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Update—Ġasaq is not secure at all. I did many
silly mistakes. This paper rightfully got an immediate
rejection rejection from the Journal of Cryptology.

Overview

This paper proposes Ġasaq; a provably secure key
derivation method that, when given access to a true
random number generator (TRNG), allows communi-
cating parties, that have a pre-shared secret password
p, to agree on a secret key k that is indistinguishable
from truly random numbers with a guaranteed en-
tropy of min(H(p), |k|).

Ġasaq’s security guarantees hold even in a post-
quantum world under Grover’s algorithm [1], or even
if it turns out that P = NP [2]. Such strong security
guarantees, that are similar to those of the one-time
pad (OTP), became attractive after the introduction
of Băhēm [3]; a similarly provably secure symmetric
cipher that is strong enough to shift cipher’s security
bottleneck to the key derivation function.

State of art key derivation functions such as the
Password-Based Key Derivation Function (PBKDF)
[4], or even memory-hard variants such as Argon2 [5],
are not provably secure, but rather not fully broken
yet. They do not guarantee against needlessly los-
ing password entropies; that is, the output key could
have an entropy lower than password’s entropy, even
if such entropy is less than key’s bit length. In ad-
dition to assuming that P 6= NP, and, even then,
getting their key space square-rooted under Grover’s
algorithm —none of which are limitations of Ġasaq.

Using such key derivation functions, as the PBKDF
or Argon2, is acceptable with conventional ciphers,
such as ChaCha20 [6] or AES [7], as they, too, suffer
the same limitations, hence none of them are bottle-
necks for the other. Similarly to how a glass door is
not a security bottleneck for a glass house.

However, a question is: why would a people se-
cure their belongings in a glass made structure, to
justify a glass door, when they can use a re-enforced
steel structure at a similar cost? This is where Ġasaq
comes to offer Băhēm the re-enforced steel door that
matches its security.
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Notation

random(n) = (r0, r1, . . . , rn): A sequence of n many
random bits generated by a TRNG.

x = (x0, x1, . . . , x|x|−1): A tuple of |x| many bits.

H(x): Shannon’s entropy of random variable x.

x⊕ y: Bitwise exclusive-or operation between two
variables.

p = (p0, p1, . . . , p|p|−1): An arbitrarily long pre-
shared secret password of |p| many bits. Since
passwords are typed by humans, they often con-
tain redundancies, hence H(p) ≤ |p|.

k = (k0, k1, . . . , k|k|−1): A secret key derived based
on p.

qi = (pi, pi, . . .): A tuple containing the ith bit of
password p repeated |k| many times. In other
words, |qi| = |k| and H(qi) = H(pi) ≤ 1.

ri = random(|k|): A uniformly distributed |k| bits
random umber. There are r0, r1, . . . , r|p|−1 of
such random numbers.

r̂i: Encrypted form of ri that is shared publically.

min(n,m): {
n if n < m

m otherwise
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1 Background

In a previous private meeting between Alice and Bob,
they concluded to use a TRNG to generate 128 ran-
dom bits, and to use them as their pre-shared secret
key. They also agreed to use the Băhēm symmetric
cipher [3]. Further details about this previous meet-
ing can be found in the background section in [3].

However, since then, Alice and Bob found that they
are unable to memorise those 128 true random bits,
not even with mnemonic encodings. Practically, this
made them write the 128 bits in some form of storage,
and carried the storage with them.

While carrying the 128 bits in a small storage de-
vice is much more manageable than carrying ter-
abytes worth of random one-time pad, it was still
not ideal for Alice and Bob.

Their main reasoning is that, if they were to be
captured by an adversary, and found to poses the
128 random bits, then their attempts to deny their
ownership of encrypted data might become harder.
Specially if the adversary found that the 128 bits de-
crypt some files that they possess. They also had
secondary reasons, such as the inconvenience that is
associated with backup recovery plans should the de-
vice be lost.

However, because of the past memories of Alice and
Bob, they could easily memorise odd sentences like:

“The anteater ate steel with his cosmic
buddy; the turbo-charged flying octopus”

While Alice and Bob could not calculate the en-
tropy of that sentence, as they lack knowledge about
the probabilistic language model inside their own
heads, they were nonetheless highly confident that
such a phrase has “high enough” entropy for their
purpose, specially if it allows them to get rid of the
constraint of carrying a password storage device with
them.

However, they found that today’s state-of-art key
derivation methods, such as PBKDF [4], or even
memory-hard variants such as Argon2 [5], are not
provably secure; that is, there might be some crypt-
analysis techniques that could possibly reduce the
entropy of their derived keys. This bothered them,
as using a non-proven key derivation function might
serve as the Achilles’ heel in their provably secure
Băhēm cipher.

Ġasaq, the key derivation method that is proposed
in this paper, solves the Alice and Bob problem
above, by offering a provably secure key derivation
method similar to that of the OTP, or Băhēm, that
is independent to whether quantum computers were
used, or to whether it turned out that P = NP.

2 Proposed Algorithm: Ġasaq

Algorithm 1: Ġasaq key creation

input : p, |k|
output: r̂0, r̂1, . . . , r̂|p|−1,k

k← (0, 0, . . .) a tuple of |k| many zeros
for i ∈ {0, 1, . . . , |p| − 1} do

ri ← random(|k|)
qi ← (pi, pi, . . .), where |qi| = |k|
k← k⊕ ri
r̂i ← ri ⊕ qi

return r̂0, r̂1, . . . , r̂|p|−1,k

Algorithm 2: Ġasaq key retrieval

input : p, r̂0, r̂1, . . . , r̂|p|−1
output: k

k← (0, 0, . . .) a tuple of |k| many zeros
for i ∈ {0, 1, . . . , |p| − 1} do

qi ← (pi, pi, . . .), where |qi| = |k|
ri ← r̂i ⊕ qi

k← k⊕ ri
return k

The key derivation in Ġasaq is in two parts:

Creation. At first, a key k is defined from the input
password p and a one-time pad of secret ran-
dom numbers r0, r1, . . . , r|k|−1. A corresponding
public sequence r̂0, r̂1, . . . , r̂|k|−1 is also created
and shared publicly to allow for retrieving the
key k later by the communicating parties that
know the pre-shared secret password p. The key
k itself is not transmitted, but rather found in-
directly during the retrieval process.

Key creation is shown in Algorithm 1. Ap-
pendix B shows an example implementation in
the C programming language.

Retrieval. Using a public sequence r̂0, r̂1, . . . , r̂|k|−1
and its corresponding pre-shared secret pass-
word p, its corresponding private sequence
r0, r1, . . . , r|k|−1 is retrieved, which is then used
to define the secret key k.

Key retrieval is shown in Algorithm 2. Ap-
pendix B shows an example implementation in
the C programming language.

In other words, if Alice wants to send Bob an en-
crypted message by a key that is derived securely
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from their pre-shared secret password, she will first
send him r̂0, r̂1, . . . , r̂|p|−1 in order to let him securely
retrieve of the key, for as long as he knows the pre-
shared secret password p. This key can then be
used with a provably secure symmetric cipher, such s
Băhēm [3], to encrypt their future messages.

The sequence r̂0, r̂1, . . . , r̂|p|−1 is shareable pub-
licly. That is, Eve seeing it will not reveal to her
her any information about the password. Yet, the
sequence allows Alice and Bob to mutually agree on
a perfectly secure key k based on their pre-shared
password p.

Alice and Bob do not have to exchange the public
sequence r̂0, r̂1, . . . , r̂|p|−1 every time they communi-
cate, as they can simply cache the key k and re-use it
for future communications. They will have to repeat
the creation-retrieval process again only if they lose
the key, or change their password.

3 Security Proof

Definition 3.1. A key derivation system is perfectly
secure if it simultaneously satisfies the following:

Safe public output: Knowledge about the public
output r̂0, r̂1, . . . , r̂|p|−1 must not reveal informa-
tion about the password p or the derived key k.

H(p|̂r0, r̂1, . . . , r̂|p|−1) = H(p)

H(k|̂r0, r̂1, . . . , r̂|p|−1) = min(H(p), |k|)

Maximum key entropy: Entropy of the derived
key k must equate the entropy of the password
p, or the number of key bits |k|, whichever is
smaller.

H(k) = min(H(p), |k|)

Random-looking key: The distribution of bits in k
must be indistinguishable from that of a |k| many
bits of a true random number random(|k|).

3.1 Safe Public Output

Proof. By the definition of Ġasaq, for any password
bit i ∈ {0, 1, . . . , |p| − 1}, r̂i can be viewed as the ci-
phertext of the bitwise exclusive-or operation (XOR)
cryptosystem r̂i ← ri⊕qi where a true random num-
ber ri is encrypted by qi, which is an |k| many bits
repetition of the ith bit of the password p.

Based on the properties of the XOR cryptosys-
tem, which is described in Appendix A, it follows
that, an adversary that observes the public outputs

r̂0, r̂1, . . . , r̂|p|−1, will not be able to gain any in-
formation about the password p. In other words,
H(p|̂r0, r̂1, . . . , r̂|p|−1) = H(p) is guaranteed by the
properties of the XOR cryptosystem.

Additionally, since the key k is defined by XORing
the cleartext random numbers r0, r2, . . . , r|p|−1, and
since information about the password p is required
in order to retrieve those cleartext random numbers
from the public output r̂0, r̂2, . . . , r̂|p|−1, it follows
that knowing the public output does not reduce key’s
entropy below min(H(p), |k|). �

Theorem 3.1. Ġasaq has safe public output.

3.2 Maximum Key Entropy

Proof. Since:

• ri is a true |k| many bits random number by
definition, each of which is guaranteed to satisfy
H(ri) = H(pi) even when the public output r̂i is
revealed, as explained in Appendix A.

• k is the result of XORing |p| many such random
numbers.

• |k| is usually large enough, such as 128 bits, to
have near-zero probability of collisions between
the ri true numbers.

For example, in order to have birthday collision
probability of 10−18 with 128 bit random num-
bers, one would have to generate 2.6×1010 many
such 128 random bits [8]. Practically, it is trivial
to set |k| to be large enough so that such birth-
day collisions never happen in practice, while
still retaining a usable cryptographic system.

Then it follows that:

H(k) =

{
H(p0) + H(p1) + . . . if H(p) < |k| − ε
|k| − ε otherwise

where ε is information loss due to the collisions that
may arise between |p| many |k| long random bits.
Since |k| is usually large enough, ε ≈ 0. �

Theorem 3.2. Ġasaq has maximum key entropy.

3.3 Random-looking Key

Proof. Since the key k is defined by XORing true
random numbers r0, r1, . . . , , r|p|−1, it follows by the
properties of the XOR cryptosystem that k is indis-
tinguishable from a true random number. �

Theorem 3.3. Ġasaq’s keys are indistinguishable
from true random numbers.
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4 Implementation Example

4.1 An Early Prototype: Alyal

Alyal is an early single-threaded prototype implemen-
tation for securely encrypting files. It uses Ġasaq to
derive keys, which are then used to encrypt and de-
crypt files by the Băhēm cipher.

Alyal assumes that |k| = 128 bits, and attaches the
public random bits r̂0, r̂1, . . . , r̂|p|−1 along the cipher-

text of every file that it encrypts. Because of Ġasaq’s
and Băhēm’s provable security that is very similar to
that of the OTP, |k| = 128 is more than enough, even
for a post-quantum world, or even if P = NP.

4.1.1 Installation and Usage

> git clone \

https://codeberg.org/rajululkahf/alyal

> cd alyal

> make

> dd bs=1MB count=500 \

if=/dev/zero of=test.txt

> ./alyal dkenc test.txt test.enc

> ./alyal dkdec test.enc test.enc.txt

> shasum *

4.1.2 Benchmark

Table 1 shows an early benchmark that was per-
formed on a machine with a 3.4GHz Intel Core i5-
3570K CPU, 32GB RAM, 7200 RPM hard disks and
Linux 5.17.1-gentoo-x86-64.

Alyal Alyal

Raw key Ġasaq key Difference
Encrypt 3.84 secs 3.95 secs -0.11 secs
500MB 4.29 secs 4.40 secs -0.11 secs

4.23 secs 4.34 secs -0.10 secs
Decrypt 0.66 secs 0.67 secs -0.01 secs
500MB 0.82 secs 0.82 secs 0.00 secs

0.82 secs 0.83 secs -0.01 secs

Table 1: Wall-clock run-time comparison between
Alyal’s repeated file encryptions. Raw key is when
Alyal was given a 128 bit key directly. Ġasaq is when
Ġasaq was used to derive a key from a password.

Table 1 shows that Ġasaq’s key creation and re-
trieval overhead is negligible for most applications,
even without caching.

5 Conclusion

This paper presented Ġasaq, a provably secure key
derivation that guarantees that no cryptanalysis can
degrade its security below min(H(p), |k|) many en-
tropy bits with properties identical to that of the
OTP, and a negligible overhead for most applications.
If Ġasaq’s output is cached, then it has no overhead.

An early implementation of Ġasaq is also released
alongside this paper to demonstrate its applicability
for real world scenarios, even when Ġasaq’s output is
not cached.

Future work can research provably-secure memory-
hard variations of Ġasaq-based key derivation meth-
ods.
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A XOR Cryptosystem Review

Since Ġasaq makes frequent use of the XOR cryp-
tosystem, it makes sense to introduce some of its
properties first.

Let (x, r) ∈ {0, 1}2 be a pair of independent ran-
dom variables, with Pr(r = 0) = 2−1, used in the
cryptosystem x̂← x⊕ r, where x̂ is the ciphertext.

If the adversary finds the public information that
x̂ = 0, then she can conclude that x = r and deduce
the following about the probability Pr(x = 0|x = r):

=
Pr(x = 0) Pr(x = r|x = 0)

Pr(x = r)

=
Pr(x = 0) Pr(r = 0)

Pr(x = 0) Pr(r = 0) + Pr(x = 1) Pr(r = 1)

=
Pr(x = 0)��2−1

Pr(x = 0)��2−1 + Pr(x = 1)��2−1

=
Pr(x = 0)

Pr(x = 0) + Pr(x = 1)

=
Pr(x = 0)

�����Pr(x = 0) + (1−�����Pr(x = 0))

= Pr(x = 0)

Likewise, the following can be deduced about the
probability Pr(r = 0|x = r):

=
Pr(r = 0) Pr(x = r|r = 0)

Pr(x = r)

=
Pr(r = 0) Pr(x = 0)

Pr(x = 0) Pr(r = 0) + Pr(x = 1) Pr(r = 1)

=
��2−1 Pr(x = 0)

Pr(x = 0)��2−1 + Pr(x = 1)��2−1

=
Pr(x = 0)

Pr(x = 0) + Pr(x = 1)

=
Pr(x = 0)

�����Pr(x = 0) + (1−�����Pr(x = 0))

= Pr(x = 0)

The same also applies if x̂ = 1, by which Pr(x =
0|x 6= r) = Pr(r = 0|x 6= r) = Pr(x = 0).

If r was the encryption key, and x was the cleartext,
then Pr(x = 0|x = r) = Pr(x = 0) implies that
the cryptosystem system has perfect secrecy, as the
adversary gains no information about the cleartext
by knowing the ciphertext x̂. This can be expressed

by using the information gain measure:

IG(x|x̂ = 0)

= H(x)−H(x|x̂ = 0)

=


Pr(x = 0) log2(Pr(x = 0)−1)

+(1− Pr(x = 0)) log2((1− Pr(x = 0))−1)

−Pr(x = 0) log2(Pr(x = 0)−1)

−(1− Pr(x = 0)) log2((1− Pr(x = 0))−1)


= 0

On the other hand, if x was the encryption key,
and r was the cleartext, then Pr(r = 0|x = r) =
Pr(x = 0) implies that the cryptosystem system does
not have perfect secrecy, as the adversary is able to
gain information about the cleartext by knowing the
ciphertext x̂. The following quantifies the number of
information bits that the adversary gains about the
cleartext in this scenario from the ciphertext:

IG(r|x̂ = 0)

= H(r)−H(r|x̂ = 0)

=


2−1 log2(2)

+(1− 2−1) log2((1− 2−1)−1)

−Pr(x = 0) log2(Pr(x = 0)−1)

−(1− Pr(x = 0)) log2((1− Pr(x = 0))−1)



=

 1

−Pr(x = 0) log2(Pr(x = 0)−1)

−(1− Pr(x = 0)) log2((1− Pr(x = 0))−1)


= 1−H(x)

In other words, IG(r|x̂ = 0) = 1−H(x) means that
the information about x is preserved, and everything
else is lost to the adversary. This also implies that
H(r) = H(x).

For any i ∈ {0, 1, . . . , |p| − 1}, the reason behind
Ġasaq’s use of the cryptosystem r̂i ← ri ⊕ qi is not
to preserve all information about ri, but rather to
ensure that H(ri) = H(qi) = H(pi), while having ri
look indistinguishable from any |k|many bits number
that is generated from a TRNG.
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B Examples in C

The following is a Ġasaq key creation example in C.
This is an example to aid in explaining Algorithm 1;
not fit for production.

void ghasaq_make_key(

char *p, /* password input */

FILE *trng, /* TRNG stream input */

FILE *ret, /* retrieval bits output */

uint64_t *k, /* 128-bit key output */

) {

k[0] = 0;

k[1] = 0;

int i, j;

uint64_t r[2];

for (i = 0; p[i] != ’\n’; i++) {

for (i = 1; i <= 128; i <<= 1) {

fread(r, 16, 1, trng);

k[0] ^= r[0];

k[1] ^= r[1];

if (p[i] & i) {

r[0] ^= 0xffffffffffffffff;

r[1] ^= 0xffffffffffffffff;

}

fwrite(r, 16, 1, ret);

}

}

}

The following is a key retrieval example in C. This
is an example to aid in explaining Algorithm 2; not
fit for production.

void ghasaq_get_key(

char *p, /* password input */

FILE *ret, /* retrieval bits input */

uint64_t *k, /* 128-bit key output */

) {

k[0] = 0;

k[1] = 0;

int i, j;

uint64_t r[2];

for (i = 0; p[i] != ’\n’; i++) {

for (i = 1; i <= 128; i <<= 1) {

fread(r, 16, 1, ret);

if (p[i] & i) {

r[0] ^= 0xffffffffffffffff;

r[1] ^= 0xffffffffffffffff;

}

k[0] ^= r[0];

k[1] ^= r[1];

}

}

}
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