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Currently, there are differences in the quality loss between individual fruit upon arrival at retail. These 

differences in fruit quality stem from pre-harvest biological variability between individual fruit at harvest and 

postharvest variations in hygrothermal conditions between refrigerated shipments. The impact of these pre-

harvest biological and postharvest variability on the final quality of each fruit that reaches the consumers 

remains largely uncharted. Here, we address this gap by developing physics-based digital twins of orange fruit 

to unveil how pre-harvest and postharvest variability affect the final fruit quality upon arrival at retail.  

We use the Markov chain Monte Carlo method to generate a realistic 'virtual' population of 1000 

individual orange fruits at harvest. We then quantify the impact of pre-harvest biological variability and 

variations in hygrothermal conditions between shipments on several orange quality metrics, including 

mass loss, fruit quality index (FQI), remaining shelf life (RSL), chilling injury severity (CI), total soluble 

solids (TSS), color, and Mediterranean fruit fly (MFF) mortality. We show that pre-harvest biological 

variability causes variations in mass loss of oranges at retail by up to 1.2%, FQI by up to 5% and RSL by 

more than 2 days. Our results demonstrate that postharvest variability between shipments causes high 

variations in mass loss of oranges at retail by up to 4%, FQI by more than 20%, RSL up to 3 days, and CI 

up to 5%. We also show that compared to pre-harvest biological variability, postharvest variability 

between shipments could increase the variations in RSL of oranges at retail by 75%, FQI by 50%, and 

mass loss by ~10%. This work helps improve our understanding of the variability in the end fruit quality 

upon arrival at retail. 
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Nomenclature 

Symbols 

ρi Density of material [kg∙m-3] 

Cpi Specific heat capacity of material [J∙kg-1∙K-1] 

λi Thermal conductivity of the material [W∙m-1∙K-1] 

Qresp Volumetric heat of respiration [W∙m-3] 

n Unit vector normal to the surface 

hc Convective heat transfer coefficient [W∙m-2∙K-1] 

Tair Delivery air temperature [K] 

jm Moisture flux at the surface [kg∙m-2∙s-1] 

Hvap Latent heat of evaporation [J∙kg-1] 

ϕ Porosity in a pallet of orange fruits [%] 

Qair Delivery air flow rate [m3∙h-1] 

usuperficial Superficial airspeed [m∙s-1] 

Across Cross-sectional area of the bottom of the cargo space [m2] 

uphysical Speed of the air confined in the porous medium [m∙s-1] 

Dfruit Diameter of the orange fruit [m] 

rpulp Radius of pulp [mm] 

rindthick Rind thickness [mm] 

Nu Nusselt number 

Re Reynolds number 

νair kinematic viscosity of air [m2 s-1] 

Pr Prandtl number for air 

µair Absolute viscosity of air [kg m-1 s-1] 

µair, wall Viscosity of air at the wall [kg m-1 s-1] 

Tini Initial air temperature [°C] 

aw Water activity below the fruit surface [%] 

𝛿𝑤𝑣,𝑎𝑖𝑟  Diffusion coefficient of water vapor in the air [m2 s-1] 

𝑘𝑡  Convection mass transfer coefficient [ms-1] 

Pv,rind Surface/rind vapor pressure [Pa] 

Pv,air Ambient vapor pressure [Pa] 

krind Moisture migration through the rind [s∙m-1] 

kair Air film mass transfer coefficient [s∙m-1] 

Sc Schmidt number 

𝑃𝑠𝑎𝑡  Saturated vapor pressure [Pa] 

𝑃𝑎𝑡𝑚  Atmospheric pressure [Pa] 

Y Absolute humidity [kg/kg] 

h Enthalpy [kJ/kg] 

𝑇𝑟𝑖𝑛𝑑  Surface/rind temperature [K] 

T Temperature [K] 

Cpair Specific heat capacity of air [J∙kg-1∙K-1] 

𝑅𝐻𝑎𝑖𝑟  Relative humidity of the air [%] 

𝐴𝑠  Surface area of the fruit [m2] 

𝑚𝑖𝑛𝑖  Initial mass of the fruit [kg] 

ki Rate constant [s-1] 

ni Order of the reaction 

Ai Quality attributes  
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Ea,i Activation energy [J mol-1] 

R Ideal gas constant [J mol-1 K-1] 

𝐹𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑇𝑟𝑒𝑓
  Cumulative process lethality 

Tcore Core temperature [K] 

Tref Reference temperature [K] 

Tdb Dry bulb temperature of air [oC] 

t Time (s) 

DTref Time required to obtain a log reduction of fruit fly (a specific temperature) [days] 

N0  MFF survivors at the start (t=0) 

N(t)  MFF survivors at any time instant (t) of the process 

Ω(t) Damage integral as a function of time [-] 

k0,ci Pre-exponential factor [s-1] 

Ea,ci Activation energy for chilling injury [J∙mol-1] 

CIincidence Incidence of chilling injury [%] 

I Respiration-driven quality indicator [%] 

A0 Initial fruit quality 

k0,quality Quality rate constant [s-1] 

Ea,quality Activation energy for fruit quality [J∙mol-1] 

TSS Total soluble solids [°Brix] 

Col Color [score 1-5] 

 

Abbreviations 

SHR Sensible heat ratio 

IQR interquartile range 

RSL Remaining shelf life [days] 

STDev Standard deviation 

MCMC Markov chain Monte Carlo 

CI Chilling Injury [%] 

FQI Fruit quality index [%] 

ML Mass loss [%] 

MFF Mediterranean Fruit Fly 

SC Supply chain 

DC Distribution center 
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1 INTRODUCTION 
Every year, about one-third of the world's fresh produce is lost within the food supply chain, from farm to consumer [1], [2]. Such 

a remarkable level of food loss amounts to an enormous loss in water, labor, and investment, and also contributes to 5 - 10% of 

global greenhouse gas emissions [3]–[5]. Still, it is not fully understood when or why food loss occurs within hundreds of fresh 

produce shipments in a supply chain, let alone the best way to reduce such loss. One reason is that each fruit has a unique pre-

harvest biological properties with which it starts its postharvest journey, depending on its growing conditions and harvest time. 

These fruit properties result from biochemical and physiological processes, such as pigment synthesis and carbohydrate 

accumulation influenced by growing conditions [6], [7]. Due to varying growing conditions, the differences in the biological 

properties of individual fruits at harvest affects the quality of fresh produce in the subsequent stages of the postharvest supply 

chain, especially at the consumer [8]–[10].  

The postharvest supply chain is often characterized by refrigerated storage and transport logistics during the entire journey of 

fresh produce [11]. These refrigerated shipments contain environmental air temperature and humidity sensors. Data from these 

sensors are often used as the first indicator to map the quality evolution in such shipments. For these, the low temperatures 

maintained decrease the rate of temperature-driven biochemical degradation reactions, thereby increasing the quality and 

remaining shelf life of fresh produce. However, every refrigerated shipment encounters a distinct hygrothermal journey. The 

reasons for this include variability in environmental air temperature and humidity, delays at ports, routing changes, or 

possibly cooling breakdowns [12]. Since the time-varying environmental air temperature and humidity profile is different 

for every shipment, each shipment has a peculiar food quality evolution. This variability is another reason why there are 

large variations between individual fruits upon arrival at the retailer, that is to say, some fruits will degrade sooner than 

others. Excessive decay could lead to the complete discard of the full shipment of fruits or require laborious sorting out of the 

spoiled products. 

Research has been conducted on how biological variability of fresh produce at harvest [13]–[19] and postharvest variability between 

shipments [15], [20] affect the quality of fruits. Rarely, the impact of several pre-harvest biological properties of fruits at harvest 

and hygrothermal differences between shipments are accounted for. Additionally, in most cases, the targeted cold chain scenarios 

do not reflect the fluctuations in air temperature or the duration of actual transcontinental cold chains and their impact on storage 

life variability. To the best of our knowledge, information on why and when food loss occurs at the end of the fresh produce supply 

chain does not exist. To this end, the relevant question is what has the highest impact on the quality of fruits that a consumer 

receives. We need to know if (i) the variability in the initial quality at the onset of the cold chain, or (ii) the variability in 

environmental conditions the fruit experiences between different shipments has the most significant impact on the quality of fruits 

the consumer receives.  

To answer these questions, this study aims to quantify the impact of pre-harvest biological variability of fresh fruits at harvest 

and postharvest variability due to hygrothermal differences between shipments on the end quality evolution of orange fruit. We 

used a hybrid Markov Chain Monte Carlo (MCMC) method and physics-based mechanistic digital twin to unveil the impact of 

the pre-harvest biological variability of Valencia oranges on fruit quality evolution in a single shipment. A mechanistic digital 

twin of fruit is a 'virtual' model linked to real-world processes via sensor data, containing all essential product 

characteristics and simulating relevant hygrothermal and metabolic processes of the fruit (Figure 1)[21]–[23]. MCMC was 

used to generate a realistic 'virtual' population of orange fruits with different physical and geometrical properties. With 

this approach,  digital twins of 1000 'Valencia' oranges (16 cartons-1/5 pallets of oranges) were developed to simulate ongoing 

quality evolution in a single shipment. These simulations indicate how much the biological variability in the shipment affects 

the end quality. We also quantified the impact of postharvest variability due to hygrothermal differences between shipments on 

the quality evolution of oranges. These simulations indicate how much the specific shipment of fruits affects the end quality. 

Finally, we compared the impact of pre-and postharvest variability on the quality of oranges at the retail to identify the value 

chain with the most impact. 
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Figure 1. A digital twin of a typical citrus supply chain from the farm until the consumer at retail level. 

 

2 MATERIALS AND METHODS 

 Data collection  

2.1.1 Biological properties of fruit at harvest 

The study was carried out for 'Valencia' orange over the 2019 season in the Citrusdal production area, Western Cape, South Africa. 

Except where stated otherwise, all fruit were harvested at commercial harvesting maturity as determined by producers. Five fruits 

per tree were harvested from two trees in five different orchards. A total of fifty oranges were sampled and data were collected for 

different physicochemical properties. 

The external fruit properties such as fruit weight (g) and rind weight (g) were determined at harvest using an electronic scale 

(ADW, UWE Scales and Calibrations, Cape Town, South Africa). The fruit size (mm) and rind thickness (mm) were measured using 

a caliper (CD-6’’ C, Mitutoyo Corp, Tokyo, Japan) after the seven-day shelf-life period. The rind color for each fruit replicate was 

obtained using the standard CRI colour plate (CRI, 2004) for orange, where a visual color score is assigned to each fruit.  

The internal properties of the fruit were assessed by cutting along the longitudinal plane of the fruit for juice extraction using a 

citrus juicer (8-SA10, Sunkist®, Chicago, USA). The total sugar content of the fruit pulp (measured as °Brix and expressed as % 

TSS in the pulp) was determined using a digital refractometer (PR-32 Palette, ATAGO CO, Tokyo, Japan).  

2.1.2 Measurement of air temperature in actual cold chain 

The air temperature on the cold chain of oranges was monitored and data from TempTale®4 (TT4) GEO Eagle Extended 

(SENSITECH, Beverly, MA, USA) sensors with an accuracy of ±0.5 °C were acquired. Data acquired are for 43 shipments from 

packhouse in Durban, South Africa, to a distribution center (DC) in Western Europe spanning an entire season (August 2018 

to September 2019). This data provides realistic temperature data for overseas cold chain. The air temperature sensors were 

positioned in the second last row of pallets from the door on the left-hand side of the container at half the height of the pallet (see 

supplementary material for details). The targeted delivery air temperature for these shipments was between -1 °C to 0 °C. 

Note that a sample size of 43 shipments of 'Valencia' oranges was found sufficient for this study using a modified Cochran's formula 

with 95% confidence level and ±5% precision [20]. We also showed this by examining the minimum required sample size that 

stabilizes the average air temperature value. Specifically, for this study, the minimum amount of dataset with 95% confidence 

interval for the average air temperature values (°C) is 5 and above. Details of the estimation procedure are provided in the 

supplementary material.  

To further extend the monitored supply chain from the DC to retail storage, three days retail sales conditions were assumed 

and added to the sensor data, with a daily time interval of 3600 s for each shipment. This was simulated stochastically based 
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on the average air temperature (°C) at several retail locations in Rotterdam, Netherlands, collected via NASA POWER 

(August 2018 to September 2019). The average air temperature for the locations was for specific retail storage days and 

times of the month based on each shipment time stamp at DC. In addition, the standard deviation of the measured cold chain 

air temperature (°C) was also used for the stochastic simulation. 

 Markov chain Monte Carlo sampling 

We developed the MCMC algorithm using Gibbs sampling with package NMixMCMC in Rstudio software (version 1.4.1106)[24]. 

We then generated a population of 1000 realistic ‘virtual’ orange fruits, which are fed into a physics-based digital twin as input 

data for the stochastic simulation (see sections 2.3 and 2.4). To do this, we considered a prior probability distribution of 'Valencia' 

orange (i.e., the mean and standard deviation of different pre-harvest biological properties from literature)[25]–[29]. We also 

considered a field sample dataset of 50 'Valencia' oranges of different pre-harvest biological properties with 10 oranges each from 

five different orange orchards in Citrusdal, South Africa. The pre-harvest biological properties of fruit at harvest include fruit size 

(mm), fruit weight (g), TSS (°Brix), fruit color (color chart 1-5 scale), rind thickness (mm), rind weight (g), initial quality (%), fruit 

density (kg m-3), and rind density (kg m-3). More details about the MCMC method and steps are given in the supplementary 

material. 

 Digital twin configuration 

A physics-based mechanistic model based on the finite element method was developed to simulate the quality evolution of 1000 

'Valencia' oranges (Citrus sinensis (L.) Osbeck) in a refrigerated container. A single fruit was modeled as a two-dimensional 

axisymmetric geometry of a sphere (Figure 2). The domain was divided into two sections of the fruit – the rind (base case thickness 

(rindthick) = 5.9 mm) and the fruit pulp (base case radius (rpulp) = 30.7 mm). The configuration was simplified, and the fruit-fruit 

interaction was ignored. This means that the limited thermal interaction with other fruit is ignored, due to the few contact points 

between fruits, and the fact that surrounding fruit is at a similar temperature. The model was calibrated with the same geometrical 

and material properties as the real fruit and linked to a sensor and virtual orange data, thus forming digital twins of oranges in a 

supply chain.   

 

Figure 2. Geometry and boundary conditions of an orange in a refrigerated shipping container (figure not to scale). 

 

 Mechanistic multiphysics model 

A continuum mechanistic model was developed to calculate heat transfer inside the orange fruit and its convective exchange with 

the environment throughout the supply chain from farm to retail. In addition, physics-based models for predicting mass loss, 

thermally-driven fruit quality index, pest mortality, and chilling injury were also coupled with the thermal model for heat transfer.  

2.4.1 Thermal model 

The energy conservation equation was solved in the fruit, with temperature (T, K) as the time-dependent variable (Equation. 1). 

, i ,( T)i p i resp i

T
C Q

t
 


   


    (1) 

where ρi is the density (kg∙m-3), Cp,i is the specific heat capacity (J∙kg-1∙K-1), λi is the thermal conductivity of the material (W∙m-1∙K-

1), with the subscript i corresponding to the rind and fruit pulp. Qresp (W∙m-3) is the volumetric heat of respiration, which is the 

product of heat of respiration (W kg-1), multiplied by the pulp density (kg m−3). The heat of respiration was estimated from a 

correlation between the carbon dioxide production rate of orange and the temperature [30] (see supplementary material for details). 

Thermal equilibrium between all components and phases was assumed in this model. The material properties are given in Table 

1.  
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The convective boundary condition for heat transfer based on flux continuity is presented in Equation. 2. The conductive flux within 

the fruit is balanced by the heat flux due to convection and evaporation at the surface.  

𝐧. (𝜆∇𝑇) =  ℎ𝑐(𝑇𝑎𝑖𝑟 − 𝑇) − 𝑗𝑚. 𝐻𝑣𝑎𝑝     (2) 

where n is the unit vector normal to the surface, hc is the convective heat transfer coefficient (W∙m-2∙K-1), Tair is the delivery air 

temperature (K). Here jm is the moisture flux at the surface (kg∙m-2∙s-1) derived from the moisture transport model (section 2.4.2) 

and Hvap is the latent heat of evaporation (Hvap = -2364.2T+3147175.2 J∙kg-1) [31]. 

The radiation exchange between different fruit inside the ventilated boxes was considered limited compared with convective heat 

transfer. This is because of the small temperature difference between adjacent fruit during cooling in actual cold chains. Thus, 

radiation exchange was not modeled. 

Since the airflow field around the fruit was not explicitly modeled, its influence on the hygrothermal behavior of the fruit was 

accounted for using the convective heat and mass transfer coefficients (hc, kair). A representative airspeed in the porous stack of 

products, namely a pallet of orange fruit, was estimated based on the airflow rate inside a refrigerated container [32]. Equation 3 

was employed to estimate the physical airspeed in the porous medium [33](see supplementary material for details). This physical 

airspeed is the actual speed around the orange fruit, which was 0.11 m∙s-1 in the present study. 

superficial

physical
air

cross

u Q
u

A 
 


    (3) 

where uphysical, (m∙s-1) is the actual airspeed around the orange fruit, usuperficial, (m∙s-1) is the superficial airspeed, ϕ (%) is the porosity 

in a pallet of orange, Across, (m2) is the cross-sectional area of the cargo bottom, and Qair (m3∙h-1) is the delivery air flow rate. 

 

In this study, spatially-constant heat transfer coefficient (hc, W∙m-2∙K-1) around the fruit in a container was assumed over the entire 

fruit surface, as a simplified representation even though hc could spatially be distributed over the fruit surface [34]. The dependency 

of heat transfer coefficient (hc, W∙m-2∙K-1) on airspeed is accounted for using the Nusselt number (Nu) correlation for flow around 

a single sphere presented in Equation 4 [35].  

   𝑁𝑢 =
ℎ𝑐 𝐷𝑓𝑟𝑢𝑖𝑡

𝜆𝑓𝑟𝑢𝑖𝑡
= 2 + (0.4𝑅𝑒0.5 + 0.06𝑅𝑒0.667)𝑃𝑟0.4 (

𝜇𝑎𝑖𝑟

𝜇𝑎𝑖𝑟,𝑤𝑎𝑙𝑙
)

0.25

   (4) 

where  𝐷𝑓𝑟𝑢𝑖𝑡[=2(rpulp+rindthick)] is the diameter of the orange fruit (m), Re (= 𝐷𝑓𝑟𝑢𝑖𝑡∙uphysical∙νair
-1) is the dimensionless Reynolds 

number as a function of the air speed, Pr is the Prandtl number for air, and νair is the kinematic viscosity of air. µair and µair, wall 

correspond respectively to the absolute viscosity of air and the viscosity of air at the wall, which were considered as equal in this 

study. The base case ℎ𝑐 value for this study is 4.6 (W∙m-2∙K-1). 

Table 1. Base case input and thermal parameters of orange fruit 
Properties Tini 

[°C] 

𝑢𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 

[m s-1] 

ℎ𝑐 

[W m-2 

K-1] 

𝑘𝑎𝑖𝑟 

(10-3 

) 

[ms-

1] 

𝑘𝑟𝑖𝑛𝑑 

(10-9) 

[sm-

1] 

aw 

[%] 

ρ 

[kg m-3] 

λ 

[W m-1 

K-1] 

𝐶𝑝 

[KJ kg-1 

K-1] 

νair  

(10-5) 

[m2 s-

1] 

Pr Re Nu Sc µair 

(10-5) 

[kg m-1 

s-1] 

𝛿𝑤𝑣,𝑎𝑖𝑟 

(10-5) 

[m2 s-

1] 

Pulp  - - - - 100 1004.30 0.58 3.66 - -    - - 

Rind - - - - 1.72 - 800.00 0.40 3.30 - -    - - 

Air 20 0.11 4.58 4.65 - - 1.25 0.02 1.01 1.46 0.74 540.11 13.87 0.67 1.79 2.19 

 

2.4.2 Mass loss model 

Mass loss, also called moisture loss, is a crucial metric in the cold citrus chains because it directly influences market value. As 

citrus is a product sold by weight, a loss in saleable weight implies a direct loss in profits. The mass flux (jm ), or moisture flux 

at the surface of the fruit (kg∙m-2∙s-1), was calculated as the product of the convective mass transfer coefficient (𝑘𝑡), and the 

difference between surface vapor pressure (Pv,rind, Pa) and ambient vapor pressure (Pv,air, Pa) (Equation 5). These vapor 

pressures were estimated based on the surface temperature, ambient temperature, and ambient relative humidity 

(Equations 8-10). The mass transfer coefficient, 𝑘𝑡 was determined from the contribution of the resistance due to moisture 

migration through the rind (krind, s∙m-1)  and the resistance to mass transfer due to the air boundary layer (kair s∙m-1) (Equation 

6)[30], [36].  

  𝑗𝑚̇ =  𝑘𝑡  . (𝑃𝑣,𝑟𝑖𝑛𝑑 − 𝑃𝑣,𝑎𝑖𝑟)      (5) 
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𝑘𝑡 = (
1

𝑘𝑎𝑖𝑟
+

1

𝑘𝑟𝑖𝑛𝑑
)

−1
      (6) 

The air film mass transfer coefficient (kair) was estimated based on the airspeed (uair, m∙s-1) using the Sherwood correlation for a 

sphere, as presented in Equation 7[30], [37]. 

0.53 0.33

,

2 (0.552Re )
air fruit

wv air

k D
Sh Sc


        (7) 

where Dfruit is the diameter of the citrus fruit (m), Re (=Dfruit∙uair∙νair
-1) is the dimensionless Reynolds number as a function of the 

airspeed. Here, νair corresponds to the kinematic viscosity of air [m2 s-1], Sc (=νair∙ δwv,air
-1) is the Schmidt number, δwv,air is the 

diffusion coefficient of water vapor in the air [m2 s-1]. The base case Sherwood number (Sh) for this study is 15.56 (see 

supplementary material for more explanation). 

The vapor pressure was dynamically linked with temperature using the Antoine equation [30], expressed in Equation 8:  

𝑃𝑠𝑎𝑡 = exp (23.4795 − 
3990.5

𝑇−39.317
)     (8) 

Specifically, the vapor pressure just below the rind (Pv,rind) was computed using Equation 9. 

 

𝑃𝑣,𝑟𝑖𝑛𝑑 =  𝑃𝑠𝑎𝑡(𝑇𝑟𝑖𝑛𝑑) 𝑥 𝑎𝑤            (9) 

        

where aw is the water activity below the fruit surface [-] (Table 1). 

 

While the vapor pressure of the air around the fruit (Pv,air, Pa) was estimated using the relative humidity of the air (RHair, %), as 

shown in Equation 10. 

𝑃𝑣,𝑎𝑖𝑟 =  𝑅𝐻𝑎𝑖𝑟 𝑥 𝑃𝑠𝑎𝑡(𝑇𝑎𝑖𝑟)      (10) 

 

The relative humidity of the air within the refrigerated container (RHair, %) was estimated using the principles of psychrometry, 

by assuming a constant sensible heat ratio (SHR) within the refrigerated container. Details of the calculation steps are included 

in the supplementary material. 

 

Additionally, the transpiration-driven mass loss (ML, %) was computed using Equation 11. 

𝑀𝐿 =
∆𝑗𝑚 .  𝐴𝑠

𝑚𝑖𝑛𝑖
 𝑥 100     (11) 

where As is the surface area of the fruit (m2) computed from the geometry and mini is the initial mass of the orange (kg) which was 

measured as 0.21kg. Note that the threshold for citrus moisture loss during shipment is between 7 – 10% [38]. 

2.4.3 Thermally-driven model for fruit quality attributes 

The quality of the fruit, which often determines consumer acceptability, is affected by temperature conditions during the cold chain 

from farm to retail. Most of the temperature-induced underlying biochemical reactions responsible for quality changes of oranges 

can be adequately modeled. The evolution of multiple quality attributes such as total soluble solids (TSS [°Brix]), color (Col [scale 

1-5]) and fruit quality index ([%]) of the orange fruit can thereby be predicted. 

 

For this purpose, kinetic rate law models were implemented in order to quantify the change with shipment time for each of the 

above-mentioned specific quality attributes Ai [39], [40], as in Equation 12: 

ini
i i

dA
k A

dt


            (12) 

where the subscript i indicates the specific attribute, ki is the corresponding rate constant [s-1], and ni is the order of the reaction, 

which depends on the attribute’s decay kinetics. The order of the reaction was chosen based on the best fit of the model with the 

data or the inherent order of the decay reaction (e.g., TSS is a first-order reaction, Table 2). However, little differences were often 

present between first- and zero-order approximations.  
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In Equation 12, for a constant value of k, i.e. at a constant temperature, the quality attribute decreases linearly over time (for zero-

order reactions, where indeed the magnitude of the slope equals to k, Equation 13), or shows an exponential decrease (for first-

order reactions, Equation14): 

   0,i i iA t A k T t            (13) 

  ( )

0,
ik T t

i i iA t A e C


           (14) 

where A0,i is the quality attribute at the start of the cooling process (t = 0 s) for a specific attribute i and Ci is an integration 

constant. 

However, in reality, the rate constant ki is not constant, and so Equation (12) needs to be explicitly solved over time. The 

temperature dependency of the quality attribute was therefore incorporated into the rate constant through an Arrhenius 

relationship [39] as in Equation 15: 

 
,

0,

a iE

RT
i ik T k e



           (15) 

where k0,i is a constant [s-1], Ea,i is the activation energy [J mol-1], R is the ideal gas constant (8.314 J mol-1 K-1), and T is the 

absolute temperature [K]. For fruit quality index, color and total soluble solids of degree fruits, the constants k0,i and Ea,i, were 

calibrated from quality attribute data as a function of time at (at least) two different temperatures. More details are available in 

the supplementary material. 

The fruit quality index (I, %), which is linked to the remaining shelf life at the retail, serves as a general indicator of the 

marketability of the fruit. The quality threshold value of 10% was assumed as a point where the product has not lost its quality 

completely, but first visual damage occurs, below which the product is not acceptable anymore to the consumer. This quality metric 

was modeled using a first-order kinetic model, which quantifies the respiration-driven, temperature-dependent change in overall 

quality from the point of harvest until the point where the fruit is considered to be lost [41]. Details of the model calibration are 

presented in the supplementary material.  

The remaining days of shelf life (RSL) for a shipment were predicted based on the same kinetic rate model, by storing the fruit in-

silico at retail air condition of 20 oC. Here, typical dynamic conditions encountered during retail were also considered. RSL was 

computed until the remaining quality of the respiration-driven quality indicator (I) attained the threshold of acceptable quality 

(≥20%). The base case quality parameter values used for the physics-based simulation of orange fruit are presented in Table 2. 

 

Table 2. Base case quality parameters of orange fruit 

Kinetic-rate-law model parameters for the quality attribute of orange fruit 

Parameter Symbol A0 C n Ea 

[J.mol-1] 

k0 [s-1] Q10 k0,quality 

[s-1] 

Ea,quality 

[J.mol-1] 

Fruit quality 

index 

I (%) 80.00 

% 

0 1 - - 2.00 148 45229 

Color Col (score 1-5) 1.80 0 0 44585 17 2.00 - - 

Total soluble 

solids 

TSS (°Brix) 12.04 

°Brix 

0 1 49524 -1 2.00 - - 

 

2.4.4 Lethality model for pest mortality  

We modeled the efficacy of the cold disinfestation treatment against Mediterranean fruit fly (MFF) based on a lethality model [42]. 

This was done based on knowledge of the time-temperature history of the fruit at its most critical location, with the highest 

temperature during cooling. For citrus fruit, the most critical location corresponds to the core of the fruit. This model, described in 

the supplementary material, was calibrated based on the death kinetics of Mediterranean fruit fly [43]. 

2.4.5 Thermal damage model for chilling injury 

Chilling injury is a physiological disorder caused by suboptimal low storage temperature beyond a threshold duration that alters 

the tissues in the rind, leading to symptoms such as peel pitting or discolorations that render the fruit unmarketable [44], [45]. 

The incidence of chilling injury on the surface of the fruit was computed similarly to the thermal damage model for the human 
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skin during skin burn [46]. The model, described in the supplementary material, quantifies thermal damage as a dimensionless 

damage integral (Ω) based on the combined effect of rind temperature (Trind,) (K) and exposure time (t). 

 Numerical simulation  

The physics-based digital twin was implemented in COMSOL Multiphysics (version 5.6), which is a finite element-based 

commercial software. The transient conductive heat transfer and thermal damage model in the fruit during convective air cooling 

was solved using the ‘Bioheat Transfer' physics. Ordinary Differential Equations’ and 'Differential Algebraic Equations' interfaces 

were used to solve for moisture transport, total soluble solids, color, fruit quality index, and mortality of fruit fly. Quadratic 

Lagrange elements were used together with a fully-coupled direct solver, relying on the MUMPS (MUltifrontal Massively Parallel 

sparse direct Solver) solver scheme. The solver tolerance was set to 10-5 based on sensitivity analysis. Adaptive time-stepping based 

on the Backward Differentiation Formula (BDF) was used for the simulation, with the maximum step set to automatic to maintain 

the desired relative tolerance. A grid sensitivity analysis was conducted to ensure that the results were grid-independent (see 

supplementary material for details). The grid consisted of triangular and quadrilateral finite elements, with a total element size 

of 6504. To stochastically simulate the quality evolution of 1000 'Valencia' oranges via the digital twins, we performed a parametric 

sweep over the wide range of pre-harvest biological properties of fruit generated from MCMC. The parametric sweep feature in 

COMSOL Multiphysics® runs calculations for several parameter cases in a single instance. 

 Statistical data and sensitivity analysis 

The actionable quality metrics from the digital twins were analyzed and presented as median (centre line), 75th upper and 25th 

lower quartiles (box limits) and 1.5 × the interquartile range (IQR, whiskers) with a 0.95 confidence level. We also used Levene's 

test at p ≤ 0.05 significant level and 95% confidence interval to assess the equality of variances at farm level, port in South Africa 

(SA), port in Europe (EU), and retail storage within a single shipment.  

We also presented the combined pre-harvest biological and postharvest variability assessment based on mean values of the 

different quality metrics at retail. A fitted probability distribution function and rug plot were applied to visually determine the 

statistical differences in quality evolution due to pre and postharvest variability at the end of the supply chain. Additionally, a 

two-sample t-test, assuming equal variances at p ≤ 0.05 significant level, was used to compare the mean significant difference of 

the quality evolutions.  

Sensitivity analysis was carried out to assess the impact of each pre-harvest biological property on fruit quality variability at the 

end of the cold chain (see supplementary material for details). The descriptive test, probability distribution function and sensitivity 

analysis were all conducted using ORIGIN 2020b (Government) (OriginLab, Northampton, Massachusetts, USA) and Microsoft 

Excel (2016). 

3 RESULTS and DISCUSSION 

 Markov chain Monte Carlo (MCMC) analysis 

To assess the variability of the oranges due to pre-harvest conditions at harvest, we first employed MCMC sampling method. 

MCMC used measured data to generate a statistically-representative set of fruit properties for individual fruits. With MCMC, we 

generated a realistic virtual population of orange fruit used for stochastic simulations via digital twins.  

Figure 3 shows the correlation matrix between the different parameters of the sample data and also the generated virtual 

population. The point estimates, range, mean and standard deviation of the posterior distribution of the variance components were 

calculated from the MCMC samples. By comparing the correlation coefficient between parameters of sample data and the generated 

virtual oranges, MCMC successfully captures the realistic relationship between the different sample data parameters (so the 

properties as fruit size (mm), fruit weight (g), TSS (°Brix), fruit color (color chart 1-5 scale), rind thickness (mm) and rind weight 

(g)) and the corresponding parameters of the generated virtual oranges.   
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Figure 3. Correlation matrix between the parameters of pre-harvest sample data and the generated 'virtual' 

population showing the Pearson correlation and histogram. The percentage differences in the correlation coefficients 

between the sampled data and the virtual population are shown with the red-colored text.  

 Impact of pre-harvest biological variability on fruit quality evolution 

We evaluate the impact of pre-harvest biological variability on fruit quality evolution. We therefore simulate 1000 orange fruits 

that are transported in a single shipment (i.e., -1°C targeted delivery cold air temperature and shipment length of 30 days). For a 

real shipment of citrus fruit in a refrigerated container, typically about 100'000 orange fruit are shipped in 20 pallets. Although 

we cover only 1% of this shipment, this sample size is already much larger than what is experimentally monitored during quality 

control and a statistically relevant sample size of the shipment. We quantified mass loss (%), fruit quality index (%), remaining 

shelf life (RSL) (days), chilling injury severity (%), MFF mortality (%), total soluble solids (TSS) (oBrix) and color (1-5 scale). Figure 

4 shows box plots of the different quality evolution at different supply chain stages from South Africa (SA) to retail shops in Europe 

(EU) using the digital twin.  

Figure 4A shows the variability in fruit mass loss from farm to retail due to pre-harvest biological variability. The mass loss 

increased across the postharvest supply chain and the variability between individual fruit increase slightly (standard deviation 

(STDev) up to 1% and relative STDev from 21% to 19%) as the shipment progresses further throughout the chain. Indeed, the pre-

harvest biological variability of oranges results in a variation in fruit transpiration, which is directly correlated with mass loss  

[47], [48]. The largest mass loss occurs at retail (2% of initial fruit weight). The high amount of mass loss at retail is due to higher 

storage temperature, decreased humidity, and increased respiration heat production, as this is temperature dependent. Similar 

findings on increased respiration rates of fruits at higher temperatures have been reported [14], [49]. The impact of pre-harvest 

biological variability of orange fruits on mass loss is largest at retail. Due to inherent biological variability in fruit properties after 

harvest, the mass loss of a shipment shows a variability up to 1.2% between individual fruit. This is substantial given that the 

average mass loss of the entire shipment is 3.4% upon arrival at the retailer.    

Figure 4B shows the impact of pre-harvest biological variability on the temperature-driven fruit quality index evolution of orange 

fruit. The fruit quality index and variability of the fruit decrease across the postharvest supply chain, with STDev ranging from 

9% (farm level) to 4% (at retail). This means that the impact of pre-harvest biological variability on the fruit quality index of 

oranges decreases across the postharvest supply chain. The impact of pre-harvest variability of oranges is lowest at retail storage 

compared to the other supply chain stages. However, this impact is still high, with a fruit quality variability between individual 

fruits of the same shipment at retail of up to ~5%. This means that ~20% of the entire shipment upon arrival at retail contains 

fruits of different fruit quality, as the average fruit quality index is about 30%. This implication can be further seen in the 

remaining shelf life days between individual fruits at retail.  
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Using the quality upon arrival at the retailer, we quantified the remaining shelf life of each of the 1000 fruits in the shipment after 

arrival at the retailer. The average remaining shelf life of the shipment was 6 days, and the standard deviation was 1.4 days. The 

min and max values were 1.2 and 9.4 days, respectively. As such, variability in the remaining shelf life of several days was found 

between individual fruit. 

Next, we assessed the influence of pre-harvest biological variability on the chilling injury severity of oranges within a shipment 

(Figure 4C). The chilling injury of oranges increased from 0% to 11.5% across the postharvest supply chain. Very high chilling 

injury occurred at the end of refrigerated shipment and during storage at retail, with values above the severe chilling injury 

threshold. A very low variation (<0.5%) in chilling injury was observed for the entire supply chain. This low variability is due to 

the minimal impact of fruit density and size  (see sensitivity analysis in supplementary material). This implies that the pre-harvest 

biological variability does not have much impact on the chilling injury of oranges during shipment. Rather, the chilling injury was 

mainly driven by cold chain practices (e.g., low air temperature) (see section 3.3). Nonetheless, there is a significant difference 

between the variability at the beginning of the postharvest journey (0%) and the end of the retail storage (0.3%) (p ≤ 0.05). Indeed, 

fruit sensitivity to low temperatures is also influenced by a variety of other pre-harvest biological factors such as biological age, 

harvesting time, production area, production season, pre-harvest temperature and humidity, and other cultural practices [9], [50]–

[52]. All these pre-harvest factors were not considered in this study due to insufficient field data. Therefore, it was not possible to 

assess their actual impact on chilling injury. 

The impact of pre-harvest biological variability on MFF mortality of oranges for a single shipment is presented in Figure 4D. In 

accordance with protocols dictated by citrus import regulations, maintaining a low delivery air temperature is essential to keep 

the fruit core temperature at or below 2 °C for 16.7 days or at 3 °C for 18 days. Thereby, at least 99.9968% Mediterranean fruit fly 

(MFF) mortality can be achieved [53]–[55]. In this study, the average MFF mortality increased from 0% to 100% across the 

postharvest supply chain, whereas the variability is less than 0.1%. This implies that the pre-harvest biological variability does 

not impact MFF mortality at the end of the supply chain. That is, the entire shipment upon arrival at the retailer is devoid of pest 

infestation. This also means that there are not many differences in core temperature between fruits of different sizes, once they 

are properly cooled down.  

We also show the impact of pre-harvest variability on total soluble solids (TSS) (Figure 4E) and color (Figure 4F) evolution of 

oranges during shipment. There was no significant change in the TSS (Figure 4E) and color (Figure 4F) across the postharvest 

supply chain. This shows that the pre-harvest biological variability has an equal impact on TSS and color of degreened oranges 

across the entire supply chain. This is expected because 'Valencia' orange is a non-climacteric fruit and, as such, does not increase 

in TSS, or show a change in color at low (>4°C) shipping temperatures. Since TSS and color do not change for degreened citrus 

fruit after harvest, the variability between the different fruit after harvest will be the one that quality control experts upon arrival 

at the retailer will observe.  
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Figure 4. Propagation of pre-harvest parameter variability at different major stages along the cold chain of a single 

shipment (-1 °C targeted delivery cold air temperature and shipment length of 30 days) from farm in South Africa (SA) 

to retail shops in Europe (EU) for different quality metrics via digital twin; [A] mass loss (%), [B] fruit quality index 
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(%), [C] chilling injury severity (%), [D] Mediterranean fruit fly (MFF) mortality (%), [E] total soluble solids (°Brix), 

[F] color (1-5 scale). The fruit quality of 80% was assumed when leaving the packhouse calibrated based on measured 

quality data. The boxplots within represent the median (centre line), 75th upper and 25th lower quartiles (box limits) 

and 1.5× the interquartile range (whiskers) (IQR). Letter N at the top of the plot indicates the number of samples. 

Significant differences between different stages along the supply chain, namely, farm, port-SA, port-EU, arrival at 

retail and end of retail storage, were determined using the Levene's test of equal variances and are indicated with 

letters from a to d for statistical significantly different groups at p ≤ 0.05. The red-colored horizontal line in the plots 

signifies the threshold value for the different quality metrics.  

 Impact of postharvest variability on fruit quality evolution 

Here, we quantify the impact of postharvest variability due to hygrothermal differences between shipments. Therefore, we 

simulated a single fruit going through 43 different shipments. We quantified mass loss, fruit quality index (FQI), remaining shelf 

life (RSL) days, chilling injury and Mediterranean fruit fly (MFF) mortality of oranges at the end of the supply chain via digital 

twin. The total soluble solids (TSS) and fruit color were not considered as they remain constant through the supply chain.  

Before quantifying these metrics, we analyze the shipments first. Figure 5 shows the time-varying air temperature profile as input 

for the physics-based simulations. The shipments showed a considerable variation in air temperature and length of time (Figure 

5A), which spanned between 19 and 50 days, with more than 35% of the shipments above the median of 31 days (Figure 5B). The 

cumulative consequence of these factors resulted in a unique cooling history for each shipment. 
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Figure 5. [A] Delivery air temperature as a function of time, as measured by a sensor in 43 different orange shipments, 

[B] Corresponding shipment duration. The boxplots within represent the median (centre line), 75th upper and 25th 

lower quartiles (box limits), and 1.5× the interquartile range (whiskers) (IQR). The farm – port SA corresponds 0 – 2 

shipment days; Overseas shipment to distribution center (DC) in Europe (EU) corresponds 3 – 19, up to 50 shipment 

days depending on the shipment; Depending on the shipment, retail stores corresponds to 19 – 21 shipment days, and 

goes up to 55 shipment days.  
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We first show the impact of hygrothermal variability between shipments on the mass loss evolution of 'Valencia' oranges during 

their postharvest journey (Figure 6A). The mass loss increased from 0% to 5.6% over shipment time, depending on the shipment 

air temperature (Figure 6A(i)). This implies that delivery air temperature fluctuations have a major effect on mass loss, as also 

reported by [15]. The further increase in mass loss after overseas shipment (from distribution center to retail stores) is due to the 

relatively high temperature and low prevailing ambient relative humidity at retail stores. Figure 6A(ii) shows the large variability 

of mass loss (2 – 6%) between different shipments at retail, with more than 55% of the shipments having mass loss above 3%. This 

is significant as the average mass loss of all shipments is 3.3% upon arrival at retail.  

We quantify the impact of hygrothermal variability between shipments on the fruit quality index of 'Valencia' oranges during their 

postharvest journey (Figure 6B). The fruit quality index decreased with shipment time for all shipments (Figure 6B(i)). The fruit 

quality index between different shipments at retail varies between 20 to 43% (Figure 6B(ii)). The very high variability of over  20% 

signifies that more than 60% of the shipments (about 26 shipments) contain fruits of significantly different quality upon arrival at 

the retail. This remarkable insight is echoed in the remaining shelf life days between fruits of different shipments at retail. The 

average remaining shelf life of the shipment was 6 days, and the standard deviation was 2.4 days. The min and max values were 

0.0 and 8.9 days, respectively. This means that some shipments arrived at the retail with oranges that must be consumed 

immediately or within 9 days to avoid losses.  

The impact of postharvest variability on the chilling injury of oranges during shipment is shown in Figure 7A. Chilling injury 

severity increased from 0 to ~17% with increasing shipment time for different shipments (Figure 7A (i)). The difference in chilling 

injury severity between shipments during transit is up to 10%. The temperature fluctuation or deviation from the target air 

temperature (-1°C or 0 °C) is responsible for the large variation in the chilling injury between different shipments. Increasing the 

temperatures above a threshold chilling inducing temperature (>4 °C) could increase the fruit tolerance due to gradual 

conditioning. Figure 7A (ii) shows that the mean chilling injury at retail is 5%, and the variability between shipments is ~5%. This 

means that all shipments contain fruits with different levels of chilling injury severity upon arrival at retail. In fact, ~20% of the 

shipments contain fruits with chilling injury above the severe commercial threshold at retail. 

We also evaluate the impact of postharvest variability on the evolution of MFF mortality during shipment (Figure 7B). The mean 

effective lethality at 2 °C for all the shipments was found to be 14 days, which is less than the targeted 16.7 days (Figure 7B (i)). 

This means that all shipments attained MFF mortality of more than 99.9968% during transit, which is above the required Probit-

9 treatment recommended by phytosanitary protocols [56]. Thus, variability between shipments does not have an impact on MFF 

mortality. This can be further observed in Figure 7B(ii), with all shipments having 100% MFF mortality at the end of the supply 

chain.  
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Figure 6. Digital twin output for [A] mass loss, and [B] fruit quality index (%) of oranges for different shipments across 

their postharvest supply chain. The initial fruit quality of 80% was assumed when leaving the packhouse calibrated 

based on measured quality data. The colored balls in (i) signify the end of each shipment. The boxplots represent the 

median (centre line), 75th upper and 25th lower quartiles (box limits) and 1.5× the interquartile range (IQR, whiskers). 

SC = supply chain. The red-colored vertical line in plots (ii) signifies the threshold value for the different quality 

metrics 
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Figure 7. Digital twin output for [A] chilling injury severity (%) and [B] Mediterranean fruit fly (MFF) mortality (%) 

of oranges for different shipments across their postharvest supply chain. The initial fruit quality of 80% was assumed 

when leaving the packhouse calibrated based on measured quality data. The colored balls in (i) signify the end of 

each shipment. The boxplots represent the median (centre line), 75th upper and 25th lower quartiles (box limits) and 

1.5× the interquartile range (IQR, whiskers). SC = supply chain. The red-colored vertical line in plots (ii) signifies the 

threshold value for the different quality metrics. 

 Comparison between the impact of pre- and postharvest variability on the quality 

evolution of orange fruit 

The variability in end quality upon arrival due to (1) pre-harvest biological variability in fruit properties and (2) postharvest 

variability in hygrothermal conditions in the supply chain of 'Valencia' orange fruits were compared. We used a probability 

distribution function and rug plot as shown in Figure 8. Here, we only included actionable metrics of which both pre-harvest and 

postharvest variability have a significant impact during shipment. In Figure 8A, we see that the variability in the mass loss at the 

end of the supply chain is caused, to a similar extent, by the inherent variability in fruit properties after harvest and by the 

variability in hygrothermal storage conditions during transit. Both pre-harvest and postharvest variability significantly impact 

the fruit quality index and remaining shelf life days at retail (Figures 8B and 8C). Nevertheless, postharvest variability induces a 

slightly larger spread in the final quality and remaining shelf life days.  
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Figure 8. A comparison between the impact of pre-harvest biological variability and postharvest variability on [A] 

mass loss (%), [B] fruit quality index (%), and [C] remaining shelf life (days) at the end of supply chain using a 

probability distribution function and rug plot. The rug plot shows the actual data set used for the STDev = standard 

deviation between groups. Two sample t-test with equal variance assumed at p ≤ 0.05 significant level was used to 

compare the mean significant difference of quality evolution due to pre-harvest biological variability and cold chain 

variability at the end of the supply chain. They are indicated with letters a and b for statistically significantly 

different groups and ns for not statistically significant groups. 

4 CONCLUSIONS 
The knowledge of when, where and why food loss occurs in the supply chain of fruits is the first step to unraveling the currently 

uncharted and invisible quality losses in fresh produce. The following key points well summarize our study: 

 For a single shipment, we found variability in the mass loss between individual fruit at retail of up to 1.2%. We found that 

about 20% of the fruits in a shipment upon arrival at retail are of significantly different fruit quality. The variability in 

the remaining shelf life of several days exists between individual fruits. This means that the fruits the consumers buy 

could last for different days, which is a challenge for the retailers to further ensure consumer satisfaction. Our findings 

also show that a single shipment upon arrival at the retail is without pest infestation.  
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 Concerning multiple shipments, we found that more than 90% of shipments have high varying fruit mass loss upon 

arrival at retail. More than 60% of these shipments contain fruits of significantly different fruit quality at retail. 

The remaining shelf life of the fruits that the consumer buys from the retailer differs by up to 3 days. This complicates 

supply and demand in the citrus supply chain. Our findings also show that about 20% of shipments contain fruits with 

chilling injury above the severe commercial threshold at retail. This means that the retailer could throw away 20% of the 

fruits they receive, which also translates into a significant loss in income. 

 

 Both pre-harvest (STDev = 0.65) and postharvest variability in hygrothermal conditions (STDev = 0.74) causes high 

varying mass loss in oranges upon arrival at retail. Compared to pre-harvest biological variability in fruit properties 

(STDev = 3.94), the postharvest variability (STDEV = 6.05) results in more oranges with significantly different quality 

at retail. The postharvest variability leads to slightly more variations in the remaining shelf life (3 days) of oranges at 

retail compared to pre-harvest variability (2 days).  

 

This simulation-based research has enabled us to address a key issue in postharvest supply chains: Where does the variability in 

end quality upon arrival, which many stakeholders regularly observe, come from? We unveiled the extent to which biological 

variability after harvest between different fruit and the variability in hygrothermal storage conditions between different shipments 

causes non-uniform end quality.  
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SUPPLEMENTARY MATERIAL 

1. Measurement of air temperature during shipment 

The temperature data logger used to measure the air temperature of fruits during shipments was TempTale®4 (TT4) GEO Eagle 

Extended (SENSITECH, Beverly, MA, USA). This sensor has an accuracy of ±0.5 °C and logged the air temperature every 60 

minutes. For most shipments, only air temperature were measured, as these are required by the export guidelines. 

Every shipment was equipped with five sensors in accordance with the prescribed export guidelines. Of these, two sensors recorded 

the temperature of the air delivered to and returning from the cargo space. The other three sensors recorded the fruit pulp 

temperature at three critical locations in the cargo. The sensors placed in the three locations, namely USDA1, USDA2 and USDA3 

(see Figure S1). These are usually fixed locations in the container, as they are defined by USDA regulations [57], [58].  

 USDA1 is in the fruit in the top of the first pallet on the left-hand side of the container, close to the centre line of the 

container. 

 USDA2 is placed into the fruit within a pallet in the middle of the container at half height and close to the centre line of 

the container. 

 USDA3 is placed in the second last row of pallets from the door on the left-hand side of the container at half height of the 

pallet. 

In this study, we used mainly datasets for the air temperature measured in USDA3.  

 

Figure S1.  Side and top cross-sectional views of a refrigerated container with an indication of sensor placement. 
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2. Thermal model 

Heat of respiration 

The heat of respiration was estimated from a correlation between the carbon dioxide production rate of oranges and it’s temperature 

as expressed in Equation S1[30]: 

𝑚̇𝐶𝑂2
= 𝑓. (

9𝑇

5
+ 32)

𝑔

                                                                                                                  (𝑆1) 

where 𝑚̇𝐶𝑂2
 is the carbon production rate per unit mass of orange (mg.kg-1 h-1), T is the average commodity temperature (oC), and 

f (2.81 x 10-4 ) and g (2.68) are respiration coefficients for oranges [30]. 

 

Actual airspeed around the fruit 

We used Equation 3 to estimate the actual airspeed around orange fruit. The porosity in a pallet of orange fruits (ϕ) was 39%. This 

corresponds to the fraction of void volume (volume occupied by air) with respect to the total volume of the porous medium (volume 

occupied by air + fruit). Delivery air with a flow rate (Qair) of 4000 m3∙h-1, estimated for general shipping containers, was assumed 

to enter this porous medium from the bottom of the cargo space. This was used to determine the superficial airspeed (usuperficial, m∙s-

1) using the cross-sectional area of the bottom of the cargo space (Across, m2). However, this space-averaged superficial airspeed 

(usuperficial, m∙s-1) is different from the speed of the air confined in the porous medium-the void space between the fruits (uphysical, m∙s-

1).  

3. Mass loss model 

Estimating relative humidity of air  

The relative humidity of the air within the refrigerated container (RHair, %) was estimated using the principles of psychrometry, 

by assuming a constant sensible heat ratio (SHR) within the refrigerated container. The SHR is a performance characteristic for 

evaluating the thermodynamic conditions for air in a cold room, and forms the basis for the design of air conditioning systems.  

 

The two reference conditions used to determine this SHR were cold storage (-1.5 °C, 95% RH) and ambient (20 °C, 55% RH). The 

SHR was thus calculated to be 0.635 using Equation S2 [59], which also matched with that qualitatively obtained from a 

psychrometric chart (Figure S2). This implies that 63.5% of the load provided to the room is responsible for cooling the air (sensible 

load) and 36.5% of the load is responsible for controlling the humidity (latent load). For storage rooms designed for fruits and 

vegetables, the SHR lies between 0.54 – 0.72 [60].  

, 2 1

2 1

(T T )p airc
SHR

h h





     (S2) 

where Cp,air = 1.005 kJ∙kg-1∙°K-1, h is the corresponding enthalpy (kJ∙kg-1), T1 and T2 correspond to the ambient and cold air dry 

bulb temperature (°C) respectively. 

A constant SHR (=0.635) was assumed for the air in the refrigerated container. This means that the thermodynamic properties of 

air entering the refrigerated container will always fall on the red line in Figure S2. 

 

At a given dry bulb temperature (Tdb, °C), the enthalpy was thus estimated from Equation S1. The enthalpy was used to estimate 

the absolute humidity Y (kgwv∙kgda
-1) using Equation S3.  

1.005 (1.88 2501)db dbh T Y T        (S3) 

The vapor pressure for air at a given Tdb was calculated using the humid ratio as expressed in Equation S4 [61].  

,
0.622

atm
v air

Y P
p


       (S4) 

The saturated vapor pressure was calculated using Equation S5, as a function of the dry-bulb air temperature (Tdb, °C) using the 

Antoine equation [30]. 

𝑃𝑠𝑎𝑡 = exp (23.4795 − 
3990.5

𝑇𝑎𝑖𝑟−39.317
)       (S5) 
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The relative humidity of air (RHair, %) was estimated using Equation S6 [61]. 

𝑅𝐻𝑎𝑖𝑟 =
𝑃𝑣,𝑎𝑖𝑟

𝑃𝑠𝑎𝑡
 𝑥 100     (S6) 

Mass transfer coefficient 

The mass transfer coefficient (kair) was estimated based on the airspeed (uair, m∙s-1) using the Sherwood correlation for a sphere 

(Equation 7). The base case Sherwood number (Sh) for this study is 15.56, resulting in a mass transfer coefficient (kair) of 0.004651 

m.s-1. Note that kair (m.s-1) from Equation 7 was finally expressed as a partial differential of the dynamic air temperature (kair s∙m-

1). The kair (s∙m-1) value using the average dynamic air temperature for the base case single shipment (i.e., -1°C targeted delivery 

cold air temperature and shipment length of 30 days) closely corresponds to the mass transfer coefficient obtained using the heat 

and mass transfer Chilton-Colburn analogy (i.e., 
𝐾𝑎𝑖𝑟

ℎ𝑐
= 7 𝑥 10−9). 

 

 

 

Figure S2: Psychrometric chart showing thermodynamic properties of the air in the refrigerated container as it 

transitions from ambient conditions (20 °C, 55% RH) to those of cold storage (-1.5 °C, 95% RH). This image is available 

in the public domain via (https://chbe241.github.io/). 

4. Quality model 

The quality of citrus fruit varies from one fruit to another in a single batch and also changes between different cold chains. This 

quality evolution could manifest visually (e.g., changes in appearance) and non-visually (e.g., changes in vitamin C). Most of the 

underlying biochemical reactions responsible for these quality changes can be adequately modeled, and the evolution of multiple 

quality attributes such as total soluble solids (TSS [°Brix]), color (Col [scale 1-5]) and fruit quality index ([%]) of the orange fruit 

predicted. 

The fruit quality model was calibrated based on fruit shelflife studies in literature for 'Valencia' oranges [62] and the results of our 

orange storage experiments (results not shown). Valencia orange can successfully be stored between 32 – 52 days 56 at 0 - 9°C, 

after which the fruit is considered to be lost [62]. This study assumed 49 shelf life days at 7 °C for the orange quality model 

calibration. The initial value of the indicator of fruit quality for the base case (It=0) was assumed to be 80% at the start of a shipment 

(packhouse) (t = 0 s), after calibration with measured field quality data. This is because the fruit has already started to decay from 
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the point of harvest to the point of sorting and packing at the packhouse, which is the start of shipment for this study. At the end of 

49 days period at 7 °C, the fruit reaches the end of its shelf life and the first visual symptoms of decay start to appear. In our 

calibration, we arbitrarily set this threshold at 10%, a point where the first visual damage occurs and the fruit cannot be sold to the 

consumer anymore.  

To account for the dependence of shelf life on storage temperature, we assumed a Q10 factor of 2 (Equation S7). Q10 is typically 

about 2 to 3 for degradation reactions in fruits [39], [63]. A Q10 of 2 means that the shelf life of the fruit is halved for every 10 °C 

rise in storage temperature, so the fruit can be stored for 56 days at 0 °C, 28 days at 10 °C, and 14 days at 20 °C. 

     𝑄10 =  
𝑘𝑇+10

𝑘𝑇
       (S7) 

which then can be rewritten as follows [40]. 

𝑄10 =
𝑘0,𝑖𝑒

− 𝐸𝑎,𝑖

𝑅(𝑇+10)

𝑘0,𝑖𝑒
−𝐸𝑎,𝑖

𝑅𝑇

=  
𝑒

−𝐸𝑎,𝑖

𝑅(𝑇+10)

𝑒
−𝐸𝑎,𝑖

𝑅𝑇

= 𝑒
−𝐸𝑎,𝑖(

1
𝑅(𝑇+10)

−
1

𝑅𝑇
)
                  (S8) 

ln 𝑄10 =
10𝐸𝑎,𝑖

𝑅𝑇(𝑇 + 10)
≈  

10𝐸𝑎,𝑖

𝑅𝑇2                   (S9) 

𝐸𝑎,𝑖 ≈  
𝑅𝑇2

10
ln 𝑄10                  (S10) 

With this Ea,i value, k0,i was calculated by rearranging Equation 14 and 15 as:  

𝑘0,𝑖  =  
𝑘𝑖(𝑇)

𝑒
−𝐸𝑎,𝑖

𝑅𝑇

=

− 
1
𝑡

 ln (
𝐴𝑖  (𝑡) − 𝐶

𝐴0,𝑖
)

𝑒
−𝐸𝑎,𝑖

𝑅𝑇

               (S11)  

where k(T+10), kT correspond to the rate constants at temperatures (T+10) and T [K], respectively. 𝐴0,𝑖 is the initial overall quality 

(80%, at t = 0 s), Ea,i is the activation energy [J mol-1], R is the ideal gas constant (8.314 J mol-1 K-1) and C is an integration constant.  

Similarly, the same equations (Equation S7 – S11) were used to calibrate the color and total soluble solids models for 'Valencia' 

oranges. For color, with a Q10 of 2, at a storage temperature of 12 °C, the initial value of -0.6 was assumed at the start of a shipment  

(t = 0 s), and 0.5 value was assumed at the end of a 30 days shipment based on literature data for 'Valencia orange' [64]. For total 

soluble solids, we assumed a 28 days storage of 'Valencia' orange at 5 °C, with an initial value of 11.9 °brix (t = 0 s) and a final 

value of 12.1 °brix based on literature data [65]. 

5. Lethality model for pest mortality 

Equation S12 describes the lethality model using in this study. An equivalent lethality against fruit fly is achieved for the time-

temperature treatment maintaining the fruit core temperature at 2 °C for 16.7 days or at 3 °C for 18 days.   

(t)

,

0

(t) 10

ref core
end

ref

T Tt t

z

cumulative T

t

F dt

 
  
 



 
         (S12)  

where Tcore (t) is the core temperature (K) as a function of time, since here the fruit fly larvae reside and the parameter z corresponds 

to the z-value (=31.365 K), which accounts for the temperature dependence on the time of exposure. Here, 𝐹𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑇𝑟𝑒𝑓
 (days) 

represents the cumulative process lethality, or the equivalent treatment time at the reference temperature (Tref), which is 275.15 

K, i.e. 2 °C in our case. 𝐹𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑇𝑟𝑒𝑓
 was further used to estimate the surviving fraction of MFF at the end of the cold disinfestation 

treatment using Equation S13.  

0
, log

( )ref refcumulative T T

N
F D

N t

 
   

          (S13) 

Here, DTref (days) corresponds to the time required to obtain a log reduction of fruit fly at a specific temperature (Tref = 275.15 K). 

N0 and N(t) represent the MFF survivors at the start (t=0) and at any time instant (t) of the process, respectively.  

 

The MFF mortality (%) was computed from the fraction of survivors using Equation S14.  
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For model calibration, the reference lethality is 1.5552 x 106 s  and the DTref  is 3.7 days (Myburgh, 1965; Tang et al., 2007).
  

6. Thermal damage model for chilling injury 

The thermal damage model for chilling injury is described in Equation S15. This model was calibrated using a methodology similar 

to the kinetic quality model. 

 

Ω(𝑡) = ∫ 𝑘0,𝑐𝑖
𝑡

0
. 𝑒

(−
𝐸𝑎,𝑐𝑖

𝑅.𝑇𝑟𝑖𝑛𝑑(𝑡)
)
. 𝑑𝑡      (S15) 

where Ω(t) is the damage integral as a function of time (-), k0,ci is the pre-exponential factor (s-1), Ea,ci is the activation energy (J∙mol-

1), and 𝑇𝑟𝑖𝑛𝑑(t) is the temperature at rind (K) as a function of time. The damage integral (Ω) was calibrated using existing cold 

storage data for oranges to predict the severity of chilling injury damage. The severity is expressed as the portion of surface area 

of the rind (SACI, %) showing chilling injury symptoms. The calibration was based on iso-effect lines for various combinations of 

time-temperature exposure. Here, we assumed that citrus fruit stored at 1 °C for 21 days would have a damage integral of 0.0202, 

corresponding to about 2% of fruit developing chilling injury [62], [66], [67]. 

 

The damage integral (Ω) was further used to evaluate the probability of incidence of chilling injury (CIincidence, %) using Equation 

S16.  

100 [1 e ]incidenceCI        (S16) 

We considered this probability index to be indicative of the percentage of fruits in the shipment showing symptoms of chilling 

injury.  

7. Markov chain Monte Carlo method 

Markov chain Monte Carlo (MCMC) is a class of algorithms used to generate a conditional posterior probability distribution of 

different sampled data to sample from it [68], [69]. The correlation coefficient between different parameters for the randomly 

generated population is often the same as the correlation coefficient of the sampled data.  

Using MCMC, we generated a realistic 'virtual' population of 1000 oranges of different pre-harvest biological properties, including 

fruit size, fruit weight, TSS, fruit color, rind thickness and rind weight were considered for MCMC. Other pre-harvest biological 

properties, including fruit density, rind density, and fruit quality, were not considered for the MCMC as they were obtained from 

parameters used for the MCMC sampling. Additionally, other derived fruit properties such as thermal conductivity were not 

considered in this study because they did not provide extra information after our initial sensitivity analysis (result not shown in 

details) (e.g., for 1000 'virtual' population: mean thermal conductivity = 0.57, standard deviation = 0.004). 

The implemented MCMC for this study has a total chain length of 3000, consisting of a burn-in period of 1000 iterations in order 

to reduce the number of unlikely occurrences in the posterior distribution. The learning and adaptation phases were performed 

from iteration 1000 to 3000 to evaluate the posterior distribution effectively. This procedure was performed for 2 independent runs. 

The mean and standard deviation for the sample data and generated virtual population are shown in Table S1. By comparing the 

mean and standard deviation of sample data parameters and those of the virtual population, we see that these values are highly 

correlated, as expected.  
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Table S1. Mean and standard deviation of sample data and virtual population parameters.  

  
TSS (°Brix) 

Fruit size 

[mm] 

Average fruit 

weight [g] 

Fruit color 

(scale 1-5)  

Rind fresh 

weight [g] 

Rind 

thickness 

[mm] 

Sample data 
Mean 10.25 77.06 251.26 2.04 3.87 6.51 

STDev 1.17 4.28 36.62 0.84 0.61 0.64 

Virtual 

population 

Mean 10.25 77.07 251.39 2.04 3.87 6.51 

STDev 1.26 4.79 39.87 0.94 0.69 0.73 

8. Sample size determination 

We used a modified Cochran's formula with 95% confidence level and ±5% precision to calculate the minimum required shipment 

size for the citrus supply chain (Equation S17) [20]: 

 

𝑛 =
𝑛0

1+
(𝑛0−1)

𝑁

          (S17) 

where 𝑛0 is the random sample size (43), n is the modified sample size, and N is the population. 

Figure S3 shows the relationship between air temperature and sample size. Particularly, the fluctuation of mean air temperature 

with the number of samples is shown in Figure S3a. It is evident that the temperature fluctuation is within the sensor accuracy 

range (1 °C) for a commercial citrus cold chain for a sample size of 5 and above. The very low-temperature deviation (<0.5 °C) for 

sample size above 5 further confirmed that the sample size used for postharvest variability assessment in this study was sufficient 

(Figure S3b). 

 

Figure S3. Sample size analysis showing: [a] the relationship between average air temperature and number of 

samples, and [b] the corresponding deviation of the mean temperature from the final mean temperature. The red-

colored straight line represents the final mean temperature, while the yellow-shaded area represents the accuracy 

range of 1 °C for USDA approved temperature sensor. 

9. Sensitivity analysis to quantify the impact of individual pre-harvest biological 
factors on fruit quality 

We performed a sensitivity analysis to assess the contribution of each pre-harvest biological property of the fruit to the variability 

of the different quality evolution in the supply chain. By ranking each pre-harvest biological property, we can identify the 

management actions that should be improved to reduce postharvest losses in the citrus supply chain. Equation S18 [70] was used 

for this sensitivity analysis: 

 

S = 
𝜕𝑥 𝑥⁄

𝜕𝑝 𝑝⁄
 𝑥 100,           (S18) 

where S is the percentage scaled relative sensitivity, 𝜕𝑥 is the change of values of fruit quality parameter, 𝑥 is the fruit quality 

parameter, 𝑝 represents the pre-and postharvest input parameters, and 𝜕𝑝 change of value of pre-and postharvest input 

parameters, at ±20% level in temporal scale.  



Preprint 

 

 

 

          30 

 

 

The results of the sensitivity analysis are discussed here. The sensitivity analysis of mass loss is presented in Figure S4a. The 

most important pre-harvest biological factor contributing to up to 95% of the variability during shipping and at retail was a 

combination of fruit weight (70%), rind thickness (20%), and fruit size (5%). This suggests that controlling the fruit growth process 

(e.g., reducing cell number by controlling fruit temperature during the growing season) (Cowan et al., 2001; Okello et al., 2015; 

Quinet et al., 2019), and maintaining a good water management system and balanced nutritional program (NPK fertilizers) [74] 

could significantly reduce weight loss across the supply chain. 

We observed that the fruit quality index variability during shipping and at retail is largely sensitive to initial fruit quality with 

more than 98% contribution (Figure S4b). A similar trend was observed for the remaining shelf life days, with initial quality 

contributing to more than 98% of the variability (Figure S4c). The fruit quality variability at harvest depends mostly on 

horticultural practices, including maintaining the health of the citrus fruit trees in the orchards. This is affected by several pre-

harvest operations, such as irrigation, pruning, application of fertilizers, pesticides, and plant growth regulators [75]. Improving 

these cultural practices will reduce quality losses and increase shelf life at the end of the supply chain. 

As already observed in section 3.2, the pre-harvest biological properties considered in this study contribute to less than 5% of the 

chilling injury variability during shipping and at retail (Figure S4d), with the amount of space occupied by fruits accounting for 

3% during shipping and 2.5% at retail.  

Note that the sensitivity analysis was not performed on MFF mortality, total soluble solids and color of oranges as the pre-harvest 

biological variability does not have a significant impact on these parameters across the citrus supply chain (see section 3.2). 
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Figure S4. Impact of individual pre-harvest biological properties on (a) mass loss (%), (b) fruit quality index (%), (c) 

remaining shelf life (days), and (d) chilling injury (%) of oranges during shipping and at retail. 

10. Grid sensitivity analysis 

Based on a grid sensitivity analysis, an appropriate grid was constructed for the two-dimensional axisymmetric geometry of orange 

fruit. We evaluated four different grids: extreme-fine, base, extra-fine, and coarse grids with 11034, 6504, 2784 and 138 finite 

elements. The finest grid was the extreme-fine grid. A gradual refinement toward the air–rind and pulp interfaces was applied to 

enhance numerical accuracy and stability, as the largest gradients occur there. The differences with the extreme-fine grid are 

depicted in Figure S5 for the base, extra-fine and coarse grids for fruit surface and core temperatures. The plot shows that the 

difference with the extreme-fine grid for all selected grids is quite small. Therefore, the base grid was used in this study to optimize 

computational load and accuracy. This grid has a spatial discretization error on the local fruit surface and pulp temperatures below 

0.002 °C. The grid consisted of triangular and quadrilateral finite elements, with a total element size of 6504. 
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 Figure S5. The difference in temperature of the base, extra fine, and coarse grid with the extreme fine grid as a 

function of time for the temperature at the surface and the fruit pulp core. 

 


