated from the MCMC 
samples. By comparing the correlation coefficient between parameters 

Table 2 
Base case quality parameters of orange fruit.  

Kinetic-rate-law model parameters for the quality attribute of orange fruit 
Parameter Symbol A0 C [-] N [-] Ea [J.mol− 1] k0 [s− 1] Q10 [-] k0,quality [s− 1] Ea,quality [J.mol− 1] 

Fruit quality index I (%) 80.00% 0 1 – – 2.00 148 45,229 
Color Col (score 1–5) 1.80 0 0 44,585 17 2.00 – – 
Total soluble solids TSS (◦Brix) 12.04 ◦Brix 0 1 49,524 − 1 2.00 – – 

Note: A0 = Initial fruit quality [%, score, ◦Brix], I =Respiration-driven quality indicator [%], Col = Color [score 1–5], TSS = Total soluble solids [◦Brix], C = integration 
constant [-], n = Order of reaction [-], Ea = Activation energy [J mol− 1], k0 = Pre-exponential factor [s − 1], Q10 = Ratio of the rate constants at temperatures T and T +
10 K (=kT+10/kT) [-], k0,quality = Pre-exponential factor for fruit quality index [s − 1], and Ea,quality = Activation energy for fruit quality index [J.mol− 1]. 
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of sample data and the generated virtual oranges, MCMC successfully 
captures the realistic relationship between the different sample data 
parameters and the corresponding parameters of the generated virtual 
oranges. These parameters are fruit size (mm), fruit weight (g), TSS 
(◦Brix), fruit color (color chart 1–5 scale), rind thickness (mm) and rind 
weight (g). MCMC has previously been used to generate clusters for 
genetic variability and trait correlation of fruits and vegetables (Kim 
et al., 2021; Mora et al., 2019, Kato) 

3.2. Impact of pre-harvest biological variability on fruit quality evolution 

The impact of pre-harvest biological variability on fruit quality 
evolution was evaluated. Therefore, 1000 orange fruits that are trans-
ported in a single shipment (i.e., − 1 ◦C targeted delivery cold air tem-
perature and shipment length of 30 days) were simulated. For a real 
shipment of citrus fruit in a refrigerated container, typically about 
100′000 orange fruit are shipped in 20 pallets. Although only 1% of this 
shipment was covered, this sample size is already much larger than what 
is experimentally monitored during quality control and a statistically 
relevant sample size of the shipment. Mass loss (%), fruit quality index 
(%), remaining shelf life (RSL) (days), chilling injury severity (%), MFF 
mortality (%), total soluble solids (TSS) (oBrix) and color (1–5 scale) 
were quantified. Fig. 5 shows box plots of the different quality evolution 
at different supply chain stages from South Africa (SA) to retail shops in 
Europe (EU) using the digital twin. 

Fig. 5A shows the variability in fruit mass loss from farm to retail due 
to pre-harvest biological variability. The mass loss increased across the 
postharvest supply chain and the variability between individual fruit 
increased slightly (standard deviation (STDev) up to 1% and relative 
STDev from 21% to 19%) as the shipment progressed further throughout 
the chain. Indeed, the pre-harvest biological variability of oranges re-
sults in a variation in fruit transpiration, which is directly correlated 

with mass loss (Holcroft, 2015; J.F. Thompson et al., 2008). The largest 
mass loss occurs at retail (2% of initial fruit weight). The high amount of 
mass loss at retail is due to higher storage temperature, decreased hu-
midity, and increased respiration heat production, as this is temperature 
dependent. Similar findings on increased respiration rates of fruits at 
higher temperatures have been reported (Joshi et al., 2018; Defraeye 
et al., 2019). The impact of pre-harvest biological variability of orange 
fruits on mass loss is largest at retail. Due to inherent biological vari-
ability in fruit properties after harvest, the mass loss of a shipment shows 
a variability up to 1.2% between individual fruit. This is substantial 
given that the average mass loss of the entire shipment is 3.4% upon 
arrival at the retailer. 

Fig. 5B shows the impact of pre-harvest biological variability on the 
temperature-driven fruit quality index evolution of orange fruit. The 
fruit quality index and variability of the fruit decrease across the post-
harvest supply chain, with STDev ranging from 9% (farm level) to 4% (at 
retail). This means that the impact of pre-harvest biological variability 
on the fruit quality index of oranges decreases across the postharvest 
supply chain. The impact of pre-harvest variability of oranges is lowest 
at retail storage compared to the other supply chain stages. However, 
this impact is still high, with a fruit quality variability between indi-
vidual fruits of the same shipment at retail of up to ~5%. This means 
that ~20% of the entire shipment upon arrival at retail contains fruits of 
different fruit quality, as the average fruit quality index is about 30%. 
This implication can be further seen in the remaining shelf life days 
between individual fruits at retail. 

Using the quality upon arrival at the retailer, the remaining shelf life 
of each of the 1000 fruits in the shipment after arrival at the retailer was 
quantified. The average remaining shelf life of the shipment was 6 days, 
and the standard deviation was 1.4 days. The min and max values were 
1.2 and 9.4 days, respectively. As such, variability in the remaining shelf 
life of several days was found between individual fruit. 

Fig. 4. Correlation matrix between the parameters of pre-harvest sample data and the generated ’virtual’ population showing the Pearson correlation and histogram. 
The percentage differences in the correlation coefficients between the sampled data and the virtual population are shown with the red-colored text. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Propagation of pre-harvest parameter variability at different major stages along the cold chain of a single shipment (− 1 ◦C targeted delivery cold air 
temperature and shipment length of 30 days) from farm in South Africa (SA) to retail shops in Europe (EU) for different quality metrics via digital twin; [A] mass loss 
(%), [B] fruit quality index (%), [C] chilling injury severity (%), [D] Mediterranean fruit fly (MFF) mortality (%), [E] total soluble solids (◦Brix), [F] color (1–5 scale). 
The fruit quality of 80% was assumed when leaving the packhouse calibrated based on measured quality data. The boxplots within represent the median (center line), 
75th upper and 25th lower quartiles (box limits) and 1.5 × the interquartile range (whiskers) (IQR). Letter N at the top of the plot indicates the number of samples. 
Significant differences between different stages along the supply chain, namely, farm, port-SA, port-EU, arrival at retail and end of retail storage, were determined 
using the Levene’s test of equal variances and are indicated with letters from a to d for statistical significantly different groups at p ≤ 0.05. The red-colored horizontal 
line in the plots signifies the threshold value for the different quality metrics. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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Next, the influence of pre-harvest biological variability on the 
chilling injury severity of oranges within a shipment was assessed 
(Fig. 5C). The chilling injury of oranges increased from 0% to 11.5% 
across the postharvest supply chain. Very high chilling injury occurred 
at the end of refrigerated shipment and during storage at retail, with 
values above the severe chilling injury threshold. A very low variation 
(<0.5%) in chilling injury was observed for the entire supply chain. This 
low variability is due to the minimal impact of fruit density and size (see 
sensitivity analysis in supplementary material). This implies that the 
pre-harvest biological variability does not have much impact on the 
chilling injury of oranges during shipment. Rather, the chilling injury 
was mainly driven by cold chain practices (e.g., low air temperature) 
(see Section 3.3). Nonetheless, there is a significant difference between 
the variability at the beginning of the postharvest journey (0%) and the 
end of the retail storage (0.3%) (p ≤ 0.05). Indeed, fruit sensitivity to 
low temperatures is also influenced by a variety of other pre-harvest 
biological factors such as biological age, harvesting time, production 
area, production season, pre-harvest temperature and humidity, and 
other cultural practices (Di Vittori et al., 2018; Siboza et al., 2017; 
Musacchi and Serra, 2018; Kashash et al., 2016). All these pre-harvest 
factors were not considered in this study due to insufficient field data. 
Therefore, it was not possible to assess their actual impact on chilling 
injury. 

The impact of pre-harvest biological variability on MFF mortality of 
oranges for a single shipment is presented in Fig. 5D. In accordance with 
protocols dictated by citrus import regulations, maintaining a low de-
livery air temperature is essential to keep the fruit core temperature at or 
below 2 ◦C for 16.7 days or at 3 ◦C for 18 days. Thereby, at least 
99.9968% Mediterranean fruit fly (MFF) mortality can be achieved 
(National Department of Agriculture 2018; De Lima et al., 2007; Grout 
et al., 2011). In this study, the average MFF mortality increased from 0% 
to 100% across the postharvest supply chain, whereas the variability is 
less than 0.1%. This implies that the pre-harvest biological variability 
does not impact MFF mortality at the end of the supply chain. That is, 
the entire shipment upon arrival at the retailer is devoid of pest infes-
tation. This also means that there are not many differences in core 
temperature between fruits of different sizes, once they are properly 

cooled down. 
The impact of pre-harvest variability on total soluble solids (TSS) 

(Fig. 5E) and color (Fig. 5F) evolution of oranges during shipment was 
evaluated. There was no significant change in the TSS (Fig. 5E) and color 
(Fig. 5F) across the postharvest supply chain. This shows that the pre- 
harvest biological variability has an equal impact on TSS and color of 
degreened oranges across the entire supply chain. This is expected 
because ’Valencia’ orange is a non-climacteric fruit and, as such, does 
not increase in TSS, or show a change in color at low (>4 ◦C) shipping 
temperatures. Since TSS and color do not change for degreened citrus 
fruit after harvest, the variability between the different fruit after har-
vest will be the one that quality control experts upon arrival at the 
retailer will observe. 

3.3. Impact of postharvest variability on fruit quality evolution 

The impact of postharvest variability due to hygrothermal differ-
ences between shipments was quantified. Therefore, a single fruit going 
through 43 different shipments was simulated. At the end of the supply 
chain, the mass loss, fruit quality index (FQI), remaining shelf life (RSL) 
days, chilling injury and Mediterranean fruit fly (MFF) mortality of or-
anges were quantified via digital twin. The total soluble solids (TSS) and 
fruit color were not considered as they remain constant through the 
supply chain. 

Before quantifying these metrics, the shipments were first analyzed. 
Fig. 6 shows the time-varying air temperature profile as input for the 
physics-based simulations. The shipments showed a considera ble vari-
ation in delivery air temperature and length of time (Fig. 6A), which 
spanned between 20 and 55 days (Fig. 6B), with more than 35% of the 
shipments above the median of 31 days (Fig. 6A, B). Similarly, the 
analysis of the delivery air temperature in a single shipment shows a 
variation above 2 ◦C for more than 30% of the shipments (Fig. 6C). The 
cumulative consequence of these factors resulted in a unique cooling 
history for each shipment. Similar variability in the air temperature and 
shipment time have been reported for citrus supply chain (Shrivastava 
et al., 2022). 

The impact of hygrothermal variability between shipments on the 

Fig. 6. [A] Delivery air temperature as a func-
tion of time, as measured by a sensor in 43 
different orange shipments, [B] Corresponding 
shipment duration, and [C] Delivery air tem-
perature variability for each shipment. The 
boxplots within represent the median (center 
line), 75th upper and 25th lower quartiles (box 
limits), and 1.5 × the interquartile range 
(whiskers) (IQR). The mean, median, and 5 – 75 
percentile connecting lines are also included. 
The farm – port SA corresponds 0 – 2 shipment 
days; Overseas shipment to distribution center 
(DC) in Europe (EU) corresponds 3 – 19, up to 
50 shipment days depending on the shipment; 
Depending on the shipment, retail stores cor-
responds to 19 – 21 shipment days, and goes up 
to 55 shipment days. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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mass loss evolution of ’Valencia’ oranges during their postharvest 
journey was quantified (Fig. 7A). The mass loss increased from 0% to 
5.6% over shipment time, depending on the shipment air temperature 
(Fig. 7A(i)). This implies that delivery air temperature fluctuations have 
a major effect on mass loss, as also reported by Joshi et al. (Joshi et al., 
2019). The further increase in mass loss after overseas shipment (from 
distribution center to retail stores) is due to the relatively high tem-
perature and low prevailing ambient relative humidity at retail. Similar 
findings have been reported for different fruits and vegetables (Joshi 
et al., 2019; Habibi et al., 2021; Amwoka et al., 2021; Kelly et al., 2019). 
Fig. 7A(ii) shows the large variability of mass loss (2 – 6%) between 
different shipments at retail, with more than 60% of the shipments 
having mass loss above 3%. This is significant as the average mass loss of 
all shipments is 3.3% upon arrival at retail. 

The impact of hygrothermal variability between shipments on the 
fruit quality index of ’Valencia’ oranges during their postharvest journey 
was also analyzed (Fig. 7B). The fruit quality index decreased with 
shipment time for all shipments (Fig. 7B(i)). The fruit quality index 
between different shipments at retail varies between 20 and 43% 
(Fig. 7B(ii)). The very high variability of over 20% signifies that more 
than 30% of the shipments contain fruits of significantly different 
quality upon arrival at the retail. This remarkable insight is echoed in 
the remaining shelf life days between fruits of different shipments at 
retail. The average remaining shelf life of the shipment was 6 days, and 
the standard deviation was 2.4 days. The min and max values were 0.0 

and 8.9 days, respectively. This means that some shipments arrived at 
the retail with oranges that must be consumed immediately or within 9 
days to avoid losses. Shrivastava et al. (Shrivastava et al., 2022) reported 
similar findings on the effect of the variability between shipments on 
fruit quality and remaining shelf life. 

The impact of postharvest variability on the chilling injury of oranges 
during shipment is shown in Fig. 8A. Chilling injury severity increased 
from 0 to ~17% with increasing shipment time for different shipments 
(Fig. 8A (i)). The difference in chilling injury severity between ship-
ments during transit is up to 10%. The temperature fluctuation or de-
viation from the target air temperature (− 1 ◦C or 0 ◦C) is responsible for 
the large variation in the chilling injury between different shipments. 
Increasing the temperatures above a threshold chilling inducing tem-
perature (>4 ◦C) could increase the fruit tolerance due to gradual con-
ditioning. Fig. 8A (ii) shows that the mean chilling injury at retail is 5%, 
and the variability between shipments is ~5%. This means that all 
shipments contain fruits with different levels of chilling injury severity 
upon arrival at retail. In fact, ~20% of the shipments contain fruits with 
chilling injury above the severe commercial threshold at retail. 

The impact of postharvest variability on the evolution of MFF mor-
tality during shipment was also evaluated (Fig. 8B). The mean effective 
lethality at 2 ◦C for all the shipments was found to be 14 days, which is 
less than the targeted 16.7 days (Fig. 8B (i)). This means that all ship-
ments attained MFF mortality of more than 99.9968% during transit, 
which is above the required Probit-9 treatment recommended by 

Fig. 7. Digital twin output for [A] mass loss, and [B] fruit quality index (%) of oranges for different shipments across their postharvest supply chain. The initial fruit 
quality of 80% was assumed when leaving the packhouse calibrated based on measured quality data. The boxplots represent the median (center line), 75th upper and 
25th lower quartiles (box limits) and 1.5 × the interquartile range (IQR, whiskers). The mean and median connecting lines are also included. SC = supply chain. The 
dotted horizontal line in plots (i) signifies the threshold value for the different quality metrics. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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phytosanitary protocols (FAO and IPPC 2017). Thus, variability between 
shipments does not have an impact on MFF mortality. This can be 
further observed in Fig. 8B(ii), with 41 shipments having 100% MFF 
mortality at the end of the supply chain. 

3.4. Comparison between the impact of pre- and postharvest variability on 
the quality evolution of orange fruit 

The variability in end quality upon arrival due to (1) pre-harvest 
biological variability in fruit properties and (2) postharvest variability 
in hygrothermal conditions in the supply chain of ’Valencia’ orange 
fruits were compared. A probability distribution function and rug plot 
were used, as shown in Fig. 9. Only actionable metrics of which both pre- 
harvest and postharvest variability have a significant impact during 
shipment were considered. In Fig. 9A, it can be seen that the variability 
in the mass loss at the end of the supply chain is caused, to a similar 
extent, by the inherent variability in fruit properties after harvest and by 
the variability in hygrothermal storage conditions during transit. Both 
pre-harvest and postharvest variability significantly impact the fruit 
quality index and remaining shelf life days at retail (Figs. 8B and 8C). 
Nevertheless, postharvest variability induces a slightly larger spread in 
the final quality and remaining shelf life days. 

4. Conclusions 

This study used digital twins to unveil how pre-harvest biological 
variability and postharvest variability due to hygrothermal differences 
between shipments affect the quality of citrus that gets to the consumer. 
For the pre-harvest biological variability, 1000 virtual oranges of 
different physiochemical properties at harvest were generated using the 
Markov chain Monte Carlo method based on 50 oranges harvested from 
10 trees. The ’virtual’ oranges were then fed into a physics-based digital 
twin of the citrus supply chain from farms in Citrusdal, South Africa, to 
retail shops in Europe. Digital twins of 43 different orange shipments 
from farms in Citrusdal, South Africa, to retail shops in Europe were also 
developed. The output of these twins was used to quantify the impact of 
postharvest variability on the quality of oranges that gets to the con-
sumer. These digital twins were coupled with the real-world environ-
mental conditions via measured air temperature sensor data. The key 
conclusions derived from this study are as follows:  

• For a single shipment, variability in the mass loss between individual 
fruit at retail of up to 1.2% was observed. Results also showed that 
about 20% of the fruits in a shipment upon arrival at retail are 
significantly different in fruit quality. The variability in the 
remaining shelf life of several days exists between individual fruits. 
This means that the fruits the consumers buy could last for different 
days, which is a challenge for the retailers to further ensure 

Fig. 8. Digital twin output for [A] chilling injury severity (%) and [B] Mediterranean fruit fly (MFF) mortality (%) of oranges for different shipments across their 
postharvest supply chain. The boxplots represent the median (center line), 75th upper and 25th lower quartiles (box limits) and 1.5 × the interquartile range (IQR, 
whiskers). SC = supply chain. The mean and median connecting lines are also included. The dotted horizontal line in plots (i) signifies the threshold value for the 
different quality metrics. 
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consumer satisfaction. Our findings also show that a single shipment 
upon arrival at the retail is without pest infestation.  

• Concerning multiple shipments, more than 90% of shipments have 
high varying fruit mass loss upon arrival at retail. More than 30% of 
these shipments contain fruits of significantly different fruit quality 
at retail. The remaining shelf life of the fruits the consumer buys from 
the retailer differs by up to 3 days. This complicates supply and de-
mand in the citrus supply chain. Our findings also showed that about 
20% of shipments contain fruits with chilling injury above the severe 
commercial threshold at retail. This means that the retailer could 
throw away 20% of the fruits they receive, which also translates into 
a significant loss in income.  

• Both pre-harvest (STDev = 0.65) and postharvest variability in 
hygrothermal conditions (STDev = 0.74) causes high varying mass 
loss in oranges upon arrival at retail. Compared to pre-harvest 

biological variability in fruit properties (STDev = 3.94), the post-
harvest variability (STDEV = 6.05) resulted in more oranges with 
significantly different quality at retail. The postharvest variability 
leads to slightly more variations in the remaining shelf life (3 days) of 
oranges at retail compared to pre-harvest variability (2 days). 

This simulation-based research has addressed a key issue in post-
harvest supply chains: Where does the variability in end quality upon 
arrival, which many stakeholders regularly observe, come from? This 
study unveiled the extent to which biological variability after harvest 
between different fruit and the variability in hygrothermal storage 
conditions between different shipments causes non-uniform end quality. 
With such valuable insight, different stakeholders in the citrus industry 
could make planning decisions that will reduce the impact of variability 
in pre-harvest cultural practices and hygrothermal differences between 

Fig. 9. A comparison between the impact of pre-harvest biological variability and postharvest variability on [A] mass loss (%), [B] fruit quality index (%), and [C] 
remaining shelf life (days) at the end of supply chain using a probability distribution function and rug plot. The rug plot shows the actual data set used for the STDev 
= standard deviation between groups. Two sample t-test with equal variance assumed at p ≤ 0.05 significant level was used to compare the mean significant dif-
ference of quality evolution due to pre-harvest biological variability and cold chain variability at the end of the supply chain. They are indicated with letters a and b 
for statistically significantly different groups and ns for not statistically significant groups. 
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shipments that drives food loss. Trade-offs between pre-harvest prac-
tices and supply chain logistics could also be established. Here, neces-
sary control measures at pre-harvest and harvest stages could be 
targeted in order to minimize the emphasis on postharvest handling 
techniques, thereby improving profitability in the citrus industry. In this 
way, digital twins can help improve the current transcontinental citrus 
cold chain to reduce food losses, thereby improving resource conser-
vation and food security, and increasing supply chain sustainability. A 
limitation of this study is the calibration of some models based on 
literature data for specific cultivars. As already observed, the unique 
physiological history of fruits means that their physicochemical prop-
erties change every harvest year, or location, so the model needs 
repeated recalibration. Additionally, the impact of pre-harvest biolog-
ical fruit variability and hygrothermal variability were accessed indi-
vidually, not altogether. This means the simultaneous impact of the 
variability between fruits of different pallets for different shipments was 
not evaluated. Looking ahead, the digital twin model should be 
enhanced to include a physics-based plant growth model to pinpoint 
exactly when and what cultural pre-harvest practices could drive food 
loss in a future production season. Increased monitoring of the entire 
postharvest life of citrus in a refrigerated container with more envi-
ronmental parameters, such as relative humidity, should be a future 
critical step. A real-time digital twin of a full shipment of cirtus fruit in a 
refrigerated container, driven by real-time-measured air temperature 
and humidity data, should also be a future goal. 

Author contributions 

DO: Conceptualization, Methodology, Investigation, Writing- 
Original draft, Review & Editing. CS: Methodology, Review & Editing. 
FB: Bayesian statistics, Review & Editing. SS: Review & Editing. EC: 
Review & Editing. KS: Review & Editing. PC: Data Collection, Review & 
Editing. TB: Data Collection, Review and Editing. JN: Review & Editing. 
NK: Review & Editing. TD: Conceptualization, Methodology, Supervi-
sion, Review & Editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The first author is grateful to Empa for providing the financial re-
sources to conduct this research. We are also thankful to Dr. Tim Grout 
and Dr. Vaughan Hattingh for their valuable comments and suggestions. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.resconrec.2022.106585. 

References 

Adans, N., 2020. PM 3/90 (1) inspection of citrus fruits consignments. EPPO Bul. 50 (3), 
383–400. https://doi.org/10.1111/epp.12684. 

Amwoka, E.M., Ambuko, J.L., Jesang’, H.M., Owino, W.O., 2021. Effectiveness of 
selected cold chain management practices to extend shelf life of mango fruit. Adv. 
Agric. 2021, 1–12. https://doi.org/10.1155/2021/8859144. 

Animal and Plant Health Inspection Service, “Federal register: importation of fresh citrus 
fruit from the Republic of South Africa into the continental United States,” 2014. 

ASHRAE, 2018. Ashrae Handbook- Refrigeration: Systems and Applications. Atlanta. 
Bai, J., et al., 2016. Changes in volatile and non-volatile flavor chemicals of ‘valencia’ 

orange juice over the harvest seasons. Foods 5 (1), 1–17. https://doi.org/10.3390/ 
foods5010004. 

Becker, B.R., Misra, A., Fricke, B.A., 1996. Bulk refrigeration of fruits and vegetables part 
I: theoretical considerations of heat and mass transfer. HVAC R Res. 2 (2), 122–134. 
https://doi.org/10.1080/10789669.1996.10391338. 

L.G. Bellù, “Food losses and waste: issues and policy options,” no. September, p. 18, 
2017. 

Biswas, P., East, A.R., Hewett, E.W., Heyes, J.A., 2016. Chilling injury in tomato fruit. 
Hortic. Rev. (Am. Soc. Hortic. Sci). 44, 229–278. 

E. Cassou et al., “Nigeria food smart country diagnostic,” 2020. 
Chalutz, E., Waks, J., Schiffmann-Nadel, M., 1985. A comparison of the response of 

different citrus fruit cultivars to storage temperature. Sci. Hortic. (Amsterdam). 25 
(3), 271–277. https://doi.org/10.1016/0304-4238(85)90125-6. 
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