
Băhēm
A Symmetric Cipher with

Provable 128-bit Security
M. Rajululkahf 1

May 8, 2022

Overview

This paper proposes a symmetric cipher, which I
name Băhēm, with the following properties:

Practical: Requires pre-sharing only a 128-bits key.

Provably secure: No cryptanalysis can degrade its
security below min[H(m),H(k)] bits of entropy,
even under Grover’s algorithm [1] or even if it
turned out that P = NP.

Simple: Encryption, and decryption alike, is per-
formed in a single round comprised of two ad-
ditions and one bitwise exclusive-or operation
(XOR). A session key is generated once with a
single addition. Should computers cease to exist,
encryption and decryption can be performed by
hand with a pen, a paper and some fair coins,
with relative ease.

Fast: Runs fast on common hardware. Its early
single-threaded implementation achieved similar
run-time speeds to OpenSSL’s ChaCha20 [2].
Faster speed is easily doable with parallelism and
better true random number generator (TRNG)
optimisations.

This comes at a usually-negligible cost of having an
approximately 2|m|-bit ciphertext output for a |m|-
bit cleartext input; since space is usually not a bottle-
neck for most applications.

Băhēm is the only symmetric cipher to-date that
is practical and provably secure. Other ciphers are
only one of them, but not both. For example, the
one-time pad (OTP) is provably secure but usually
impractical, as it requires pre-sharing a key that is as
large as the message to encrypt. On the other hand,
state of art ciphers, such as ChaCha20 or AES [3],
are practical but not provably secure.

1Author’s e-mail address: {last name}@pm.me. Public key:
EF91FF90DF73A9D76E4841C76D5CB15E7E909C309B307B
ED15BFB4E1183B6B9903FA78447E87F166F93B002803B99
C0C72C479C253E3D7A5D6BDF320DC0EDBDA.

This work is licensed under a Creative Com-
mons “Attribution 4.0 International” license.

Declarations

All data used in this study is included in this paper.
The latest version of this paper can be found here2,
and the latest version of the implementation can be
found here3.

Notation

H(x): Shannon’s entropy of random variable x.

x + y mod 2128: Unsigned 128-bit addition.

random(128): 128 bits generated by a TRNG.

k: 128-bit pre-shared secret key. Must seem random
and uniformly distributed with large enough
H(k). Ideally, k = random(128).

m: A cleartext message of |m| many bits.

d |m|
128 e: Number of 128-bit blocks in cleartext m.

mb: The bth 128-bit block from m. In other words:
m0‖m1‖ . . . ‖md |m|

128 e
= m.

s = random(128): Session key.

pb = random(128): Pad key of the bth block.

ŝ, p̂b, m̂b: Encrypted s, pb and mb, respectively.

Contents

1 Introduction 2

2 Proposed Algorithm: Băhēm 2

3 Security Analysis 3

4 Benchmark 4

5 Conclusions 4

A Implementation Examples 5

A.1 C Functions 5

A.2 A File Encryption Tool: Alyal 5

A.2.1 Installation 5

A.2.2 Usage 5

2https://codeberg.org/rajululkahf/baheem
3https://codeberg.org/rajululkahf/alyal

1

https://orcid.org/0000-0001-9061-2921
@pm.me
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://codeberg.org/rajululkahf/baheem
https://codeberg.org/rajululkahf/alyal

1 Introduction

State of art symmetric ciphers, such as ChaCha20 or
AES, are attractive for their practicality (requiring
only a small, say, a 256-bit key to pre-share). Their
security is probable, but not provable, which is sup-
ported by the failure of the many attempts to break
them so far.

However, it remains unknown whether they are ac-
tually secure. It is even unknown if it is possible for
a function in their class to exist, since it remains un-
known whether P 6= NP. This uncertainty about their
security is quite risky, as encrypted sensitive data is
often exposed over public networks. Should such ci-
phers be discovered to be broken, the previously en-
crypted data are effectively exposed. In other words,
such ciphers offer the following trade-off:

Trade-off 1 (State of art). Enjoy pre-sharing in ad-
vance only a small key |k| = 256, and |m̂| = |m|.
In return give up provable security.

On the other hand, Shannon’s OTP is more than
just provably secure, as it satisfies the higher criteria
of having perfect secrecy ; that is, no cryptanalysis can
degrade its security below H(m) many bits.

However, the OTP is usually impractical as it re-
quires the communicating parties to exchange keys
that are as large as the size of the messages that
they will be exchanging in the future. This often
implies the necessity to exchange many gigabytes, or
terabytes, of true random bits in advance of the com-
munication, which is too difficult to satisfy with most
application scenarios. In other words, OTP offers the
following trade-off:

Trade-off 2 (OTP). Enjoy H(m)-bit provable secu-
rity, and |m̂| = |m|. In return pre-share in advance
a random pad that is as large as the size of the sum
of all messages that you will be exchanging in the fu-
ture. For example, it could be that |k| > 8 × 1012

(terabytes).

Due to OTP’s impractically, most applications
choose to rather adopt the practically secure (but not
provably) ciphers like ChaCha20 or AES, in order to
avoid the unscalable constraint of having to exchange
large random bits in advance of their communication.

Băhēm offers a unique trade-off in order to save
provable security, while maintaining practicality for
most applications. Specifically:

Trade-off 3 (Băhēm). Enjoy pre-sharing in advance
only a 128-bit key, and a min[H(m),H(k)]-bit prov-
able security. In return |m̂| ≈ 2|m|.

Trade-off 3 is quite interesting as it does not require
excessive planing in advance (as in the OTP case)
with a compromise that is only a polynomial increase
in space, which is highly tolerable in most real world
scenarios, or even unnoticeable.

Common applications, such as instant messaging,
emails, monetary transactions, password databases,
etc, often exchange small enough data that effectively
make the use of Băhēm unnoticeable from an end user
perspective.

The tests in section 4 show that the run-time
difference between Alyal’s Băhēm and OpenSSL’s
ChaCha20 implementations are extremely similar
when encrypting and decrypting a 500 megabytes file,
supporting that Băhēm’s space overhead is negligible
in practice.

2 Proposed Algorithm: Băhēm

Algorithms 1 and 2 show Băhēm’s encryption and de-
cryption by which the process is repeated over every
128-bit blocks of m: m0,m1, . . . ,md |m|

128 e
.

A block-size of 128-bit is adopted in this section
for its implementation simplicity with common hard-
ware. However, it is trivial to adjust the block size to
any other one, including a variable length block size
that is as long as the message itself (which can be sim-
pler for a when Băhēm encryption and decryption is
performed manually by a pen and a paper).

Algorithm 1: Băhēm encryption

input : k,m0,m1, . . .
output: ŝ, (p̂0, m̂0), (p̂1, m̂1), . . .

s← random(128)
ŝ← s + k mod 2128

for b ∈ (0, 1, . . . , d |m|
128 e − 1) do

pb ← random(128)
p̂b ← pb + k mod 2128

m̂b ←mb ⊕ (pb + s mod 2128)

Algorithm 2: Băhēm decryption

input : k, ŝ, (p̂0, m̂0), (p̂1, m̂1), . . .
output: m0,m1, . . .

s← ŝ− k mod 2128

for b ∈ (0, 1, . . . , d |m|
128 e − 1) do

pb ← p̂b − k mod 2128

mb ← m̂b ⊕ (pb + s mod 2128)

2

3 Security Analysis

The Băhēm encryption is a variation of Shannon’s
OTP, the XOR cryptosystem:

m̂b ←mb ⊕ (pb + s mod 2128)︸ ︷︷ ︸
One-time encryption pad

It trivially follows from Shannon’s perfect secrecy
proof of the OTP [4] that Băhēm is secure if its en-
cryption pad maintains its security.

To simplify the analysis, suppose that the size of a
block in Băhēm is 3 bits only, and that the cleartext
block mb is known to the adversary, which implies
that the adversary can trivially know that:

pb + s mod 23 = m̂b ⊕mb

in addition to adversary’s knowledge of the public
variables ŝ and p̂b. More specifically, suppose that
the adversary found that:

0 = ŝ = s + k mod 23

3 = p̂b = pb + k mod 23

5 = m̂b ⊕mb = pb + s mod 23

Then, the question is: will this information reduce
the space from which the key k is chosen from? In
other words, what are the possible values of k that
can lead to the outputs 0, 3 and 5 above? Table 1
visualises this.

Y
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1

X 3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Table 1: Exhaustive unsigned 3-bit addition. For a
given output x+y mod 23, there are 23 many possible
input values of (x,y) ∈ X ×Y that map to x+y mod
23.

As shown in table 1, the total number of horizontal,
or vertical, intersections that simultaneously cross all
of the outputs 0, 3 and 5, remain 23. Meaning, the
total number of values of k that could lead to the
outputs remains 23.

This 3-bit example can be trivially extended by in-
duction to show that the same conclusions hold even

with a 128-bit unsigned addition and any other out-
put numbers than 0, 3 and 5.

Therefore, we can conclude that adversary’s knowl-
edge of the public variables ŝ, p̂b, m̂b and the clear-
text mb, which leads to deducing pb + s mod 2128,
can not reduce the space from which k, s and pb are
sampled.

If k, s and pb are generated by a TRNG, then
any of the 2128 many possiblities are equally likely to
correspond to the actual values of k, s and pb. In
other words:

H(k, s,pb |̂s, p̂b, m̂b,mb) = 128

However, since k could be derived from a pass-
word, such that it looks random, but with an entropy
H(k) ≤ 128, and since finding any of the numbers k,
s and pb deterministically leads to finding the others,
therefore it follows that:

H(k, s,pb |̂s, p̂b, m̂b,mb) = H(k)

The numbers s and pb are generated by a TRNG
by definition, therefore the weakest element in the
chain can only be k.

Since the public variables ŝ, p̂b and m̂b, and the
cleartext mb are exhaustively all of the outputs of
Băhēm that can be accessible to an adversary, and
since they can not reduce Băhēm’s private variables’
space below H(k), therefore no cryptanalysis can re-
duce their entropy below H(k).

Lemma 1 (Secure private values).

H(k, s,pb |̂s, p̂b, m̂b,mb) = H(k)

It is trivially implied from lemma 1 that, since the
private values s and pb maintain an entropy of H(k),
so does their 128-bit summation s + pb mod 2128,
which is Băhēm’s XOR encryption pad. Therefore,
Băhēm’s encryption pad has to be secure as well.

Lemma 2 (Secure encryption pad).

H(s + pb mod 2128 |̂s, p̂b, m̂b) = min[H(mb),H(k)]

Since Băhēm is an XOR cryptosystem, and since its
encryption pad is H(k)-bits secure (lemma 2), there-
fore it necessarily follows by Shannon’s perfect se-
crecy [4] that Băhēm’s encryption is either H(k)-bits
secure, or H(mb)-bits secure, whichever is smaller.

Theorem 1 (Secure encryption).

H(mb |̂s, p̂b, m̂b) = min[H(mb),H(k)]

3

4 Benchmark

This is a benchmark that was performed on a com-
puter with a 3.4GHz Intel Core i5-3570K CPU, 32GB
RAM, 7200 RPM hard disks, Linux 5.17.4-gentoo-
x86-64, OpenSSL 1.1.1n and Alyal v3.

OpenSSL Alyal
ChaCha20 Băhēm

/dev/random file.rand

Encrypt 0.90 secs 2.58 secs 1.38 secs
500MB 1.06 secs 2.60 secs 1.35 secs

1.04 secs 2.58 secs 1.35 secs
Decrypt 0.89 secs 0.82 secs
500MB 1.12 secs 0.87 secs

1.06 secs 0.82 secs

Table 2: Wall-clock run-time comparison between
OpenSSL’s ChaCha20, and Alyal’s Băhēm implemen-
tation with two sources as the TRNG: /dev/random
and file.rand; the latter is simply /dev/random

that was prepared in advance.

Table 2 shows that, while the early Băhēm pro-
totype, Alyal, has a faster decryption run-time than
OpenSSL’s ChaCha20, it has a slower encryption run-
time. However:

1. The differences in run-time are insignificant for
most applications, which proves Băhēm’s practi-
cal utility in the real world.

2. Băhēm’s provable security should arguably jus-
tify waiting the extra seconds, or fractions of sec-
onds in case the TRNG is prepared in advance,
for the 500MB data, specially that many user ap-
plications involve encrypting much smaller data
sizes with unnoticeable time difference

3. Preparing the random bits in advance signifi-
cantly reduces the encryption time as shown with
the file.rand case in table 2, and can be opti-
mised further should it be prepared in memory.

4. Alyal is currently single-threaded despite
Băhēm’s capacity for high parallelism as all
blocks are independent. This gives room for
future versions to be significantly faster.

5 Conclusions

This paper described Băhēm; a provably-secure, yet
practical, symmetric cipher. Băhēmis variation of
Shannon’s OTP, where the one-time pad is securely
derived from a 128-bit pre-shared key, in a way to

solve OTP’s key impracticality of requiring a pre-
shared key that is as large as the sum of all message to
encrypt in the future. The trade-off of Băhēm is prac-
tically quite negligible as confirmed by benchmarks
presented in this paper, which is that the ciphertext
is approximately twice as large as the cleartext.

References

[1] Lov K. Grover. A fast quantum mechanical algo-
rithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, STOC ’96, page 212–219, New
York, NY, USA, 1996. Association for Computing
Machinery.

[2] Daniel Bernstein. ChaCha, a variant of Salsa20.
01 2008.

[3] Joan Daemen and Vincent Rijmen. AES Pro-
posal: Rijndael, 1999.

[4] C. E. Shannon. Communication theory of se-
crecy systems. The Bell System Technical Jour-
nal, 28(4):656–715, 1949.

4

A Implementation Examples

A.1 C Functions

Listings 1 and 2 show example C functions for en-
crypting and decrypting session keys.

Listings 3 and 4 show the same but for encrypt-
ing and decrypting cleartext and ciphertext blocks,
respectively.

In these examples, all encryptions and decryptions
happen in-place whenever possible, so the caller does
not have to allocate separate memory for the out-
put. The only excepton is listing 1, where the unen-
crypted session key is required to encrypt the subse-
quent cleartext blocks. Also, since 128-bit wide CPU
instructions are not common, the examples operate
in 64-bit basis, each time with a different 64-bit part
of the pre-shared and session keys.

Listing 1: Session key encryption function example.

void baheem_session_enc(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *s_enc /* encrypted s */

) {

s_enc[0] = s[0] + k[0];

s_enc[1] = s[1] + k[1];

}

Listing 2: Session key decryption function example.

void baheem_session_dec(

uint64_t *k, /* pre-shared key */

uint64_t *s /* session key */

) {

s[0] -= k[0];

s[1] -= k[1];

}

Listing 3: Block encryption function example.

void baheem_block_enc(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *p, /* pad keys */

uint64_t *m, /* message */

size_t len /* length of m and p */

) {

size_t i;

for (i = 0; i < len; i += 2) {

m[i] ^= p[i] + s[0];

m[i+1] ^= p[i+1] + s[1];

p[i] += k[0];

p[i+1] += k[1];

}

}

Listing 4: Block decryption function example.

void baheem_block_dec(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *p, /* pad keys */

uint64_t *m, /* message */

size_t len /* length of m and p */

) {

size_t i;

for (i = 0; i < len; i += 2) {

p[i] -= k[0];

p[i+1] -= k[1];

m[i] ^= p[i] + s[0];

m[i+1] ^= p[i+1] + s[1];

}

}

A.2 A File Encryption Tool: Alyal

Alyal is an single-threaded implementation to demon-
strate Băhēm’s practical utility with real-world sce-
narios. Internally, Alyal uses the functions in list-
ings 1 to 4.

A.2.1 Installation

git clone \

https://codeberg.org/rajululkahf/alyal

cd alyal

make

make test

A.2.2 Usage

alyal (enc|dec) IN OUT [TRNG]

alyal help

To encrypt a cleartext file a and save it as file b:

alyal enc a b

To decrypt the latter back to its cleartext form and
save it as file c:

alyal dec b c

5

	Introduction
	Proposed Algorithm: Băhēm
	Security Analysis
	Benchmark
	Conclusions
	Implementation Examples
	C Functions
	A File Encryption Tool: Alyal
	Installation
	Usage

