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Fresh fruits and vegetables typically have a limited shelf life due to their high moisture content and perishable nature. 

Notably, long global import and export supply chains can lead to an increased risk of food loss. The main underlying drivers 

for such food loss are air temperature, relative humidity, but also the ripening gases influenced by the product's postharvest 

physiology. These factors can lead to quality variation, over-ripening, or microbial decay. Other factors that can cause food 

loss include supply chain procedures, such as the lack of transparency (i.e., no cold chain or quality monitoring) or 

unfavorable product inventory management. Optimizing supply chains to minimize postharvest food loss is challenging, as 

a multitude of individual measures can be taken. A reason is that available strategies work on different food loss drivers, 

which vary between products and supply chains. Stakeholders, therefore, often do not know where to start. Here we propose 

a comprehensive collection of 30+ measures for shelf-life prolongation of fresh fruit and vegetables across the food supply 

chain. This experience-based roadmap was constructed based on our close collaboration with different cold chain 

stakeholders. The presented 30+ solutions address inefficiencies during storage, packaging, or transport processes by 

distinguishing hygrothermal food loss drivers. Examples are (1) the adaption of an optimal storage temperature to prevent 

over-ripening but also chilling injuries; (2) improved packaging ventilation to ensure cooling efficiency and appropriate 

humidity conditions around the products; or (3) product-related solutions, for instance, by maintaining specific storage or 

packaging gas composition, acting on the commodities' unique physiology to prolong its shelf life. Furthermore, we included 

measures for supply chain monitoring or specifically at the retail stage. The easy-to-use solution roadmap is outlined for 

fresh produce suppliers, distributors, and retailers to accelerate these stakeholders' decision-making and actions and 

eventually combat postharvest losses. 
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1 Introduction 

Fresh fruits and vegetables are a source of essential nutrients and fibers in the human diet. However, their limited shelf 

life and high perishability lead to an increased risk for food loss, especially along global food chains. Worldwide, about 20% 

to 50% of all produced fruits and vegetables are lost or wasted along the supply chain before they reach the consumer stage 

[1]. Causes for spoiled produce are improper postharvest handling, cold chain mismanagement, and non-optimal packaging, 

amongst others [2]. Additionally, complex global chains with many engaged stakeholders are susceptible to disruption by 

sudden events, such as delayed operation processes, extreme weather conditions, or for instance, consequences of the current 

COVID-19 pandemic [3]. As food loss and waste have a high socio-economic impact on food security and carbon emission 

globally, this topic is of particular concern [4]. 

Many recent studies have discussed the reasons for postharvest food loss and how to reduce it [2], [5], [6]. Previously it was 

described to categorize causes and solutions for food loss and waste on micro-, meso- and macro-levels [7], [8]. Measures 

tackling the latter include systemic factors usually influenced by governments and policies. Meso-level solutions are fostered 

by collective actions, such as agreements on good practices, close interaction between stakeholders, or the promotion of 

efficient food chains. Micro-level solutions are typically processes or technologies for packaging, storage, and transport that 

individual actors along the supply chain implement. This study will focus on micro-and meso-level solutions, which actors 

can take downstream of the supply chain (i.e., transporters, suppliers, retailers), excluding the consumer stage. 

Today, a multitude of available solutions to tackle food loss are present [9]. However, specific measures are often either 

discussed in isolation or tailored to particular stages or the fresh produce supply chain. It is challenging for stakeholders to 

identify which measures are available and decide which actions are optimal to take. This is influenced by the fact that each 

chain varies due to product type, origin, and specific supply chain standards and protocols. Besides, the product quality is 

not only affected by preharvest and climate fluctuations, but it is also vulnerable to specific food loss drivers (i.e., 

temperature, humidity, ripening gases). Consequently, classifying food loss solutions based on those drivers can help to 

accelerate identifying appropriate measures. 

Here, we present a selection of actions for product suppliers, distributors, and retailers to minimize postharvest loss of fresh 

produce. First, we discuss the different drivers of fruit and vegetable quality deterioration and antagonizing methods. 

Second, we address additional categories, including the retailer's operation system and supply chain monitoring leading to 

food spoilage favoring conditions. Based on each of these categories, we propose a roadmap of 30+ individual solutions that 

increase the shelf life of fresh produce. Finally, we discuss how these measures fit different product types and supply chain 

scenarios. 
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2 Food loss drivers along the supply chain and possible antagonizing solutions 

 Temperature abuse in the cold chain 

It is well known that temperature is the key driver of postharvest losses. The main reasons are temperature-dependent 

processes, such as respiration or transpiration leading to over-ripening and senescence, but also the growth of pathogenic 

microbes [10]. Therefore, it is crucial to continuously maintain an optimal temperature range with proper ventilation along 

the whole supply chain to minimize or decelerate those undesirable processes [11]. It should be ensured that cooling is 

implemented as soon as possible after harvest. Also, the precooling technology needs to be optimized for each commodity to 

prevent damage through temperature shocks [12]. Where access to electricity and refrigeration is lacking, low-energy cooling 

systems (e.g., evaporative or solar-driven coolers) are possible options for short-term cold storage [13], [14]. On the other 

hand, temperature control is also essential to prevent chilling or freezing injuries of cold-sensitive products typically with 

(sub)tropical origin [10]. 

 Low humidity and increased moisture loss 

Transpiration-induced water loss is de facto a loss in marketable weight and consequently leads to quality reduction through 

symptoms including wilting, shriveling, or softening. Different fresh produces (fruits, tubers, roots, leafy vegetables) show 

a wide range of susceptibility to transpiration due to morphological and anatomical variation, including surface area, water 

content, or skin permeability [15], [16]. For most fresh produce, humidity in the storage atmosphere or packaging headspace 

should typically be maintained high (>90%). Nevertheless, packaging and storage specifications must be adjusted separately 

for each product to achieve optimal quality. Next to traditional plastic packaging (e.g., trays, bags, foils), several recent and 

more sustainable solutions are available for enhancing a high humidity environment around the products. Examples are 

biodegradable polymers, (edible) coatings, and humidifying systems [17]–[21]. Furthermore, it should be noted that for 

certain products, including roots or tubers, postharvest washing steps can significantly reduce shelf life by removing natural 

protective layers (minimizing moisture loss) or by increasing the risk of microbial infection by contaminated water [22], [23]. 

 High humidity and related condensation and microbial decay  

Another cause of food loss is postharvest diseases induced by various microbial pathogens, including fungi and bacteria. 

These organisms mostly show advanced growth under moist and warm conditions [24]. Elevated humidity levels or the 

presence of tiny water droplets from condensates favors the germination and growth of pathogenic fungal spores. 

Temperature fluctuations in the cold chain can lead to such condensation on the fruit's surface or packaging films [25]. It 

is, therefore, crucial to optimize packaging for each product to control moisture and minimize condensation films. This can 

be achieved by optimal ventilated packaging (positions, size, amount of ventilation holes) [26], active or modified atmosphere 

packaging [27], humidity regulating trays [28], [29], or moisture absorbers in the packaging [30]. 

 Ripening gases accelerating over-ripening and senescence  

Different species and cultivars have a unique postharvest metabolism that influences the onset and duration of ripening 

and decay processes. Climacteric fruits (e.g., mango, avocado, apple, avocado), which continue to ripen after harvest, are of 

specific concern since their postharvest shelf life is often short [31]. After harvest, these fruits produce the plant hormone 

ethylene, which influences their ripening and senescence reactions but also of other surrounding horticultural products. 

Other ripening gases, such as O2 or CO2, in the product's surrounding atmosphere additionally influence its respiration rate 

and related shelf life. Suitable postharvest technologies, such as controlled atmosphere storage or active packaging, modify 

the surrounding gas composition to maintain the product's freshness longer [16], [32], [33]. Furthermore, ethylene 

absorption, prevention of mixed loaded cargo, and well-ventilated storage and transport can help control and slow down 

ethylene-related processes [34]–[36]. 

 

3 Current strategies and trends to optimize supply chain operations 

In addition to the main underlying food loss drivers, supply chain protocols and product standards influence food loss and 

waste accumulation. In the following, we discuss relevant improvements for individual supply chain operations. 

 Adequate quality and packaging standards 

While quality standards help maintain product uniformity and thereby reduce food loss during long supply chains, they can 

also induce food loss due to "imperfect" and out-sorted products [37]. Thus, to decrease this avoidable loss, the possibility of 

purchasing products with non-conform size, shape, or increased maturity should be encouraged. Recent studies have shown 

that consumers are willing to buy such products when discounted [38], [39]. Another option is dynamic pricing for different 

product qualities incentivizing customers to buy not only perfect products without any blemishes [40]. Furthermore, 

communication in stores helps to improve the perception of suboptimal food and motivation for purchase [41]. Product labels 

should inform customers clearly, such as "best-before" instead of "sell-by" dates which are usually misleading [42]. In 

addition, information on the product can also be used to inform the customer about how food loss is currently prevented. An 

example is the required use of packaging for imported products with long transport routes [43]. Nevertheless, recyclable 

and reusable packaging units should be preferred to reduce greenhouse gas emissions, especially for domestic products. 
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 Improved monitoring to identify temperature abuse and food loss hotspots  

Various incidents, including power cuts, weather, or cooling delays, can cause interruptions in the cold chain leading to 

accelerated decay and eventually food loss. To close these gaps, monitoring air temperature and other environmental factors 

(relative humidity or ripening gases) help identify weak points and optimize cold chains [44]. Today, several sensor 

technologies, including (hygro)thermal loggers or Time-Temperature Integrators (TTI), are currently available for sensing 

conditions of packed or transported products [45]–[47]. Additionally, shelf life models and digital twins of fruits and 

vegetables connected to real-time sensor data can predict the product quality evolution until the retailer [48]–[50]. By the 

use of this information, product inventory management can be improved to first sell products with a reduced shelf life, so 

by implementing "first-expired-first-out" (FEFO) instead of the "first-in-first-out" (FIFO) system [40], [46]. Next to 

monitoring environmental conditions, measurements of fruit quality at different stages along the supply chain (e.g., by 

hyperspectral imaging) can further help implement a FEFO inventory system. Finally, it is required to measure food loss 

and waste from farm to fork transparently. By linking product quality and loss data, it is possible to identify food loss 

hotspots, enabling optimal reduction intervention. Hence, transparency along the supply chain through data collection and 

sharing amongst stakeholders is needed, and consequently, communication technologies and close collaborations through 

effective partnerships reduce postharvest losses due to improved structural efficiencies [2], [51]. Thus, investments in new 

technologies for intelligent labels logistics, such as gas sensors or remote quality monitoring, can significantly accelerate 

the retailer's food loss impacts [45], [52], [53]. 

 

4 Specific solutions for reducing food loss from farm to retail 

In the following, we present the solution roadmap to help reduce food loss at different stages in the supply chain (Figure 1). 

The proposed solutions antagonize specific food loss drivers (i.e., temperature, humidity, ripening gases) (section 2) or 

inefficiencies in the retailer's operation system (i.e., standards, labels, inventory management) (section 3.1). In addition, we 

list actions for plastic reduction, supply chain monitoring processes (i.e., cold chain, product quality, food loss) that improve 

problem identification, as well as transparency and communication between stakeholders (section 3.2). In the subsequent 

Table 1, the solutions are outlined together with relevant references. 
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Figure 1. Food loss and waste-reducing strategies mapped for different drivers and grouped for several stages along the postharvest supply chain of fresh 

produce. Abbreviations: SC, Supply chain; GPS, Global positioning system; FEFO, "first-expired-first-out"; FIFO, "first-in-first-out"; PR, Public relations. 

 

Table 1. Postharvest measures to reduce food loss and waste along the supply chain (SC) of fresh produce. 

Category/ 

driver 

Impact Solution SC 

segment 

References 

T
e
m

p
e
ra

tu
re

 

 

 

 

 

 

 

 

 

 

 

 

Increased 

temperature-

related shelf life 

Precooling directly after harvest or near the field (especially relevant for very perishable products, such as 

berries). e.g., refrigerated trailers, cool rooms, etc. 

Precooling  [54] 

Faster precooling with forced-air-, hydro- or vacuum cooling instead of room cooling Precooling  [12], [55] 

Better ventilated (reusable) packaging container for homogenous cooling  

e.g., corrugated fiber boxes with ventilation holes, containers from " IFCO Systems" 

Packaging [56]–[63] 

Improved packaging system/ insulation for better temperature control  

e.g., phase change material for insulated containers 

Packaging [64], [65] 

Faster shipping so shorter transit time and food precooling inside refrigerated containers instead of a-

priori precooling (but in most refrigerated trailers not yet feasible) 

Transport  [54] 

Rerouting of shipments, selection of less & only optimal transport companies  

more stringent rules on thermal target conditions, mandatory monitoring of hygrothermal conditions 

Transport [48] 

Refrigerated transport (no interruptions in the cold chain) 

e.g., from field to the packing house (before precooling) or from distribution center to the retail 

Transport [48], [50] 

Adaption of target temperature to the optimal range for maximizing shelf life  

e.g., by reducing the target temperature, preventing chilling-inducing storage temperatures 

Transport 

&  

Storage 

[16], [33] 

Refrigerated (overnight) storage or display 

e.g., instead of leaving fresh produce overnight on the shelf  

Retail  [50], [66] 

H
u

m
id

it

y
 

 

Reduced  

microbial 

induced decay 

Specially designed packaging to decrease condensation or contamination risk  

e.g., humidity regulating trays, the addition of absorbent pads, improved ventilation, packaging material 

with incorporated antimicrobial compounds 

Packaging [26], [28]–[30], 

[67] 
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Reduced  

mass loss 

Packaging for physical protection against vibrations and bruise damages 

e.g., package design with improved mechanical strength, prevention of over-loading 

Packaging [26] 

Reduced mass 

loss & reduced 

plastic usage 

(edible) Coatings  

e.g., coating matrix from protein, lipid (oil, waxes), polysaccharides or composites 

Packaging [68], [69] 

Reduced plastic 

usage 

Biodegradable or bio-based packaging material  

e.g., polylactic acid, starch, cellulose  

Packaging [18], [20], [70] 

Reduced  

plastic usage 

Bulk packaging of entire crates or pallets instead of single product packaging (shrink wrap, flow pack, 

etc.), e.g., foil bags 

Packaging [71] 

Reduced  

mass loss 

Store and transport at higher humidity using humidifiers 

e.g., ultrasonic dry misting that provides a higher humidity while also evaporative cooling the product 

Whole SC [19], [21] 

Reduced 

microbial 

induced decay 

Controlled temperature ramp-up at low humidity to reduce condensation when shifting products from 

refrigerated conditions to ambient conditions (e.g., at the retailer stores) 

e.g., by a portable or desiccant dehumidifier 

Transport 

& 

distribution  

 

Reduced mass 

loss & plastic 

usage 

Improved packaging or display unit to minimize transpiration induced-mass loss 

e.g., use of reusable closable boxes or lids that match package containers instead of "open"/unpacked 

display, use of waxed cartons or moist paper liners reducing product moisture evaporation 

Retail [26], [57], [72] 

R
ip

e
n

in
g
 g

a
se

s 

Reduced mass 

loss & slower 

ripening/decay 

Active or equilibrium modified atmosphere packaging  Packaging [73]–[75] 

Slower ripening/ 

decay 

 

Additives or treatments for ethylene absorption or blocking  

e.g., KMnO4, 1-Methylcyclopropen (1-MCP) 

Packaging 

& 

Transport 

[34]–[36] 

Shipping containers with controlled atmosphere (for long/oversea transport routes) Transport [16], [33] 

Prevention of mixed loads with ethylene producing/ climacteric fruits  Transport [16] 

 R
e
ta

i

l 

s
y
st

e

m
 

o
p

e
ra

ti
o
n

s  Adaption of quality standards and promotion of "sub-optimal" produce Retail &  

Packaging 

[37] 
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Consumer 

awareness 

 

Appropriate product labeling  

e.g., "sell-by" instead of "best-by" 

Retail &  

Packaging 

[2] 

PR campaign demonstrating the need for plastic packaging, explaining how it helps to save food by its 

protective function (reduction of moisture loss and shriveling, softening, or bruise symptoms) 

 

Retail &  

Packaging 

[76] 

Print informative messages on packaging  

e.g., " I help to keep you more fresh", "biodegradable packaging", "reusable packaging" 

Packaging   

Better inform customers about food loss reduction strategies  

e.g., label, sticker, sustainability score, "less food loss by…" 

Packaging   

FEFO instead of 

FIFO 

Discount for products with lower quality and shorter shelf life, dynamic pricing system Retail [40] 

Awareness Food waste limit or reduction target and donation of saved food to food banks Retail [77] 

M
o
n

it
o
ri

n
g
 &

 S
e
n

si
n

g
 

 

 

 

 

Increased 

transparency 

Time-Temperature Integrators, gas- or biosensors for quality monitoring Logistics [45], [46] 

Hygrothermal and GPS sensors, extended monitoring range "from-farm-to-retail Logistics [48] 

Inventory management with FEFO instead of FIFO  

e.g., based on automated quality rating, digital twins, etc. 

Logistics [46], [50], [78], 

[79] 

Improvement of the sensor handling protocol & communication, completeness of the metadata Logistics  [48] 

Automated visual quality assessments and product sorting  

e.g., computer vision, hyperspectral imaging 

SC 

checkpoints 

[80]–[82] 

Mandatory monitoring and measurements of food losses across the SC Whole SC   

Abbreviations: SC, supply chain; CC, cold chain; GPS, geographical position system; FEFO, "first-expired-first-out"; FIFO, "first-in-first-out". 
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5 Decision-making strategies for solution evaluation and identification of 

optimal measures  

 Identification of product-specific solutions  

Since fresh products derive from various plant tissue at different stages in development, they need specific packaging and 

storage adjustments to counteract related decay drivers. In Figure 2, product types or commodities are mapped based on 

the different causes of food loss, including (1) respiration-related decay (temperature-induced); (2) ethylene-related over-

ripening (induced by temperature or ripening gases); (3) transpiration-related moisture loss (humidity-induced); and (4) 

pathogen-related decay (humidity-induced). For each category, we proposed specific solutions. Products that are mapped in 

overlapped areas are susceptible to more than one food loss driver and should especially be considered. These include young 

and immature plant parts, such as sprouts (e.g., asparagus), seeds (e.g., beans), or inflorescence (e.g., broccoli). Ethylene-

sensitive products are also mapped to this area. These products show increased senescence or discoloration symptoms when 

stored with ethylene-producing products (i.e., climacteric fruits) [16]. Both optimized packaging and storage methods can 

help reduce those symptoms. Small products, including berries, are of specific concern as they are prone to condensation 

and microbial decay. This is due to their large surface area to volume ratio, which increases the risk of transpiration and 

condensation occurrences. Leafy vegetables (e.g., salads, herbs) also having a large tissue area are prone to transpiration-

induced wilting. Various packaging and refrigerated storage at retail help reduce symptoms due to moisture loss. Most 

"real" and particularly climacteric fruits show increased respiration, ripening, and eventually senescence after they are 

harvested. Ethylene scrubbers in packaging or during storage decrease those autocatalytic processes [34]–[36]. 

 

 

Figure 2. Plant product groups mapped to different physiological (respiration-, transpiration-, ethylene-related) 

or pathological food loss categories and related symptoms (grey shaded) plus antagonizing postharvest 

solutions (blue shaded). Abbreviations: F&V, fruits and vegetables; MAP, modified atmosphere packaging. 

 

 Trade-offs between the value of food loss and the impact of reduction solutions  

Several trade-offs arise during the decision-making of implementing food loss and waste reduction strategies. Examples are 

the (short term) costs for new measures versus the possible increased revenues of saved food that usually only occur later 

[83]. Furthermore, when new standards are established, their environmental impact must not outweigh the emissions of 

the accumulated food loss. For example, refrigeration, transport, or storage solutions are high energy-intensive. In contrast, 

the packaging is typically overestimated in relation to the whole supply chain's emissions [84]. Nevertheless, it is often 

challenging to precisely quantify the total carbon footprint along the supply chain, and studies comparing the environmental 

impact of different food loss solutions are generally scarce [9]. Therefore, life cycle analyses (LCA) of the whole value chain 

and each operation are helpful in receiving the relevant information for decision-making processes [5], [85]. For instance, 

an LCA of the entire value chain driven by food loss compared to that caused by food loss reduction strategies would provide 

valuable insight to identify the trade-offs and optimal measures. That way, we could determine how different criteria score 

Food loss
Symptom

heat 
production

Respiration-related
(over)ripening, decay

Pathogen-related
microbial decay 

(mold, bacterial growth)

%

Transpiration-related
shriveling, softening, mass loss

%

increased respiration 
with increased temperature, 

maturity & storage time 

carrots

young/immature 
plant tissue: 

sprouts, seeds

increased transpiration
due to high skin mass transfer - / 

transpiration coefficient, 
surface/volume ratio

Inflorescence
broccoli,

cauliflower

bitter gourd,
cucumber,
eggplant,
pumpkin

medium to high 
ethylene producing,

climacteric fruits

apple, pear,
apricot, quince,
nectarine, peach, 
plums, jackfruit

melon, avocado, 
banana, mango,
tomato, papaya

chilling sensitivity

asparagus, beans

ethylene 
sensitive produce

chilling sensitivity

increased 
ripening/

decay, 
discoloration

leafy vegetables 
lettuce, radicchio,
cabbage, leek,
kale, collard
spinach , herbs

citrus fruits,
pomegranate

small fruits: grapes 
soft fruits: berries 

fresh-cut F&V

Increased condensation 
susceptibility to pest 

infestation

roots and tubers

auto-
catalytic

C2H4

bulbs, roots
celery, 
celeriac,
kohlrabi,
beet

Solution: Cooling
▪ cool rooms
▪ precooling 
▪ refrigerated transport
▪ evaporative cooling 

• dry misting, 
• charcoal/brick coolers

Solution: specialized 
storage/packaging
▪ active packaging

• ethylene scrubbing
• O2/CO2 absorption

▪ MAP
▪ controlled atmosphere

Solution: Packaging/high humidity
▪ plastic/biodegradable 
▪ bulk/shrink-wrap/flow-pack
▪ coating
▪ humidifiers (dry misting)

Solution: Packaging
▪ ventilated packaging
▪ MAP
▪ active packaging

• moisture absorption
• humidity regulating
• antimicrobial compounds

Ethylene-related
(over)ripening, decay
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in saving food, reducing the environmental footprint as well as saving (energy) costs. In conclusion, the measurement of 

food loss cannot be circumvented when evaluating these trade-offs in order to gain all the required information. 

 

6 Conclusions 

This study composed a collection of food loss and waste reduction strategies for postharvest supply chains of fruits and 

vegetables. We addressed the main food loss drivers, as well as unfavorable supply chain processes leading to inefficiencies 

and spoilage. We presented the results in a roadmap list of 30+ individual measures for suppliers, distributors, and retailers 

to improve different supply chain segments. These 30+ measures included conditions during packing and precooling, 

transport, storage and retail. This available easy-to-use solution roadmap will support the decision-making and actions of 

stakeholders. It provides them with an overview and a starting point for optimizing their postharvest supply chain and 

minimizing food loss. 
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