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Abstract—Series connection of semiconductor submodules
(SM) in a modular multilevel converter (MMC) makes the MMC
prone to open-circuit (OC) IGBT failures inside SMs. If left
undetected, these faults degrade the operation of the MMC and
lead to its instability. This paper proposes a method to detect,
localize, and classify single OC SM faults in an MMC using
support vector machines (SVM) trained with data obtained from
the capacitor voltage balancing block of the MMC control system.
The proposed method relies on data extracted from the sorted
capacitor voltage arrays of the upper and lower phase arms.
Therefore, it does not require extra measurements and hardware.
Additionally, it offers a fixed time for detecting and localizing
OC SM faults. This method is easy to implement as SVM has
a simple decision function. Time-domain simulation case studies
are performed on a three-phase nine-level MMC to evaluate the
performance of the proposed method.

Index Terms—Fault detection, fault diagnosis, fault location,
modular multilevel converters, open-circuit faults, support vector
machines.

I. INTRODUCTION

Modular multilevel converters (MMC) are vastly deployed
in applications such as HVDC, FACTS, and medium- and
high-voltage motor drives [1]–[3]. MMCs comprise of several
series-connected semiconductor submodules (SM) in each
phase, which fuel their wide adoption by enabling several
advantages, including simple scalability, high modularity, and
high output voltage quality. However, this also increases the
chance of SM switch failures in MMCs. Switch failures disrupt
MMC operation, eventually leading to its complete shutdown.
In medium- and high-voltage applications, any interruption in
the flow of power is critical. Hence, a switch failure detection
and localization method is required to activate the protection
system of the MMC to ensure its reliable operation [4].

IGBT failures are classified into two types: short-circuit
(SC) and open-circuit (OC). SC failures quickly discharge the
SM capacitor bank and cause overcurrents that might damage
the SM. Protection against SC failures is usually done using
the gate drive circuit by turning off the faulty IGBT. OC
failures, however, can remain undetected for a longer period
of time. They overcharge the SM capacitor bank and cause
distortion in the output voltage waveform. They can also create
consecutive OC failures and eventually make the MMC unsta-
ble. Thus, the main focus of this paper is to detect, localize,
and classify OC SM faults. [5] Various methods are proposed
in the literature to detect OC SM faults in MMCs [6]–[15].
These methods can be divided into two groups: hardware-
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based methods and software-based methods. Hardware-based
methods are simple and reliable, but add extra devices and
circuitry to the basic MMC design and significantly increase its
cost, volume, and complexity. Moreover, they are not suitable
for existing systems. Software-based methods, however, do not
require any extra devices for OC SM fault diagnosis. Sliding-
mode observer is designed in [9] to detect and localize OC
SM faults in MMCs. However, it has several drawbacks:

1) They rely on the precise switching model of each SM,
which significantly increases their computational burden
when the number of SMs is high;

2) They localize the fault when an SM capacitor voltage is
higher than the healthy ones, which significantly increases
their detection time as it takes several fundamental cycles
for the capacitor voltage to increase appreciably;

3) Accurate observer design requires a precise mathematical
model of the system. The mathematical model of the
MMC is high-order, nonlinear, and highly coupled. Thus,
observer design for MMCs can become very complicated.

Kalman filter is utilized in [16] to detect and localize OC SM
faults. However, this method has drawbacks as well:

1) Its robustness and accuracy could be put in jeopardy due
to long delay between detection and localization;

2) Unless the prediction stage is accurate enough, the ca-
pacitor voltage estimation results can be poor.

Besides the shortcomings mentioned above, sliding-mode
observer-based methods and Kalman filter-based methods also
have some drawbacks in common:

1) They both may become ineffective under nearest-level
modulation;

2) Neither method can classify the fault type;
3) Choosing the empirical threshold for these methods can

be difficult under different MMC voltage or power rat-
ings.

Utilizing state observers for OC SM fault diagnosis is pro-
posed in [8]. However, it has a long detection time of 50–
150 ms, and it is vulnerable to parameter uncertainties. A
variance-based statistical method is proposed in [10] to diag-
nose OC SM faults in MMCs. However, it relies on empirical
thresholds, which increase its detection time. Artificial neural
networks (ANN) are used in [14] to only classify the OC
SM fault. Support vector machine (SVM) is used in [15] to
only detect and localize single OC SM faults under double
switch failures. Moreover, its training dataset is small, which
can affect its accuracy for acting on new data.

This paper proposes a new method to detect, localize, and
classify OC SM faults in MMCs. During OC SM faults, the
sorting algorithm of the capacitor voltage balancing block
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Fig. 1. Three-phase MMC system with HBSMs.

always puts the capacitor voltages of the faulty SMs at the
beginning or at the end of the sorted array, depending on
arm current direction. Thus, by counting the number of times
each SM appears at the beginning of the sorted array when
arm current is negative and at the end of the sorted array
when arm current is positive, a dataset can be constructed to
train a two-class SVM for each SM to detect and localize
the OC SM fault. Simultaneously, the sum of the number of
times each SM appears at the beginning of the sorted array
when arm current is positive and at the end of the sorted
array when arm current is negative is used to create a dataset
to train a multiclass SVM for each SM to classify the OC
SM fault. This method has a fixed detection, localization, and
classification time of one fundamental period. Additionally,
it does not require any extra hardware and is very simple to
implement. Time-domain simulation case studies on a detailed
switching model of a three-phase nine-level MMC system in
PSCAD/EMTDC software evaluate the performance of the
proposed method.

The specific contributions of this paper are

• Statistical analysis of capacitor voltage balancing re-
sponse to OC SM faults.

• Design of an SVM-based OC SM fault detection and
localization method.

• Design of an SVM-based OC SM fault classification
method.

The rest of this paper is structured as follows. Section II
presents the basics of operation of MMC. Section III discusses
the three types of OC SM faults and their effects on MMC
operation. The proposed OC SM fault diagnosis method is
presented in Section IV. Performance evaluation of the pro-
posed method is presented in Section V. Finally, conclusions
are presented in Section VI.

II. BASICS OF OPERATION OF MMC

Fig. 1 shows the main circuit design of a three-phase MMC
with half-bridge SMs (HBSM). It consists of three legs, each
comprising of two arms with N HBSMs in each arm. The
sum of the HBSM output voltages of each phase can be
modeled as controlled voltage sources, denoted by vui and

vli, respectively, as

vui =

N∑
j=1

niujv
i
cuj

vli =

N∑
j=1

niljv
i
clj

niuj , n
i
lj ∈ {0, 1}

i = a, b, c,

(1)

where niuj and nilj are the switching states of the jth HBSM,
and vicuj and viclj are the capacitor voltages of the jth HBSM
in the upper and lower arms of phase i. In the steady-state, the
capacitor voltages are balanced. Thus, vicuj and viclj are equal
to V Σ

cui/N and V Σ
cli/N , respectively, where V Σ

cui and V Σ
cli are

the sum of the HBSM capacitor voltages. Using this, (1) can
be rewritten as

vui =
V Σ
cui

N

N∑
j=1

niuj = NuiV
Σ
cui

vli =
V Σ
cli

N

N∑
j=1

nilj = NliV
Σ
cli

Nui, Nli ∈
{
0,

1

N
,
2

N
, . . . , 1

}
i = a, b, c,

(2)

where Nui and Nli are insertion indices of phase i. The
circulating current idiffi and the output current ioi are defined
as

idiffi =
iui + ili

2
ioi = iui − ili
i = a, b, c,

(3)

where iui and ili are the arm currents. Using KCL, the
dynamic equation for the sum of the HBSM capacitor voltages
in the upper and lower arms is found as

dV Σ
cui

dt
=
NNui

CSM
iui

dV Σ
cli

dt
=
NNli

CSM
ili

i = a, b, c,

(4)

where CSM is the capacitance of each HBSM. The dynamic
equation for ioi is defined using KVL as

dioi
dt

=
1

Larm + 2Lo
(vli − vui)−

Rarm + 2Ro

Larm + 2Lo
ioi, (5)

where Rarm is the arm resistance, Ro is the load resistance,
Larm is the arm inductance, and Lo is the load inductance.
Using KVL, the dynamic equation for idiffi is found as

didiffi

dt
=

1

2Larm
(Vdc − vui − vli)−

Rarm

Larm
idiffi, (6)

where Vdc is the input DC voltage.

III. MMC OPERATION UNDER OC SM FAULTS

Fig. 2 shows the three types of OC SM faults depending
on the failed IGBT: OC failure in the upper IGBT (Su), OC
failure in the lower IGBT (Sl), and OC failure in both IGBTs
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Fig. 2. OC SM fault cases in MMCs with HBSMs: (a) Su OC failure, (b)
Sl OC failure, and (c) simultaneous Su and Sl OC failures.

TABLE I
EFFECTS OF Su OC FAILURE ON MMC OPERATION

SM Current iSM
Voltage Response

Normal Operation Su OC Failure

Positive Charging (Insert) Charging (Insert)
Unchanged (Bypass) Unchanged (Bypass)

Negative Discharging (Insert) Unchanged (Insert)
Unchanged (Bypass) Unchanged (Bypass)

TABLE II
EFFECTS OF Sl OC FAILURE ON MMC OPERATION

SM Current iSM
Voltage Response

Normal Operation Sl OC Failure

Positive Charging (Insert) Charging (Insert)
Unchanged (Bypass) Charging (Bypass)

Negative Discharging (Insert) Discharging (Insert)
Unchanged (Insert) Unchanged (Insert)

TABLE III
EFFECTS OF SIMULTANEOUS Su AND Sl OC FAILURES ON MMC

OPERATION

SM Current iSM
Voltage Response

Normal Operation Su&Sl OC Failure

Positive Charging (Insert) Charging (Insert)
Unchanged (Bypass) Charging (Bypass)

Negative Discharging (Insert) Unchanged (Insert)
Unchanged (Bypass) Unchanged (Bypass)

(Su and Sl). The MMC has a different response to each OC
IGBT failure case. Therefore, MMC operation is analyzed for
each case according to the reference SM current direction
depicted in Fig. 2.

A. Su OC Fault
Table I summarizes the effects of Su OC failure on MMC

operation. If iSM is positive, Su OC failure does not affect
MMC operation, as the current passes through Du and CSM.
However, if iSM is negative, the current flows only through Dl

and the HBSM capacitor loses its ability to discharge.

B. Sl OC Failure
Table II summarizes the effects of MMC operation under Sl

OC failure. In this case, MMC operation is unaffected if iSM
is negative. Therefore, the HBSM capacitor keeps its ability
to discharge. However, when the iSM is positive, the HBSM
current flows via Du and CSM. Therefore, the HBSM capacitor
does not get bypassed and keeps charging.

C. Simultaneous Su and Sl OC Failures
Table III summarizes the effects of simultaneous Su and

Sl OC failures on MMC operation. In this case, the MMC
operation is affected for both current directions. When iSM
is positive, the HBSM does not get bypassed and the HBSM
capacitor keeps charging through Du. When iSM is negative,
the HBSM gets bypassed via Dl and does not discharge.
Therefore, the HBSM capacitor keeps charging with a rate
higher than the other two scenarios.

IV. PROPOSED OC SM FAULT DIAGNOSIS METHOD

A. Capacitor Voltage Balancing During OC SM Failures
Capacitor voltage balancing is an essential block of the

MMC control system. This block makes sure that the charge
and discharge rates of SM capacitor voltages in each phase arm
are equal, so that the MMC can properly accomplish its control
objectives. The capacitor voltage balancing block measures the
capacitor voltages in each phase arm, sorts them according
to arm current direction, and finally inserts or bypasses SMs
according to Nui and Nli. The capacitor voltage balancing
algorithm used in this paper is summarized as below:

1) If arm current is positive, capacitors need to be charged.
Thus, the capacitor voltages are sorted in ascending order
and capacitors with lower voltages are inserted.

2) If arm current is negative, capacitors need to be dis-
charged. Thus, the capacitor voltages are sorted in de-
scending order and capacitors with higher voltages are
inserted.

The sum of the number of times the ith capacitor voltage
appears in the first slot of the sorting array during negative
arm current and in the last slot during positive arm current
N discharge

sum,i for one fundamental period To shows how severely
the capacitor voltage balancing algorithm wants to discharge
that capacitor. Ideally, N discharge

sum,i has an integer value, which is
calculated using

N discharge
sum,i =

To
NTSW

, (7)

where TSW is the switching period and N is the number of SMs
in one arm. However, this does not hold true in practice as N
and TSW are designed according to different rules. Therefore,
N discharge

sum,i becomes a random variable with a mean of

µ =
To

NTSW
. (8)

Using l samples of N discharge
sum,i , the standard deviation σ of

N discharge
sum,i is

σ =

√√√√1

l

l∑
j=1

(
N discharge

sum,i,j − µ
)2

. (9)

Using (8) and (9), a Gaussian distribution f
(
N discharge

sum,i

)
can

be fit to N discharge
sum,i as

f
(
N discharge

sum,i

)
=

1

σ
√
2π
e

−
1

2

(
N discharge

sum,i − µ
σ

)2

. (10)

The probability of N discharge
sum,i falling between a and b is found
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by calculating the area under the curve in (10) using

P [a ≤ N discharge
sum,i ≤ b] =

∫ b

a

f
(
N discharge

sum,i

)
dN discharge

sum,i . (11)

N discharge
sum,i can be used to detect and localize OC SM faults.

Around 99.7% of the area under the curve in (10) is covered by
values between µ−2σ and µ+2σ. That is, it is most likely that
N discharge

sum,i will fall within this range during normal operation
of the MMC. On the other hand, during OC SM faults, the
capacitor voltage of the faulty SM increases beyond that of the
remaining healthy SMs. This means that the capacitor voltage
balancing algorithm keeps trying to discharge it and always
puts it either in the first slot or the last slot of the sorting
array. Hence, its N discharge

sum,i increases at the onset of an OC SM
fault and finally saturates at To/TSW. Equation (10) shows
that when N discharge

sum,i increases, its probability of falling within
normal range decreases and eventually becomes zero. This
shows that N discharge

sum,i can be used to detect and localize OC
SM faults.

Analogous to N discharge
sum,i , the sum of the number of times

the ith capacitor voltage appears in the first slot of the
sorting array during negative arm current and in the last
slot during positive arm current N charge

sum,i for one fundamental
period To shows how severely the capacitor voltage balancing
algorithm needs to charge that capacitor. N charge

sum,i can be used
to distinguish between the three types of OC SM faults. The
capacitor voltage of the faulty SM increases with a different
rate of change under each type of fault. Therefore, its N charge

sum,i

decreases to zero with a different rate of change under each
type of fault. The capacitor voltages of the remaining healthy
SMs respond differently to the three types of OC SM faults.
Thus, N charge

sum,i values of the SMs are different under each type
of fault and they can be used to distinguish between OC SM
fault.

B. OC SM Fault Diagnosis Using SVM
Statistical methods such as the method proposed in [10] can

be used to set empirical thresholds for N discharge
sum,i and N charge

sum,i

to distinguish between normal and abnormal operations and
classify the OC SM fault type. However, given that N discharge

sum,i

and N charge
sum,i are random variables, finding the threshold to

optimize the diagnosis time becomes a daunting task. Interest-
ingly, OC SM fault diagnosis can be solved as a classification
problem in the realm of machine learning. Classification refers
to a problem where a class label is predicted for a sample
input data. An established classification method is the support
vector machine (SVM) [17]. SVM eliminates the need for
setting empirical thresholds. Therefore, it is a viable and better
solution to the problem of OC SM fault diagnosis. SVM
separates two classes via finding an optimal hyperplane in
a multidimensional space. For linearly-separable datasets, the
optimal hyperplane that separates the two classes with target
labels ti = ±1 is defined as

y(x) = wTφ(x) + b, (12)
where y(x) is the score, w is the vector containing the
weight factors, φ(x) is a feature-space transformation, and b
is the bias. In a two-dimensional input space, y(x) becomes
a straight line, such the one shown in Fig. 3. If y(x) > 0, the
label +1 is predicted; otherwise, the label −1 is predicted.
The objective of SVM is to maximize the margin ρ between
selected support vectors of the two classes or minimize ‖w‖
by solving

min
w

1

2
||w||2 + C

n∑
i=1

ζi

subject to ti (w · xi + b) ≥ 1− ζi, ζi ≥ 0 ∀i,
(13)

where C is a cost parameter, n is the length of the training
dataset, and ζi is the penalty assigned for the ith nonseparable
feature vector. This problem is usually simplified into its dual
form and easily solved by quadratic programming:

max LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to 0 ≤ αi ≤ C ∀i,
∑
i

αiyi = 0,
(14)

where α is a Lagrangian multiplier. To improve classification
for nonseparable datasets, a kernel function K(xi, xj) =
φ(xi)

Tφ(xj) is used. Kernels are mathematical functions that
are used to convert linearly inseparable input datasets to
linearly separable ones by converting the input dataset to one
with higher dimensions. Three major types of kernel functions
are the linear kernel K(xi, xj) = xi

Txj , the polynomial
kernel K (xi, xj) = (γ (xi · xj) + r)

d, and the Gaussian
kernel K (xi, xj) = exp

(
−γ||xi − xj ||2

)
. After the proper

kernel is selected, the optimal hyperplane in (12) becomes

y (x) = sign

(
n∑

i=1

αitiK (x, xi) + b

)
, (15)

where b is calculated by solving αi (ti (w · xi + b)− 1) =
0, i = 1, . . . , n, such that αi is not zero.

Two SVMs are trained for each SM: one for detection
and localization of OC SM faults and another for classifying
the fault type. The feature samples for the detection and
localization SVM of one SM consist of N discharge

sum,i data from
all SMs in the same arm obtained by applying all three types
of OC SM faults on that particular SM. In this way, the
SVM detects and localizes the OC SM fault simultaneously
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in To seconds. The fitcsvm function in MATLAB is used
to train the detection and localization SVM. The Gaussian
kernel is selected for this purpose due to its ability to classify
highly nonseparable datasets. To classify the OC SM fault
type, a multiclass SVM is trained for each SM using the
N charge

sum,i data from all SMs in the same arm as feature samples
obtained by applying all three types of OC SM faults on
that particular SM. Afterwards, the fitcecoc function in
MATLAB is used to train the OC fault classification SVM
using the Gaussian kernel. Solving classification problems
with multiple classes is not inherently supported by SVM.
Therefore, various coding designs are available to break down
the multiclass classification problem into multiple two-class
ones. The one-versus-one method is used in this paper as the
coding design. This method splits a multiclass classification
problem into multiple two-class classification problems. The
multiclass dataset is split into one dataset for each class against
every other class and the class with the majority of votes is
predicted as the class label.

Fig. 4 summarizes the proposed SVM-based OC SM fault
diagnosis method:

1) Initialize timer, N discharge
sum,i , and N charge

sum,i .
2) Obtain the sorted capacitor voltage arrays from the MMC

controller.
3) Determine arm current direction.
4) Calculate N discharge

sum,i and N charge
sum,i for each SM according to

arm current direction.
5) If timer has reached To, pass N discharge

sum,i of all SMs to
each detection and localization SVM. Otherwise, go to
step two.

6) If a fault is detected, pass N charge
sum,i of all SMs to the fault

classification SVM of the faulty SM to classify fault type.

(a)

(b)

Fig. 5. Characteristics of Ndischarge
sum during normal operation: (a) Normal

distribution of Ndischarge
sum and (b) cumulative distribution function of Ndischarge

sum .

TABLE IV
SIMULATION PARAMETERS

Parameter Value

Number of SMs in each phase arm N 4
DC-link voltage Vdc 10 kV
SM capacitance CSM 4600 µF
Arm inductance Larm 9 mH
Load resistance Ro 12 Ω
Load inductance Lo 4 mH
Fundamental frequency fo 60 Hz
Modulation index ma 0.8
MPC Sampling frequency fs 5 kHz
Rated Vc for normal operation 2.5 kV

V. PERFORMANCE EVALUATION

A. Training Data Acquisition and Statistical Analysis
A detailed switching model of a three-phase nine-level

MMC with N = 4 is built in PSCAD/EMTDC to simulate
all types of OC SM faults on each SM to obtain training
data for each SVM. Simulation parameters are described in
Table IV. The MPC controller proposed in [4] is used in this
paper. The OC SM fault should be diagnosed in less than
100 ms to avoid subsequent damage to other devices [9].
Therefore, 20 fundamental cycles worth of training data is
extracted from the simulation, of which 10 fundamental cycles
belong to normal operation and 10 fundamental cycles belong
to abnormal operation. Each type of fault is simulated at ten
different time instances to create a diverse training dataset
for each SM. Training dataset for detection and localization
SVM of one SM consists of N discharge

sum,i for all four SMs in one
arm under each type of fault. Therefore, the size of the feature
matrix is 600×4 for each SM. The training dataset for the fault
type classification SVM of one SM consists of N discharge

sum,i for all
four SMs in one arm under each type of fault. To increase the
accuracy of the fault type classification SVM, the variance and
Euclidean norm of each feature sample is also added to the
feature matrix of each SM. Thus, the feature matrix grows
to have a size of 600×6 for each SM. Fig. 5(a) shows
the normal distribution of N discharge

sum during normal operation.
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N discharge
sum is dispersed around µ = 20.75 with a standard

deviation of σ = 4.31. Around 99.7% of the area under the
curve in Fig. 5(a) is covered by values between µ− 2σ ≈ 12
and µ + 2σ ≈ 30. Therefore, the cumulative distribution
function (CDF) of N discharge

sum during normal operation, also
shown in Fig. 5(b), is found by calculating the area under
the curve for 12 ≤ N discharge

sum ≤ 30. Fig. 5(b) shows that
P
(
N discharge

sum ≤ 12
)
≈ 2% and P

(
N discharge

sum ≤ 30
)
≈ 98%,

meaning that P
(
12 ≤ N discharge

sum ≤ 30
)
≈ 96%. Therefore, it

is highly probable that N discharge
sum falls within this range during

normal MMC operation.

B. Case 1: Su Fault in SMu1a

To evaluate the performance of the proposed OC SM fault
diagnosis method on new data, an OC fault is applied to
the top switch in SM1 in the upper arm of phase a at
t = 100 ms. Fig. 6(a) shows vcua. Prior to t = 100 ms,
the capacitor voltages are balanced at 2.5 kV each. After
t = 100 ms, the capacitor voltages start to increase, as
described in Table I. Fig. 6(b) shows N discharge

sum for SMs in
the upper arm of phase a at each fundamental period cycle
during simulation. Fig. 6(b) shows that before t = 100 ms,
or the 6th fundamental period cycle, N discharge

sum for all SMs is
between 10 and 30, which complies with the statistical analysis
presented in Section V-A. Fig. 6(b) also shows that N discharge

sum

values remain in the same range for up to two fundamental
period cycles after t = 100 ms. After that, N discharge

sum starts to
increase drastically for SMu1a and decrease significantly for
the other SMs. Fig. 6(c) shows that SVM detects and localizes
the OC SM fault in one fundamental period cycle, or 16.67 ms.
Fig. 6(d) shows N charge

sum for SMs in the upper arm of phase a.
Similar to N discharge

sum , N charge
sum remains close to its prefault values

for two fundamental period cycles after the fault. Afterwards,
N charge

sum for SMu1a drastically decreases, while others increase.
Fig. 6(e) shows that SVM predicts the correct type of fault in
one fundamental period cycle or 16.67 ms.

C. Case 2: Sl Fault in SMu1a

Fig. 7(a) shows vcua. Prior to t = 100 ms, capacitor
voltages are balanced at 2.5 kV each. At t = 100 ms, a
Sl fault occurs in SMu1a and its capacitor voltage starts
to increase, while other capacitor voltages start to decrease.
Fig. 7(b) shows N discharge

sum for SMs in the upper arm of phase
a. Prior to t = 100 ms, or the 6th fundamental cycle, N discharge

sum

varies between 10 and 30, which complies with the analysis
presented in Section V-A. This figure also shows that N discharge

sum

values remain in the same range for up to two fundamental
period cycles after t = 100 ms. After that, N discharge

sum starts
to increase drastically for SMu1a and decrease significantly
for other SMs. Fig. 7(c) shows that SVM is able to detect
and localize the fault in 16.67 ms. Fig. 7(d) shows N charge

sum for
SMs in the upper arm of phase a. Similar to N discharge

sum , N charge
sum

remains close to its prefault values for two fundamental period
cycles after the fault. Afterwards, N charge

sum for SMu1a drastically
decreases while others increase. Fig. 7(e) shows that SVM
predicts the correct type of fault in one fundamental period
cycle or 16.67 ms.

(a)

(b)

(c)

(d)

(e)
Fig. 6. Simulation results after applying a Su fault in SMu1a: (a) capacitor
voltages of SMs in the upper arm of phase a, (b) Ndischarge

sum for SMs in the
upper arm of phase a, (c) detection and localization flag for SMs in the upper
arm of phase a, (d) N charge

sum for SMs in the upper arm of phase a, and (e)
classification flag for SMu1a.

D. Case 3: Simultaneous Su and Sl Faults in SMu1a

Fig. 8(a) shows vcua. Prior to t = 100 ms, the capacitor
voltages are balanced at 2.5 kV each. At t = 100 ms,
simultaneous Su and Sl faults occur in SMu1a. Fig. 8(a)
shows that vcu1a immediately starts to increase at the onset
of the fault, while getting bypassed intermittently, and others
decrease. Fig. 8(b) shows N discharge

sum for SMs in the upper arm
of phase a. Prior to t = 100 ms, or the 6th fundamental
cycle, N discharge

sum varies between 10 and 30, which complies
with the analysis presented in Section V-A. This figure also
shows that N discharge

sum values remain in the same range for up
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(a)

(b)

(c)

(d)

(e)
Fig. 7. Simulation results after applying a Sl fault in SMu1a: (a) capacitor
voltages of SMs in the upper arm of phase a, (b) Ndischarge

sum for SMs in the
upper arm of phase a, (c) detection and localization flag for SMs in the upper
arm of phase a, (d) N charge

sum for SMs in the upper arm of phase a, and (e)
classification flag for SMu1a.

to two fundamental period cycles after t = 100 ms. After
that, N discharge

sum starts to increase drastically for SMu1a and
decrease significantly for other SMs. Fig. 8(c) shows that SVM
is able to detect and localize the fault in 16.67 ms. Fig. 8(d)
shows N charge

sum for SMs in the upper arm of phase a. Similar to
N discharge

sum , N charge
sum remains close to its prefault values for two

fundamental period cycles after the fault. Afterwards, N charge
sum

for SMu1a starts to drastically decrease while it increases for
other SMs. Fig. 8(e) shows that SVM predicts the correct type
of fault in 16.67 ms.

(a)

(b)

(c)

(d)

(e)
Fig. 8. Simulation results after applying simultaneous Su and Sl faults in
SMu1a: (a) capacitor voltages of SMs in the upper arm of phase a, (b)
N

discharge
sum for SMs in the upper arm of phase a, (c) detection and localization

flag for SMs in the upper arm of phase a, (d) N charge
sum for SMs in the upper

arm of phase a, and (e) classification flag for SMu1a.

VI. CONCLUSIONS

This paper proposes a method to detect, localize, and
classify single OC SM faults in MMCs. This method counts
the number of times each capacitor voltage appears in the first
and last slots of the sorting array and then uses two SVMs
to diagnose the OC SM fault. Since the sorted arrays are
already available in the MMC controller, this method does not
require new measurements or extra hardware. Moreover, it has
a simple implementation. It detects, localizes, and classifies
the OC SM fault in only one fundamental cycle (16.67 ms
for a 60 Hz fundamental frequency), regardless of the time
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of fault occurrence. The proposed method is evaluated using
time-domain simulation case studies on a three-phase nine-
level MMC in PSCAD/EMTDC. Simulation results confirm
the merits of the proposed method.
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