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Abstract 10 

A new mechanism is proposed to elucidate recent experimental observations of a transition from slow, 11 

stable through-thickness cracking to unstable growth in the 90° ply of a cross-ply laminate as the ply 12 

thickness increases above 40 µm for typical carbon fibre reinforced polymer composites. Herein we have 13 

identified that the transition is attributed to a rising crack-growth resistance (or R-curve) of transverse 14 

matrix cracks with increasing size. This new explanation is substantiated by obtaining the R-curve using a 15 

high-fidelity micromechanical model, followed by employing fracture mechanics principles to predict the 16 

progression and stability of through-thickness microcracking in a ply. The benefit of this new approach is 17 

that only one simulation is required to generate the R-curve, which can then be employed to predict the 18 

crack-growth behaviour for any ply thickness, instead of requiring separate simulations for each ply 19 

thickness, thereby reducing the computational burden considerably. This is particularly valuable for 20 

parametric studies to investigate the dependence on various material properties and computationally 21 

efficient analysis of large-scale structures. As illustrative examples, the dependence on matrix toughness 22 

and on volume fraction was investigated and simple linear relationships were identified for the steady-state 23 

value of crack-growth resistance. Such relationships can further reduce the computational burden, 24 

particularly when the relevant material properties may not be available from direct measurement, but can 25 

be reasonably estimated, as for cryogenic applications.  26 
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1. Introduction 31 

Ply cracking, where transverse matrix cracks extend through the full thickness of a ply, is often the 32 

most critical initial failure mode in fibre composite laminates. This form of cracking is a major concern for 33 

composite vessels used for storing liquid or gaseous fuels, such as hydrogen and oxygen, because ply cracks 34 

can link up to form interconnected channels that cause fuel leaks and degrade the structural safety of the 35 

vessels. The pioneering work of Bailey and co-workers [1-3], as discussed in recent reviews [4, 5], 36 

identified two régimes for the thickness dependence of the ply cracking strain, or, equivalently, of the in-37 

situ ply strength [6]. For “thin” plies, the ply cracking strain was found (experimentally and theoretically) 38 

to decrease with increasing the ply thickness, whereas for “thick” plies, the ply cracking strain is 39 

independent of the ply thickness. The transition from thin to thick régime was found to occur at a ply 40 

thickness of around 0.5 mm in cross-ply laminates, for both glass fibres (GFRP) and carbon fibres (CFRP). 41 

 Recent research on matrix cracking of thin-ply composites, however, has highlighted a gap in our 42 

understanding of the growth behaviour of through-thickness matrix cracks in plies of varying thickness. A 43 

through-thickness matrix crack is defined by the coalescence of at least two adjacent debondings between 44 

the fibre and matrix [7]. Slow and stable through-thickness matrix cracking was observed in laminate 45 

consisting of thin-plies of 40 𝜇𝑚 in thickness, whereas unstable growth was found to occur in laminates 46 

with ply thickness of 80 𝜇𝑚 or 160 𝜇𝑚, as reported by Saito et al.[7]. These experimental observations 47 

have been closely reproduced in a high-fidelity micromechanical model by Arteiro et al. [8], whose work 48 

incorporates several recent developments in modelling of composites, relative to earlier micromechanical 49 

models [9-13], including an improved constitutive modelling for the matrix phase [14, 15]; see [16-20] for 50 

related recent work and reviews of multi-scale analysis of composites. These recent findings follow the 51 

development of tow-spreading technology, leading to commercially available ply thicknesses down to 52 

15 𝜇𝑚 [21, 22]. Ultra-thin plies offer benefits both because of the ability to use a larger number of ply 53 

orientations, thereby expanding the laminate design space for achieving an optimal lay-up, and because of 54 

improvements in mechanical properties, e.g. a 10% increase in the ultimate strength of quasi-isotropic 55 

CFRP laminates constructed from 40 𝜇𝑚 plies [23], as well as improved notched tensile strength and 56 

fatigue resistance [21]. These benefits are of particular interest for cryogenic applications such as linerless 57 

propellant tanks for reusable launch vehicles and fuel storage for deep space explorations, where resistance 58 

to ply cracking due to residual thermal stresses, thermal-mechanical cycling, and associated anti-leakage 59 

properties are crucially required [24-26]. 60 

The stable through-thickness growth at very small ply thickness, transitioning to unstable growth 61 

with increasing ply (or layer) thickness as revealed by experimental observations and computational model 62 



3 
 

predictions are not accounted for by the currently available theoretical models that tend to focus on the 63 

tunnelling mode of a pre-existing full-thickness matrix crack [27-36], whose direction of growth is parallel 64 

to fibres. This lack of fundamental understanding of the mechanism of ply-thickness effect in thin- and 65 

ultra-thin ply laminates impedes improvement in laminate design for demanding applications such as 66 

linerless cryogenic fuel tanks. 67 

 The present work proposes a novel proposition to account for the experimental and computational 68 

results in [7, 8] in terms of an increasing crack-growth resistance for through-thickness matrix cracks. The 69 

principle is illustrated in Fig. 1. The implementation of this principle in the present work combines the 70 

micromechanical modelling approach of Arteiro et al. [8] with the embedded cell approach [11] to derive 71 

the required crack growth resistance curve (the R-curve) in a computationally efficient manner. Next, the 72 

crack-growth behaviour is predicted by applying linear elastic fracture mechanics (LEFM) [37, 38] to 73 

determine whether crack growth is stable or unstable; details are presented in Section 4. It is worth noting  74 

that this R-curve approach was not foreshadowed in previous micromechanical simulations [8-20], or 75 

theoretical models [27-36]. One advantage of the proposed crack-growth resistance approach is that it 76 

provides a computationally efficient method for determining the critical ply thickness for the transition 77 

from stable to unstable crack growth, because the R-curve can be generated, once and for all, from a single 78 

micromechanical model, instead of the several separate models that would be required for different ply 79 

thicknesses in a trial-and-error approach. A second advantage, from the viewpoint of materials design, is 80 

that the effect of changing material properties (in particular the strength and toughness of both the matrix 81 

and/or the fibre-matrix interface) on the transitional ply thickness can be determined efficiently, simply by 82 

first calculating the resulting change in the R-curve. Similarly, the effect of operating at cryogenic 83 

temperatures can be efficiently assessed if the relevant material properties at those temperatures are known 84 

from direct measurements or can be reasonably estimated. 85 

The presentation of this paper is organized as follows. The key features of the micromechanical 86 

model for a constrained layer are summarized in Section 2 using an explicit integration technique, as in our 87 

previous works [39, 40]. Representative results obtained by this approach are compared with the results 88 

reported previously in [8] that were obtained using an implicit algorithm, to demonstrate their equivalence, 89 

and to motivate the R-curve interpretation. The R-curve is then derived in Section 3, based on 90 

micromechanical modelling only within an embedded cell. In Section 4, this R-curve is employed in 91 

conjunction with finite element (FE) calculations of the energy release rate to predict the stability of 92 

through-thickness matrix cracking, according to the principle indicated in Fig. 1. Next, the dependence of 93 

the R-curve on matrix toughness and on fibre volume fraction is investigated, revealing a simple linear 94 
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relationship for the steady-state value. The effects of thermal residual stresses, which are ignored for 95 

simplicity in Sections 2-4, are investigated in Section 5. Finally, in Section 6, the R-curve approach is 96 

discussed relative to existing analytical models of ply cracking in laminates [27-36], highlighting the new 97 

insights provided by this approach. 98 

2. Micromechanical modelling of through-thickness matrix cracking in a cross-ply laminate 99 

An FE model of a cross-ply laminate is constructed that consists of three main parts, as shown in 100 

Fig. 2: (i) an inner layer incorporating a micromechanical model of one or more 90° plies; (ii) two adjacent 101 

constraining layers that are modelled as homogenized layers, and (iii) the interfaces between the inner layer 102 

and the outer constraining layers. The pertinent modelling assumptions are summarized in the sub-sections. 103 

2.1 Micromechanical model of 90° inner layer 104 

The formulation of the micromechanical model for the inner layer follows the approach developed 105 

originally by Melro et al. [15] for an unconstrained 90° layer (fibres are orthogonal to the main applied 106 

stress), i.e., a periodic representative volume element (RVE),and subsequently used by Arteiro et al. [8, 107 

16] for cross-ply laminates. There are three constituents: fibres, matrix, and fibre-matrix interfaces; the 108 

relevant material properties are summarized below. 109 

2.1.1 Carbon fibres 110 

The fibres are assumed to have a circular cross-section, with a diameter of 5 𝜇𝑚, and to be linearly 111 

elastic and transversely isotropic relative to the fibre axis. The fibre volume fraction 𝑉𝑓 is set at 0.6, which 112 

can be adjusted as discussed in Section 3.2. Within the 90° layer, the fibres are arranged in a random 113 

distribution that is representative of those observed in practice, following the approach in [15]; the 114 

importance of employing a random, rather than a regular (e.g., hexagonal) array for correct simulation of 115 

failure initiation, as well as strategies for generating representative random arrays, have been discussed by 116 

several authors [41-43]. The fibre axis is chosen to be the x-axis; the y-axis is in the direction of the in-117 

plane loading along the 0° plies that is applied to cause through-thickness matrix cracking, and the z-axis 118 

is in the thickness direction, as indicated in Fig. 2(a). The relevant material properties are listed in Table 1, 119 

based on [8, 44, 45] which is representative of the IMS60 carbon fibres used in the experimental work [7]. 120 

2.1.2 Epoxy matrix 121 

The matrix phase is assumed to be isotropic and to conform to the elasto-plastic with damage 122 

constitutive model recently formulated by Melro et al. [14, 15]. This model involves a linear elastic régime 123 

bounded by a pressure-dependent yield criterion, and subsequent parabolic hardening that correctly 124 

captures the detailed experimental measurements of Fielder et al. [46] for a representative epoxy under 125 
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various forms of loading. Damage in the epoxy matrix is modelled by a single damage variable that affects 126 

only the Young’s modulus once activated. Damage onset is defined by a damage activation function (Φ𝑚
𝑑 ) 127 

similar to the yield criterion, but with the tensile and compressive yield strengths replaced by ultimate 128 

strengths. The Bazant-Oh [47] crack band model is employed to mitigate mesh-size dependency following 129 

damage localization due to strain softening. The relevant material properties to implement this constitutive 130 

model are listed in Table 2, which are considered here as standard values for typical Bisphenol-A type plain 131 

epoxy resin as used in [7]. Further details of implementation are presented in the Supplementary Material 132 

and in [8, 14]. 133 

2.1.3 Fibre-matrix interfaces 134 

The fibre-matrix interface is characterized by the cohesive zone model (CZM) available in Abaqus 135 

[48]. This involves a bilinear traction-displacement relation, with a high initial stiffness 𝐾 = 108𝑀𝑃𝑎/𝑚𝑚 136 

to enforce displacement continuity across the interface prior to damage. In the present work, damage onset 137 

is governed by the maximum stress criterion [48]. Final failure is characterized by the Benzeggagh-Kenane 138 

law [48] for mixed-mode failure. Values of the relevant properties are listed in Table 3. 139 

2.2 Homogenized outer constraining plies 140 

The outer layers in Fig. 2(a) are modelled as linear-elastic, orthotropic solids with the homogenized 141 

properties represent 0° plies, to simulate the experimental set up of Saito et al. [7]. The relevant thermo-142 

mechanical properties are listed in Table 4, which are determined by FE homogenization of an RVE, as in 143 

[49]. The interfaces between the inner and outer layers are modelled by CZM, using representative values 144 

for interlaminar properties [8], which are listed in Table S1 in Supplementary Material. 145 

2.3 Model discretization, loading and boundary conditions 146 

The geometry shown in Fig. 2(a) is modelled using solid elements (C3D8R) [48] for matrix, fibres 147 

and homogenized outer layers. The average element size within the inner layer is set to be 0.35 𝜇𝑚, to 148 

generate a well-structured, high-quality mesh, as suggested in [17-20], based on a sensitivity analysis. The 149 

fibre-matrix interface and the interface between inner and outer layers are modelled using cohesive 150 

elements (COH3D8) [48] of zero thickness. The model length in the loading direction (y-axis) is 200 𝜇𝑚, 151 

whereas the thickness in the fibre direction (x-axis) is approximately twice the average element size of the 152 

inner layer, as in [8]. Periodic boundary conditions are applied in the x and y directions, using linear multi-153 

point constraints, to impose a homogenized strain, 𝜀𝑦𝑦 that increases gradually to a final value of 2%. 154 

As noted in Section 1, Abaqus/Explicit [48] is used in the present work, which allows a simpler 155 

programming of the nonlinear constitutive model for the matrix phase as a user-defined subroutine 156 
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VUMAT. To assess the equivalence of the explicit approach with the implicit approach employed in [8], a 157 

comparison is made for a thin-ply laminate with an inner layer of thickness 20 𝜇𝑚 and outer layers of 158 

thickness 75 𝜇𝑚, employing the same material properties as [8] for model verification purposes. The results 159 

are presented as Fig. S2 in the Supplementary Material, confirming the equivalence between the two 160 

approaches. 161 

2.4 Simulation of through-thickness matrix cracking under increasing strain 162 

Figure 2(b) shows two representative images of the pattern of matrix cracking within an 30 𝜇𝑚-163 

thick inner 90° layer, obtained in the present work. Microcracking is found to initiate at the fibre-matrix 164 

interface (i.e. debonding), at a location where the inter-fibre spacing between two neighbouring fibres that 165 

are aligned with the load axis (the y-axis) is relatively small, as indicated by a dashed box in Fig. 2(b). This 166 

is in accord with the previous experimental and computational observations [7, 8, 50]. A through-thickness 167 

matrix crack in micromechanical model is defined by the coalescence of at least two neighbouring 168 

debondings, as defined in the experimental work [7]. The progression of through-thickness matrix cracking 169 

is also similar to that previously reported in [7, 8], with a representative final pattern for an applied strain 170 

of 2% being shown in Fig. 2(b). Figure 2(c) shows in more detail the evolution of the crack opening profile 171 

for the through-thickness matrix crack indicated by the dashed box in Fig. 2(b). The localized crack opening 172 

displacement (COD) is measured as the relative displacement between adjacent nodes after the occurrence 173 

of microcracking, as in [8]. This progression of the crack opening profile under increasing applied strain 174 

values is reported here for the first time. 175 

The increasing values of COD for the near tip opening profiles appear to be indicative of an 176 

increasing crack growth resistance with increasing crack length. An initial estimate of the crack growth 177 

resistance 𝐺𝑅, based on the tip-to-tip crack length 2𝑎 of a through-thickness matrix crack and the maximum 178 

COD for various levels of strain, as obtained from Fig. 2(c), is shown in Fig. 2(d), which clearly indicates 179 

an increasing crack growth resistance. The details of the calculation are documented in the Supplementary 180 

Material. This novel interpretation of the simulation results will be explored more quantitatively in the 181 

present work by independently deriving the R-curve based on micromechanical modelling in Section 3. 182 

3. Crack growth resistance curve (R-curve) method 183 

3.1 Micromechanical calculation of the R-curve 184 

Unlike the fracture toughness, which can be regarded as a material property under conditions of 185 

small-scale yielding [37, 38], the R-curve is not strictly a material property: it depends on the configuration 186 

(i.e., the specimen geometry, initial crack length, type of loading, etc. [51, 52]), although in practice this 187 
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dependence may be masked by the scatter in experimental measurements. This configuration dependence 188 

is revealed, however, by analytical models where the material property characterizing failure is specified 189 

in the form of a traction-separation law [53], and in experimental work involving large-scale bridging [51, 190 

52]. Accordingly, it is important to generate an R-curve based on a configuration that is as close as possible 191 

to the intended application of the R-curve for predictive purposes. 192 

In the present context, an attractive option for generating the R-curve computationally is to use two 193 

neighbouring fibres, such as those in the neighbourhood of the initiation site in Fig. 2(b), as load application 194 

points, with equal and opposite point forces applied to those two fibres to initiate failure at the fibre-matrix 195 

interface. It was found, however, that this approach resulted in inelastic deformation of the matrix around 196 

those fibres that is not directly associated with the crack initiation and crack growth process, and the 197 

contribution of this extraneous energy dissipation to the work of fracture could not readily be quantified. 198 

These results are presented in the Supplementary Material. 199 

Instead, the configuration shown in Fig. 3 was found to be more tractable for generating an 200 

appropriate R-curve. In this figure, the entire model consists of 90° ply material only. However, for 201 

computational efficiency, micromechanical modelling is limited to only a central region of the specimen, 202 

while the remainder is modelled with homogenized (elastic) properties, as indicated in Fig. 3, in accordance 203 

with the embedded cell approach [11]. The size of this embedded cell must be such as to fully capture all 204 

inelastic deformation. This requirement must be verified at the end of a simulation. In the present work, the 205 

height of the embedded cell in the y-direction (the direction of loading) was taken to be ℎ = 76 𝜇𝑚, which 206 

was found to satisfy the above requirement, as will be seen below. The specimen length in the z-direction 207 

(the direction of crack growth) was taken to be 𝑤 = 420 𝜇𝑚, which proved to be large enough for the R-208 

curve to reach a plateau value 𝐺𝑠𝑠
𝑅  corresponding to steady-state crack growth. The same material properties 209 

and element types as described in Section 2 were again employed. The displacement field is assumed to be 210 

continuous across the interfaces between the embedded cell and the homogenized outer portions. The 211 

average element size within the embedded cell is 0.35 𝜇𝑚 approximately, and the element size increases 212 

gradually to 6.3 𝜇𝑚 in the homogenized portions. As in Section 2.3, the model thickness in the x-direction 213 

(the fibre axis) is twice the average element size within the embedded cell, and periodic boundary conditions 214 

are applied to the faces normal to the x-axis.  215 

To avoid the difficulties noted above with point loading of fibres, the model shown in Fig. 3 includes 216 

a pre-existing crack of length 𝑎0 = 4 𝜇𝑚, created by initially debonding the relevant nodes. This length is 217 

chosen on the basis that it is equal to half of the shortest tip-to-tip crack length that can be reliably measured 218 

experimentally or in simulations [7, 8], as indicated in Figs. 2(b,c), and for which the crack can reasonably 219 
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be approximated as a straight centre crack for the purposes of calculating the energy release rate, keeping 220 

in mind that the initial crack at the fibre-matrix interface has a curvature dictated by the fibre diameter, 221 

which is 5 𝜇𝑚 for the present simulations. To generate the R-curve, this pre-crack is opened by applying 222 

specified displacements on the face 𝑧 = 0: all nodes with 𝑦 > 0 are given a specified vertical displacement 223 

𝑢𝑦(𝑦 > 0, 𝑧 = 0), whereas all nodes below the crack, with 𝑦 < 0, are held fixed, i.e. 𝑢𝑦(𝑦 < 0, 𝑧 = 0) =224 

0. The resulting nodal forces for 𝑦 > 0 are summed to obtain the crack opening force P, whereas the crack 225 

mouth opening displacement is given by 𝛥 = 𝑢𝑦(𝑦 > 0, 𝑧 = 0) − 𝑢𝑦(𝑦 < 0, 𝑧 = 0). 226 

A representative load-displacement (𝑃 − 𝛥) curve obtained in this manner is shown in Fig. 4(a). 227 

This curve includes some periodical unloadings that are intended to check that the unloading response is 228 

linearly elastic, with the unloading curves returning to the origin, as required to ensure the validity of the 229 

LEFM formula [54] for calculating the crack growth resistance, viz., 𝐺𝑅 = 1

2
𝑏𝑃2𝜕𝐶/𝜕𝑎, where b denotes the 230 

specimen thickness (in the x-direction in the present case) and 𝐶 = 𝑃/𝛥 the compliance. To obtain the crack 231 

length a, the crack tip is identified by searching for the element furthest away from the face 𝑧 = 0 at which 232 

the damage variable has reached the value 1, corresponding to complete failure; the crack length is then 233 

taken as the distance from the crack tip to the face 𝑧 = 0.  234 

Because of the random distribution of fibres built into the model, slightly different results are 235 

obtained from different simulation runs. Figure 4(b) shows the combined results obtained from five 236 

different simulations, involving five different realizations of random fibre distributions, but all for the same 237 

volume fraction. The scatter in these results is attributable to the randomness of the fibre distributions, all 238 

other properties being deterministic. For predictive purposes, the raw results from the simulations are fitted 239 

with a rational polynomial of second order, to obtain the continuous curve shown in Fig. 4(b) for 𝐺𝑅(𝑎). 240 

With the present approach, this curve necessarily starts from the assumed initial crack length 𝑎0 = 4 𝜇𝑚. 241 

However, the smallest ply thickness that can currently be achieved with tow-spreading technology is around 242 

15 𝜇𝑚 [21, 22], so that this assumed initial crack length is not unduly restrictive in practice. 243 

Figure 4(c) illustrates the progression of deformation and crack growth under increasing load. It can 244 

be seen that the crack path often follows the fibre-matrix interface, and proceeds discontinuously, with 245 

heavily deformed but unbroken matrix ligaments bridging the crack behind the crack tip. These 246 

observations from the present micromechanical modelling are in accord with previous experimental and 247 

computational results [7-20, 50]. Thus, the crack path is not straight at the microscopic level. Figure 4(d) 248 

shows representative maps of the damage activation variable (Φ𝑚
𝑑 ) for two crack lengths. It can be seen 249 

that the damage zone is fully contained within the embedded cell, even for the longer crack length of 80 𝜇𝑚, 250 
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corresponding to steady-state crack growth, indicating that the selected size for the embedded cell is 251 

sufficient to correctly capture the R-curve. 252 

3.2 Effect of matrix toughness and fibre volume fraction on crack growth resistance 253 

The influence of various material properties on through-thickness matrix cracking can now be 254 

investigated by first determining their influence on the R-curve. To illustrate the procedure, consider first 255 

the influence of the matrix fracture toughness 𝐺𝑐, all other material properties and modelling assumptions 256 

being kept the same. Figure 5(a) shows the R-curves obtained for 𝐺𝑐 = 80,160,240 𝐽/𝑚2, as well as the 257 

previous curve in Fig. 4(b) for 𝐺𝑐 = 120 𝐽/𝑚2 which serves as the baseline. It can be seen that the steady-258 

state value 𝐺𝑠𝑠
𝑅 , and the extent of crack growth required to reach the steady state, both increase with 259 

increasing 𝐺𝑐. Recalling that crack growth involves debonding at the fibre-matrix interface, with the crack 260 

being bridged by matrix ligaments behind the crack tip, it appears reasonable to expect that the steady-state 261 

value 𝐺𝑠𝑠
𝑅  can be estimated from a simple rule-of-mixtures (RoM) formula involving both the interfacial 262 

toughness (𝐺𝐼𝑐
𝑖𝑛𝑡) and the matrix toughness, as follows 263 

𝐺𝑠𝑠
𝑅 = 𝑉𝑓𝐺𝐼𝑐

𝑖𝑛𝑡 + (1 − 𝑉𝑓)𝐺𝑐.                                                                                                                     (1) 264 

Figure 5(b) shows that this simple formula indeed provides a good estimate for 𝐺𝑠𝑠
𝑅 , at least within the 265 

investigated range for 𝐺𝑐. This in turn suggests a useful approach for estimating 𝐺𝑠𝑠
𝑅  in situations where 266 

measured values of 𝐺𝑐 may not be available but can be reasonably estimated. 267 

Next, Fig. 5(c) shows the R-curves for fibre volume fractions 𝑉𝑓 = 0.45 and 0.55 in addition to the 268 

baseline value 0.6 employed previously in Fig. 4(b), and retaining the same values for all other parameters. 269 

It can be seen that the initial slope of the R-curve (𝜕𝐺𝑅/𝜕𝑎) and the final steady-state value 𝐺𝑠𝑠
𝑅  increase 270 

with decreasing 𝑉𝑓 . Figure 5(d) shows that the simple formula in Eq. (1) again provides a reasonable 271 

estimate for 𝐺𝑠𝑠
𝑅 , at least for the range of 𝑉𝑓 investigated here that is representative of the values encountered 272 

in practice. The increase in 𝐺𝑠𝑠
𝑅  is consistent with an increased dissipation due to wider bridging ligaments 273 

as 𝑉𝑓 decreases (the fibre diameter remaining fixed). 274 

4. Stability of through-thickness matrix cracking 275 

Having obtained the R-curve for the crack growth resistance 𝐺𝑅(𝑎)  as in Fig. 4(b), the next 276 

requirement is to determine the energy release rate 𝐺(𝑎) as a function of the half-crack length a for the 277 

configuration shown in Fig. 6(a). 278 
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4.1 Energy release rate 279 

To determine 𝐺(𝑎) the inner layer is modelled as a homogeneous layer, with the same lamina 280 

properties as listed in Table 4 for the outer plies, but with the fibre orientation now parallel to the x-axis, 281 

instead of the y-axis. The deformation in Fig. 6(a) is assumed to be plane strain (𝜀𝑥𝑥 = 0). The energy 282 

release rate can then be expressed as follows [29, 55] 283 

𝐺(𝑎) = 𝛬𝜎𝑦𝑦
2 𝜋𝑎𝑓 (

𝑎

𝑡1
,

𝑡2

𝑡1
,

𝐸𝑇

𝐸𝐿
, … )                                                                                                                (2) 284 

where 𝛬 = (
1

𝐸𝑇
−

𝑣𝐿

𝐸𝐿
), 𝜎𝑦𝑦 = 𝜀𝑦𝑦/𝛬 , which denotes the stress within the inner layer in an uncracked 285 

laminate, under an applied strain 𝜀𝑦𝑦. In this expression, the function f can be regarded as a nondimensional 286 

correction factor that depends on several configurational parameters and material properties. In the limit of 287 

very small cracks, the influence of the outer ply thickness and stiffness becomes negligible, i.e., 288 

𝑓(𝑎/𝑡1 ≪ 1) = 1, and 𝐺(𝑎) reduces to 𝐺(𝑎) = Λ𝜎𝑦𝑦
2 𝜋𝑎, as which is appropriate for a centre crack of 289 

length 2𝑎 in a transversely isotropic material under plane strain. Values of 𝐺(𝑎) can be readily determined 290 

computationally, e.g. by the virtual crack closure technique (VCCT) available in Abaqus [48]. The results 291 

for the dependence of 𝐺(𝑎) on crack size are shown in Fig. 6(b), using the following dimensionless form: 292 

𝑔 (
𝑎

𝑡1
) =

𝐺(𝑎)

𝛬𝜎𝑦𝑦
2 𝜋𝑡1

=
𝑎

𝑡1
𝑓 (

𝑎

𝑡1
,

𝑡2

𝑡1
,

𝐸𝑇

𝐸𝐿
, … )                                                                                                       (3) 293 

These results were obtained for a fixed value of the constraining layer thickness 𝑡2 = 480 𝜇𝑚, as in the 294 

experimental work [7]. It can be seen that 𝑔(𝑎/𝑡1) is only weakly dependent on the modulus ratio 𝐸𝑇/𝐸𝐿 295 

in the range 0.02−0.1; it was also found to be insensitive to the value of the inner-layer thickness 2𝑡1 in the 296 

range 40 − 160 𝜇𝑚, and insensitive to the Poisson ratios within the range encountered in practice for 297 

CFRP. Furthermore, the present results for orthotropic layers are very close to the results for isotropic inner 298 

and outer layers, with Young’s moduli equal to 𝐸𝑇 and 𝐸𝐿 respectively [29, 55]. The important feature in 299 

Fig. 6(b) is that 𝑔(𝑎/𝑡1) decreases when the crack size exceeds 70% of the inner layer thickness, which 300 

indicates the constraining action of the stiff outer layers, as noted in previous work [29]. For the subsequent 301 

analysis, the numerical results for 𝑔(𝑎/𝑡1), for 𝐸𝑇/𝐸𝐿 = 0.05, were fitted to a fourth-order polynomial in 302 

𝑎/𝑡1. More information is given in the Supplementary Material. 303 

4.2 Predicting the progression of through-thickness matrix cracking 304 

The progression of through-thickness matrix cracking can now be predicted by the procedure 305 

indicated in Fig. 1, which is illustrated in more detail in Fig. 6(c). Crack growth is stable if the gradient of 306 

the crack-growth curve is less than the gradient of the crack growth resistance curve, i.e., 
𝜕𝐺

𝜕𝑎
<

𝜕𝐺𝑅

𝜕𝑎
, where 307 
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𝐺, 𝐺𝑅 , 𝑎 denote respectively the crack-growth energy release rate, crack-growth resistance, and crack length 308 

(or half-crack length for centre cracks).  Unstable crack growth occurs when the gradient of the crack-309 

growth curve exceeds the gradient of the crack growth resistance curve, i.e., 
𝜕𝐺

𝜕𝑎
>

𝜕𝐺𝑅

𝜕𝑎
.  310 

Consider first the case where the inner layer thickness is 40 𝜇𝑚, corresponding to a single ply in 311 

the experimental set up, i.e. 𝑛 = 1 for the [0𝑚, 90𝑛/2]𝑠 laminates investigated by Saito et al. [7]. The curves 312 

of 𝐺(𝑎) for that inner-layer thickness 2𝑡1 are shown in red in Fig. 6(c), for various values of 𝜀𝑦𝑦. It can be 313 

seen that the crack growth criterion 𝐺 = 𝐺𝑅 is first satisfied when 𝜀𝑦𝑦 = 0.7%, and the half-crack length 314 

𝑎0 = 4 𝜇𝑚. This initial value of crack length 𝑎0 corresponds to the shortest crack length, corresponding 315 

one fibre-matrix disbond, for which the R-curve is available, as discussed above in Section 3. It is clear 316 

from Fig. 6(c) that for this initial crack length, 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎, thus crack growth is predicted to be 317 

stable [37, 38]. Next, as the applied strain increases to 𝜀𝑦𝑦 = 1%, the crack grows to a length of 𝑎 = 7𝜇𝑚 318 

and 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎, i.e., crack growth is still predicted to be stable. Proceeding in this manner, one can 319 

construct a continuous curve of crack length versus applied strain, which is shown as the solid red curve in 320 

Fig. 7(a). The crack length is normalized by the layer thickness to facilitate comparison with the 321 

experimental results in [7] which are shown as data points in Fig. 7. It can be seen that the R-curve method 322 

correctly captures the average behaviour observed experimentally, and correlates well with the results 323 

obtained in the present work by the micromechanical simulation described in Section 2, which are shown 324 

by the dashed curve in Fig. 7. Stable crack growth is always predicted until full through-thickness 325 

penetration at 𝜀𝑦𝑦 = 1.7%. 326 

Consider next an inner layer thickness 2𝑡1 = 160 𝜇𝑚, corresponding to 𝑛 = 4 for the experimental 327 

laminate [7]. It can be seen from Fig. 6(c) that the crack growth criterion is again satisfied at 𝜀𝑦𝑦 = 0.7% 328 

for 𝑎0 = 4 𝜇𝑚, and growth is predicted to be initially stable as 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎. However, when the 329 

applied strain has increased to 𝜀𝑦𝑦 = 1%, and the half-crack length has reached 𝑎 = 11 𝜇𝑚, further crack 330 

growth is predicted to be unstable, because now 𝜕𝐺/𝜕𝑎 > 𝜕𝐺𝑅/𝜕𝑎. The full predicted response is shown 331 

by the solid blue curve in Fig. 7(b), which can again be seen to correctly capture the behaviour recorded 332 

experimentally, as well as the results obtained by the micromechanical simulations described in Section 2. 333 

Finally, for the intermediate layer thickness investigated experimentally, 2𝑡1 = 80 𝜇𝑚, 𝑛 = 2, the 334 

predicted behaviour is slightly more complicated. Crack growth is again predicted to initiate at 𝜀𝑦𝑦 = 0.7% 335 

for 𝑎0 = 4 𝜇𝑚, and to be initially stable because 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎, as can be seen from the green curves 336 

in Fig. 6(c). Next, when the applied strain has increased to 𝜀𝑦𝑦 = 1%, and the crack length has reached 337 
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𝑎 = 11 𝜇𝑚,  subsequent growth is predicted to be unstable, because 𝜕𝐺/𝜕𝑎 > 𝜕𝐺𝑅/𝜕𝑎.  But now this 338 

inequality only applies for a limited extent of crack growth: as the crack grows, the value of G eventually 339 

decreases and intersects the 𝐺𝑅 curve for 𝑎 = 32 𝜇𝑚 (𝑎/𝑡1 = 0.8), and 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎 at that point, 340 

which indicates crack arrest. Further crack growth beyond that point requires an increasing applied strain. 341 

This subsequent growth is predicted to be stable, because 𝜕𝐺/𝜕𝑎 < 0  beyond 𝑎/𝑡1 ≈ 0.7,  whereas 342 

𝜕𝐺𝑅/𝜕𝑎 ≥ 0,  so that the stability criterion 𝜕𝐺/𝜕𝑎 < 𝜕𝐺𝑅/𝜕𝑎  is always satisfied until full through-343 

thickness penetration at 𝜀𝑦𝑦 = 1.4%. This predicted response is shown by the continuous green curve in 344 

Fig. 7(b), and it can be seen to be in reasonable agreement with the experimental observations in [7], as 345 

well as the results of micromechanical simulations of the present work. 346 

5. Through-thickness matrix cracking at cryogenic temperature 347 

Thermal residual stresses arise at two length scales in fibre-composite laminates [4, 56]: intra-ply 348 

residual stresses arise between the fibres and matrix within a ply, due to their different coefficients of 349 

thermal expansion (CTE); inter-ply residual stresses arise between plies of differing orientations within a 350 

laminate, due to the variation in the homogenized CTE with orientation. The inter-ply residual stresses are 351 

uniformly distributed across the ply thickness, and can be calculated by using conventional lamination 352 

theory [57] or FE, whereas the intra-ply residual stresses require micromechanical modelling. To account 353 

for the effects of thermal residual stresses on the R-curve approach for predicting through-thickness crack 354 

growth, two distinct calculations are required: first, the change in the R-curve must be determined, based 355 

on micromechanical modelling, and secondly, the change in the energy release rate as a function of applied 356 

strain 𝜀𝑎𝑝𝑝  must be evaluated, by first calculating the inter-ply residual stress or strain 𝜀𝑡ℎ , based on 357 

lamination theory. Furthermore, the change in material properties with decreasing temperature must also 358 

be taken into account, most notably the change in matrix fracture toughness. These steps are addressed in 359 

turn in the following sub-sections. 360 

5.1 Effect of intra-ply residual stresses on the crack growth resistance curve 361 

The implementation of the FE model described in Section 3.1 is modified by including a preliminary 362 

step, henceforth referred to as Step 1, to simulate a temperature change 𝛥𝑇 prior to applying an external 363 

load in Step 2, while retaining all other model specifications and material properties as previously described 364 

in Section 3. For illustrative purposes, 𝛥𝑇 is chosen here to be -278K, corresponding to the temperature 365 

drop from room temperature (RT) to liquid hydrogen temperature (LH2). At the completion of Step 1, the 366 

resulting residual stress field is similar to that reported in several previous micromechanical simulations of 367 

unconstrained unidirectional plies [10, 41]. Consequently, this residual stress field will not be documented 368 

in detail here, except to note (i) the stress everywhere remains below the damage-inducing levels, both in 369 
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the matrix and at the fibre-matrix interface, for the current choice of 𝛥𝑇 and material parameters; and (ii) 370 

the interfacial normal stress is predominantly compressive (see Fig. S8 of the Supplementary Material), 371 

suggesting an increased resistance to crack growth due to delayed fibre-matrix debonding. 372 

The residual stress field from Step 1 is retained as an initial stress field for Step 2 of determining 373 

the R-curve. For that purpose, an initial edge crack of length 𝑎0 = 4 𝜇𝑚 is again introduced and opened as 374 

previously described in Section 3.1 and Fig 3. The results are shown in Fig. 8(a), for the same four values 375 

of matrix toughness 𝐺𝑐 that were previously used to generate the results in Fig. 5(a). The solid curves in 376 

Fig. 8(a) again represent a rational polynomial fit to the data obtained from five separate simulations, for 377 

each value of 𝐺𝑐. The R-curves previously derived without considering the thermal residual stresses are 378 

shown as dashed curves for comparison purposes. It can be seen that the residual stresses indeed lead to an 379 

increased crack growth resistance. Furthermore, the steady-state resistance 𝐺𝑠𝑠
𝑅  again increases linearly with 380 

increasing 𝐺𝑐 ,  and there is an increasing difference with the previously calculated values of 𝐺𝑠𝑠
𝑅  with 381 

increasing 𝐺𝑐, as shown in Fig. 8(b), which is not captured by the RoM in Eq. (1), but Eq. (1) nevertheless 382 

continues to provide a useful estimate for practical purposes. 383 

5.2 Effect of inter-ply residual stresses on the energy release rate 384 

Turning next to the calculation of the energy release rate for the configuration shown in Fig. 6(a), it 385 

is noted that Eq. (2) is still applicable provided that 𝜎𝑦𝑦 is taken as the sum of the thermal residual stress 386 

and the applied stress, or equivalently, that 𝜀𝑦𝑦 is interpreted as the total strain 𝜀𝑦𝑦
𝑡𝑜𝑡𝑎𝑙 on the 90° layer, 387 

consisting of an residual strain at the ply level 𝜀𝑦𝑦
𝑡ℎ , plus an applied strain 𝜀𝑦𝑦

𝑎𝑝𝑝
 at LH2: 388 

𝜀𝑦𝑦
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑦𝑦

𝑡ℎ + 𝜀𝑦𝑦
𝑎𝑝𝑝

.                                                                                                                                    (4) 389 

The calculation for 𝜀𝑦𝑦
𝑡ℎ  is documented in the Supplementary Material. 390 

5.3 Predicting through-thickness crack growth at cryogenic temperature 391 

Having determined the effects of thermal residual stresses on both the R-curve and the energy 392 

release rate, we can now predict the progression of through-thickness matrix cracking as in Section 4. The 393 

predicted responses are shown as the solid curves in Figs. 9(a-c), for the three 90° layer thicknesses and 394 

four values of 𝐺𝑐  previously considered in Section 4. These predictions are compared with the results 395 

obtained by modifying the micromechanical model in Section 2 to include a preliminary step (Step 1) 396 

corresponding to a temperature change 𝛥𝑇 = −278𝐾, prior to applying an external load. These simulation 397 

results here serve the role of experimental results, in the absence of direct experimental observations at 398 

LH2, and they are shown as the dashed lines in Figs. 9(a-c), but for only two values of matrix toughness 399 
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𝐺𝑐 = 120 and 240 𝐽/𝑚2 due to the laborious computational effort. It can be seen that the predicted crack 400 

growth based on the R-curve approach is again in good agreement with the more laboriously obtained 401 

micromechanical simulations. 402 

In Figs. 9(a-c), the dotted vertical lines indicate the thermal strain 𝜀𝑦𝑦
𝑡ℎ  on 90° layer at the completion 403 

of Step 1. Thus, the predicted behaviour as a function of applied strain can be visualized by focussing on 404 

the results to the right of these dotted lines. In particular, it is of interest to note the value of applied strain 405 

that is required to achieve full-thickness cracking, which is re-plotted in Fig. 9(d). For a given value of 𝐺𝑐, 406 

crack growth becomes progressively more unstable as the ply thickness increases, thereby resulting in full-407 

thickness cracking at a lower applied strain; on the other hand, for a given ply thickness, growth becomes 408 

more stable as 𝐺𝑐 increases, so that a higher applied strain is required for full-thickness cracking. These 409 

results provide a basis for quantifying the potential benefits of the nano-toughening techniques, as 410 

developed in [58, 59], in conjunction with tow-spreading technology for facilitating the design and 411 

optimization of the composite vessels for storing cryogenic fuels. 412 

5.4 Effect of changing matrix toughness with decreasing temperature 413 

Variations in matrix and interface strength and toughness are generally very laborious to 414 

characterize experimentally [58, 59], on the one hand, but are expected to have a significant influence on 415 

the failure behaviour, on the other. To illustrate how the present work provides an efficient approach for 416 

estimating matrix-cracking behaviour at cryogenic temperatures, consider the case where the matrix 417 

toughness decreases from a RT value 𝐺𝑐 = 120 𝐽/𝑚2, to an assumed lower value 𝐺𝑐 = 60 𝐽/𝑚2 at LH2 as 418 

measured in [58] at cryogenic temperature and as indicated by the arrow in Fig 8(b) (all other material 419 

properties being assumed to retain their RT values, for simplicity). Figures 10(a-c) shows the predicted 420 

behaviour for through-thickness matrix cracking, based on (i) the RT value of 𝐺𝑐, and ignoring thermal 421 

residual stresses for which the total strain is simply the applied strain 𝜀𝑦𝑦
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑦𝑦

𝑎𝑝𝑝
, and (ii) the LH2 value 422 

of  𝐺𝑐, and accounting for thermal residual stresses for which the total strain is the sum of thermal residual 423 

strain and applied strain as defined by Eq. (3). It is shown that the ply thickness for which through-thickness 424 

matrix cracking transitions from stable to unstable growth is smaller for case (ii) relative to case (i), due to 425 

the lower 𝐺𝑐 at LH2; on the other hand, the applied strain for causing full-thickness cracking is significantly 426 

lower for case (ii) relative to case (i) (see Fig. 10(d)), due to the high inter-ply residual strain at LH2. This 427 

is clearly an important observation from the viewpoint of exploiting the potential benefits of toughened thin 428 

plies for cryogenic applications. 429 
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6. Discussion 430 

6.1 Contribution to computational efficiency for micromechanical simulations 431 

Micromechanical modelling is becoming an essential tool to characterize the deformation and 432 

failure mechanisms within a ply, providing insights and inputs for the next levels (mesoscale and 433 

macroscale) in a structured multiscale modelling framework leading to a virtual testing pyramid for fibre-434 

composite structures [18]. The recent micromechanical model of Arteiro et al. [8] correctly captures the 435 

experimentally observed transition from unstable to stable through-thickness crack growth in the 90° ply 436 

of a cross-ply laminate [7]. However, the specification of material properties in [8] requires no fewer than 437 

35 parameters, as well as two stress-strain curves characterizing the plastic deformation and ultimate 438 

strength of the bulk epoxy, as derived from the experimental measurements [46] for tension and 439 

compression. The predicted response depends to some extent on each of these input parameters, but a 440 

detailed parametric analysis is clearly prohibitive. Even a more restricted study of the dependence on matrix 441 

and interfacial strength and toughness would be daunting, particularly if one were to also include an 442 

integrated modelling of the curing response for more accurate calculation of thermal residual stresses, as 443 

recently proposed in [20]. From this perspective, the present work contains two important contributions: 444 

first, a new approach has been proposed that can significantly reduce the computational burden, especially 445 

for a systematic parametric analysis; secondly, the simulations reported in [8, 16] have been extended to 446 

include the effects of residual stresses. 447 

The benefit of the R-curve approach in reducing the computational burden has already been noted 448 

in Sections 4,5: once the R-curve has been generated the progression of through-thickness cracking can be 449 

readily predicted for any ply thickness, instead of requiring separate simulations for each ply thickness of 450 

interest. Furthermore, to determine the influence of various material parameters on the ply failure response, 451 

it is sufficient to determine their influence on the R-curve, which again reduces the required number of 452 

separate micromechanical simulations. 453 

6.2 Comparison with theoretical models of ply cracking 454 

Figure 11 shows the ply-thickness dependence of the failure strain for full through-thickness 455 

cracking, as derived from the present micromechanical modelling and experimental observations [7], as 456 

well as the ply cracking strain predicted by current theoretical models [27-36]. It is important to understand 457 

the scope as well as the limitations of both sets of predictions. Currently available theoretical models for 458 

ply cracking are based on (i) fracture mechanics [27-29], or (ii) finite fracture mechanics [31]. In the latter 459 

approach, there is no attempt to track the progression of cracking either through the thickness, or across the 460 

width, of a ply. Instead, a failure criterion is formulated by equating the change in configurational energy 461 
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(i.e. the sum of the stored elastic energy and the potential energy of the loading mechanism) due to a ply 462 

crack (spanning the full thickness and width of the ply) to the work of fracture for that area of crack. This 463 

is the approach originally adopted by Bailey et al. [1-3], and subsequently refined by several others on the 464 

basis of more refined stress analyses for evaluating the energy change, notably based on variational 465 

principles [31-35]. Regardless of the level of sophistication of the stress analysis, a finite fracture mechanics 466 

approach will necessarily predict a ply cracking strain that decreases as 1/√2𝑡1  with increasing ply 467 

thickness 2𝑡1, as shown by the dashed green curve in Fig. 11, and thus cannot account for the transition to 468 

the thick-ply régime, a limitation that was recognised in [2, 3]. 469 

Dvorak and Laws [29] have formulated a fracture mechanics approach that can account for the thin-470 

to-thick-ply transition, as shown by the dashed red lines in Fig. 11, albeit based on postulating the existence 471 

of an effective initial crack whose precise shape and size are not known a priori, and employing simplified 472 

two-dimensional (2D) analyses that envisage the failure critical event as being either (i) crack growth across 473 

the ply thickness, for thick plies, or (ii) crack growth in a tunnelling mode (i.e. across the width of the 474 

laminate, for a crack spanning the full thickness of the transverse ply) for thin plies. In both cases, the 475 

relevant critical value of the energy release rate 𝐺𝑚𝑐 is assumed to be a constant, albeit having a different 476 

value for through-thickness cracking relative to crack growth across the laminate width (tunnelling mode). 477 

This approach necessarily predicts that through-thickness cracking is always unstable once it initiates 478 

(unless the pre-existing initial crack is assumed to span more than 70% of the ply thickness, cf. Fig. 6), and 479 

thus is unable to account for the experimental and computational observations of slow, stable growth in [7, 480 

8]. Furthermore, 𝐺𝑚𝑐  has the status of an empirical constant that is determined by curve fitting the 481 

experimentally measured data for failure strain versus ply thickness. Although this empirical value of 𝐺𝑚𝑐 482 

will necessarily depend on the fracture toughness for the bulk matrix, there is no explicit relation between 483 

the two, and hence no simple way of predicting the beneficial effects of matrix toughening, for example. 484 

The dashed curves in Fig. 11 are based on assuming 𝐺𝑚𝑐 = 220 𝐽/𝑚2 as originally used in [29, 34]. It 485 

should be noted that the energy change driving the tunnelling mode is essentially the same as that considered 486 

in the finite fracture mechanics approach; the difference between the dashed curves in Fig. 11 can be 487 

attributed to differences in the stress analyses for calculating this energy change.  488 

By contrast to the models in [27-30], the micromechanical simulations do not assume a pre-existing 489 

crack. Instead, cracking is shown to initiate by fibre-matrix debonding, as shown earlier in Fig. 2(b). This 490 

pattern of initiation and subsequent growth correlates closely with experimental observations [7, 28], 491 

whereas experimental evidence of pre-existing cracks, as required by the fracture mechanics models [27-492 

29], has never been reported. Another difference with the present work is that the models in [27-29, 31-35]  493 
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have always assumed a single value for the fracture toughness, rather than a rising R-curve, as derived here 494 

in Section 3. This R-curve behaviour has been shown to account for the transition to slow, stable through-495 

thickness crack growth with decreasing ply thickness. The predicted strain for full through-thickness 496 

cracking based on the present R-curve approach is displayed as the solid curve in Fig. 11, showing good 497 

agreement with experimental observations [7] and micromechanical simulation results. A limitation of the 498 

present micromechanical model, however, is that it can only characterize through-thickness cracking, and 499 

therefore it cannot predict the ply-cracking strain if the failure critical event is crack growth across the 500 

laminate width (tunnelling mode). However, these predictions for through-thickness cracking are most 501 

valuable for laminate design, particularly in the context of ensuring antileakage properties. Future work is 502 

required to clarify the relation between the resistance to through-thickness cracking and the so-called matrix 503 

cracking toughness that characterizes the tunnelling mode of ply cracking. The steady-state crack resistance 504 

for through-thickness cracking, 𝐺𝑠𝑠
𝑅 , has been shown in the present work to be well approximated by a RoM 505 

formula, Eq. (1),  and it is therefore necessarily less than the epoxy matrix toughness, 𝐺𝑐, whereas the 506 

matrix-cracking toughness 𝐺𝑚𝑐, which determined empirically as discussed above, is generally much larger 507 

than 𝐺𝑐; for example, the dashed curves in Fig. 11 employed a value of 𝐺𝑚𝑐 that is approximately twice the 508 

fracture energy for a typical epoxy matrix. The reason for this relatively large value of the matrix-cracking 509 

toughness is not entirely clear; it may be due to fibre-bridging, which cannot be capture with the present 510 

micromechanical model. 511 

7. Conclusions 512 

A new concept has been proposed and demonstrated to account for the experimental observations 513 

of slow, stable cracking across the thickness of the 90° ply in a cross-ply laminate, when the ply thickness 514 

is reduced to 40 µm. The proposed explanation is that through-thickness cracking proceeds under an 515 

increasing crack growth resistance characterized by an R-curve, after initiating in a natural manner at the 516 

fibre-matrix interface. This explanation has been substantiated by employing a high-fidelity 517 

micromechanical model to generate the R-curve for crack growth in an unconstrained 90° ply. The R-curve 518 

is then employed to predict the progression and stability of through-thickness cracking based on principles 519 

of fracture mechanics. The predicted crack growth correctly captures both the experimental observations 520 

and the simulation results, showing a transition from stable growth to unstable growth with increasing 90°-521 

layer thickness. 522 

One major benefit of the R-curve approach is that only one micromechanical simulation is required 523 

for generating the R-curve, which can then be employed to predict the progression of crack growth for inner 524 

layers of any thickness, instead of requiring a separate simulation for each layer thickness of interest. This 525 
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considerably reduces the computational burden for micromechanical simulations, which is particularly 526 

valuable for conducting detailed parametric studies to examine the dependence of ply cracking on various 527 

material properties. As an illustrative example, the dependence on matrix toughness has been investigated. 528 

The results show that the steady-state value of crack growth resistance appears to increase linearly with 529 

increasing matrix toughness, and this linear increase is closely approximated by a simple rule-of-mixtures 530 

formula that also involves the interfacial toughness and fibre volume fraction. 531 

This first demonstration of the R-curve approach can be extended to account for the effects of 532 

residual stresses, which arise at two distinct length scales. The intra-ply residual stresses must be evaluated 533 

using micromechanical modelling, and they only affect the R-curve, whereas the inter-ply residual stresses 534 

must be evaluated from ply-level (mesoscale) modelling, and they only affect the energy release rate for 535 

through-thickness cracking. It has been shown that the steady-state crack growth resistance again follows 536 

a linear increase with increasing matrix toughness. The existence and identification of such simple 537 

relationships can further reduce the computational burden for systematic parametric studies and sensitivity 538 

analyses based on micromechanical simulations. The new insights provided by these simulations relative 539 

to currently available theoretical models for ply cracking have been discussed. 540 
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Figures and Tables 645 

 646 

Fig. 1 Predicting the stability of crack growth. (a) A schematic R-curve (inset shows a centre crack in a 90° 647 

ply); (b) variation of the energy release rate with crack length for a thin ply (green curves) and a thick ply (blue 648 

curves), for two values of applied strain; (c) predicted crack growth behaviour. 649 

 650 

Fig. 2 Micromechanical simulation of through-thickness cracking in a crossply laminate. (a) Model geometry; 651 

(b) simulation results for two values of applied strain, with the location of failure initiation indicated by a dashed 652 

box; (c) crack opening profiles for increasing applied strain; (d) crack growth resistance as estimated from (c). 653 
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 654 

Fig. 3 Micromechanical simulation of the R-curve. (a) Cross-sectional view of 90° ply showing the coordinate 655 

axes; (b) detailed micromechanical modelling only within an embedded cell, for computational efficiency. 656 

 657 

Fig. 4 The R-curve. (a) A representative load-displacement plot; (b) R-curve derived from the simulation results; 658 

(c) crack path showing bridging by unbroken ligaments behind the advancing crack tip; (d) contour map of the 659 

damage activation variable showing that damage zone is well contained within the embedded cell. 660 
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 661 

Fig. 5 Parametric variations of the R-curve. (a) R-curves for various values of matrix toughness; (b) linear 662 

variation of the steady-state resistance 𝐺𝑠𝑠
𝑅  versus matrix toughness, compared with a rule-of-mixtures estimate 663 

(dashed line); R-curves for various values of fibre volume fraction; (d) linear variation of 𝐺𝑠𝑠
𝑅 , compared with 664 

rule-of-mixtures estimate (dashed line). 665 

 666 

Fig. 6 Energy release rate for through-thickness cracking. (a) Model geometry and applied load; (b) normalised 667 

energy release rate vs crack length for various ply thicknesses, and two values of applied strain. 668 

669 

Fig. 7 Predicted crack growth behaviour based on R-curve (continuous curves), compared with the experimental 670 

observations in [7], shown as data points, and micromechanical simulation results (dashed curves). (a) Inner 671 

layer thickness 2t1 = 40 µm; (b) 2t1 = 80 µm; (c) 2t1 = 160 µm. 672 
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 673 

Fig. 8 R-curves in the presence of intra-ply thermal residual stress. (a) Increased crack growth resistance relative 674 

to simulations without residual stress; (b) linear variation of steady-state resistance 𝐺𝑠𝑠
𝑅  versus matrix toughness; 675 

the arrow indicates the predicted change in 𝐺𝑠𝑠
𝑅  if the matrix toughness is changed from its RT value to its LH2 676 

value. 677 

 678 

Fig. 9 Predicted crack growth behaviour as a function of total strain (i.e. thermal and applied strain), for various 679 

ply thicknesses. (a) Inner layer thickness 2t1 = 40 µm; (b) 2t1 = 80 µm; (c) 2t1 = 160 µm; (d) applied strain for 680 

full through-thickness cracking versus matrix toughness. 681 
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 682 

Fig. 10 Predicted crack growth behaviour considering a reduction in matrix toughness at low temperature. (a) 683 

Inner layer thickness 2t1 = 40 µm; (b) 2t1 = 80 µm; (c) 2t1 = 160 µm; (d) applied strain for full through-thickness 684 

cracking versus 90°-layer thickness. 685 

 686 

Fig. 11 Comparison of ply failure strain for full through-thickness cracking based on the present R-curve 687 

approach with experimental observations and with currently available theoretical models for ply cracking. 688 

(Note: readers are referred to [29, 34] for the implementation of both analytical models. The constant 𝐺𝑚𝑐 =689 

220 𝐽/𝑚2  as originally used in [29, 34] is retained here, and no thermal residual stress is considered for 690 

simplicity.) 691 
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Table 1 

Carbon fibre material properties 

Young’s moduli 
Poisson’s 

ratio 
Shear moduli 

Coefficient 

of thermal expansion 
Density 

𝐸𝐿 (MPa) 𝐸𝑇 (MPa) 𝑣𝐿 𝐺𝐿 (MPa) 𝐺𝑇 (MPa) 𝛼𝐿 (𝐾−1) 𝛼𝑇 (𝐾−1) 𝜌 (kg/mm3) 

279000 15000 0.2 15000 7000 -0.7 × 10−6 12 × 10−6 1.79 × 10−9 

Note: the subscript 𝐿 and 𝑇 denote the longitudinal and transverse, respectively. 692 

Table 2 

Epoxy matrix material properties 

Material property Value Ref. 

Young’s modulus 

𝐸 (MPa) 

 

3760 

 

[14] 

Poisson’s ratio 

𝑣 

 

0.39 

 

[46] 

Plastic Poisson’s ratio 

𝑣𝑝 

 

0.3 

 

[8] 

Fracture toughness 

𝐺𝑐  (J/m2) 

 

120 

 

[58] 

Tensile strength 

X𝑚
𝑡  (MPa) 

 

93 

 

[46] 

Compressive strength 

X𝑚
𝑐  (MPa) 

 

410 

 

[46] 

Coefficient of thermal 

expansion 𝛼 (𝐾−1) 
55 × 10−6 [58] 

Density 

𝜌 (kg/mm3) 

 

1.3 × 10−9 

 

[8] 

 693 

Table 3 

Fibre–matrix interface properties 

Initial stiffness Interface strengths [60] Interface fracture energy [20] B-K law parameter [8] 

𝐾 (MPa/mm) 𝑡1
0 (MPa) 𝑡2

0, 𝑡3
0(MPa) 𝐺𝐼𝑐

𝑖𝑛𝑡 (J/mm2) 𝐺𝐼𝐼𝑐
𝑖𝑛𝑡 , 𝐺𝐼𝐼𝐼𝑐

𝑖𝑛𝑡  (J/mm2) 𝜂 

108 80 53 4 8 1.45 

 694 

Table 4 

Homogenized composite properties 

𝐸𝐿 (MPa) 𝐸𝑇 (MPa) 𝑣𝐿 𝐺𝐿 (MPa) 𝐺𝑇 (MPa) 𝛼𝐿 (𝐾−1) 𝛼𝑇 (𝐾−1) 𝜌 (kg/mm3) 

168800 8796 0.3 4078 3180 -0.12 × 10−6 37.5 × 10−6 1.59 × 10−9 

 695 
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 12 

S1. Constitutive modelling of epoxy phase 13 

The epoxy matrix is modelled using an isotropic elastic-plastic with damage constitutive 14 

model proposed by Melro et al. [1]. In the present work, the epoxy model described in [1-5] is 15 

implemented as a VUMAT user subroutine in Abaqus [6]. The initial elastic behaviour is defined by 16 

a linear relation between the stress tensor and the elastic strain. Then, to appropriately capture the 17 

inelastic behaviour of epoxy polymers [7, 8] and the hydrostatic pressure dependency [8], this 18 

constitutive model is based on the paraboloidal yield and failure criteria, and uses a 19 

thermodynamically consistent damage model to predict damage growth. The paraboloidal yield 20 

criterion is defined as [1, 9]: 21 

 𝑓(𝜎, 𝜎𝑐 , 𝜎𝑡) = 6𝐽2 + 2𝐼1(𝜎𝑐 − 𝜎𝑡) − 2𝜎𝑐𝜎𝑡 ,                                                                                                         (S1) 22 

where 𝜎 is Cauchy stress tensor, 𝐽2 is the second invariant of deviatoric stress tensor, 𝐼1 is the first 23 

invariant of the stress tensor and 𝜎𝑐  and 𝜎𝑡  denote the tensile and compressive yielding stresses, 24 

respectively. A non-associative flow rule [1] is also introduced to correct the volumetric deformation 25 
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in plastic regime. The tensile and compressive hardening laws are defined as two piecewise functions 26 

of the equivalent plastic strain. The hardening data of both tension and compression yield curves has 27 

been extracted from the experimental results in [8], which characterizes the stress-strain behaviour of 28 

a very typical Bisphenol-A type plain epoxy resin (i.e., Toho # 113) [8]. The damage onset of the 29 

epoxy matrix is defined by a damage activation function [1]: 30 

𝐹𝑚
𝑑 = Φ𝑚

𝑑 − 𝑟𝑚 = 0,                                                                                                                                                (S2) 31 

where 𝑟𝑚 is an internal variable related with the damage variable 𝑑𝑚, while the damage activation 32 

variable, Φ𝑚
𝑑 , is defined as [1]: 33 

Φ𝑚
𝑑 =

3𝐽2+𝐼1(X𝑚
𝑐 −X𝑚

𝑡 )

X𝑚
𝑐 X𝑚

𝑡 .                                                                                                                                                 (S3) 34 

The invariants 𝐽2 and 𝐼1 are determined using the effective stress tensor as defined in [1], while X𝑚
𝑐  35 

and X𝑚
𝑡  denote the ultimate compressive and tensile strengths. The internal variable 𝑟𝑚 is defined as 36 

[1]: 37 

𝑟𝑚 = 𝑚𝑎𝑥 {1, max
𝑡→∞

{Φ𝑚,𝑡
𝑑 }}.                                                                                                                                     (S4) 38 

The relationship between 𝑟𝑚 and 𝑑𝑚 is given by an exponential damage evolution law [1, 5] which 39 

is implemented along with the Bažant’s crack band model [10] to mitigate the mesh size dependency 40 

due to the material softening: 41 

𝑑𝑚 = 1 −
𝑒

𝐴𝑚(3−√7+2𝑟𝑚
2 )

√7+2𝑟𝑚
2 −2

,                                                                                                                                         (S5) 42 

where 𝐴𝑚  is the parameter determined by conducting the regularization of the computed energy 43 

dissipation of elements [1]. This involves using the fracture energy of the epoxy matrix, 𝐺𝑚𝑐 and the 44 

characteristic element size, 𝑙𝑒, according to the Bažant’s crack band model [10]. From the above 45 

definition of the damage model (i.e., Eqs. (S3-5)), it is noteworthy that (i) when the epoxy matrix is 46 

in an undamaged condition, 0 ≤ Φ𝑚
𝑑 < 1 and 𝑟𝑚 = 1, leading to 𝑑𝑚 = 0; (ii) when the damage 47 
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criterion has been activated, Φ𝑚
𝑑 ≥ 1  and 𝑟𝑚 = Φ𝑚

𝑑 , leading to 0 ≤ 𝑑𝑚 ≤ 1 ; (iii) 𝑑𝑚 = 1 48 

corresponds to when the material is fully damaged. More details about the computational 49 

implementation of the constitutive model are presented in [1, 5]. The stress-strain response of the 50 

epoxy model is schematically illustrated in Fig. S1 and the relevant material properties are listed in 51 

Table 2 of the main paper. 52 

 53 

Fig. S1 Schematic of the stress-strain response of the epoxy matrix. 54 

  55 
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S2. Verification of the epoxy model 56 

 57 

 58 

Fig. S2 Comparison between the present explicit approach and the implicit implementation in [4], 59 

with respect to the normalized crack length in an inner 90° layer of thickness 20 𝜇𝑚 and outer layers 60 

of thickness 75 𝜇𝑚. 61 

 62 

S3. Interlaminar properties  63 

Table S1 

Interlaminar properties for the interfaces between inner and outer layers [4] 

Initial stiffness Interface strengths Interface fracture energy  B-K law parameter 

𝐾 (MPa/mm) 𝑡0
𝑛 (MPa) 𝑡0

𝑠(MPa) 𝐺𝑖𝑛𝑡
𝑛  (J/mm2) 𝐺𝑖𝑛𝑡

𝑠  (J/mm2) 𝜂 

108 93 71 0.277 0.788 1.634 

 64 

  65 
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S4. Estimation of the crack-growth resistance from the crack opening profiles 66 

The crack-growth resistance 𝐺𝑅 , based on the tip-to-tip crack length 2𝑎  of the through-67 

thickness matrix crack and the maximum COD 𝛿𝑚𝑎𝑥 for various levels of strain, as indicated by the 68 

crack opening profiles in Fig. 2(c) of the main paper, is calculated by the following formula: 69 

𝐺𝑅 =
𝜋𝐸𝑇

16(1 − 𝑣𝑇
2)

𝐴2𝑎, 70 

𝐴 =
𝛿𝑚𝑎𝑥

𝑎
,                                                                                                                                               (S6) 71 

where  𝐸𝑇 = 8796 𝑀𝑃𝑎 and 𝑣𝑇 = 0.32, denoting the transverse elastic modulus and Poisson’s ratio 72 

of the uncracked lamina in the present study. 73 

 74 

S5. Initial attempt on generating the R-curve using two neighbouring loading fibres 75 

 76 

Fig. S3 Configuration of the model for initial attempt on generating the R-curve using two 77 

neighbouring loading fibres. 78 

As mentioned in Section 3 of the main paper, the finite element (FE) model for the initial 79 

attempt on generating the R-curve computationally is shown by Fig. S3(a). The entire model consists 80 

of 90° ply material only. For computational efficiency, a rectangular micromechanical model is 81 
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embedded within a square region. The same material properties, mesh size and element types as 82 

described in Section 3 of the main paper are employed for both the homogenized (elastic) region and 83 

the micromechanical model region. The displacement field is assumed to be continuous across the 84 

interfaces between the embedded cell and the homogenized outer portions. The model thickness in 85 

the x-direction (the fibre axis) is twice the average element size within the embedded cell, and periodic 86 

boundary conditions are applied to the faces normal to the x-axis. 87 

There is no pre-existing crack in this model. To initiate the matrix cracking in a natural manner 88 

at the fibre-matrix interface and thus to generate the R-curve with the progression of the matrix crack, 89 

two neighbouring fibres, with a relatively small inter-fibre spacing, which are aligned with the y-axis 90 

direction are chosen to be the load application points as shown in Fig. S3(b). All nodes of the upper 91 

loading fibre are given a specified vertical displacement 𝑢𝑦, whereas all nodes of the lower loading 92 

fibres are held fixed. The resulting nodal forces for the upper loading fibres are summed to obtain the 93 

force P, whereas the displacement is given by 𝛥 = 𝑢𝑦.  94 

 95 

 96 

Fig. S4 The load-displacement plot. 97 

 98 
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The load-displacement (𝑃 − 𝛥) curve obtained in this manner is shown in Fig. S4. This curve 99 

includes some periodical unloading curves that do not extrapolate back to the origin, indicating that 100 

model response is not linearly elastic. The contour plot of damage variable in Fig. S5(a) shows that 101 

the microcracking does indeed initiate at the fibre-matrix interface (i.e. debonding) with the tip-to-tip 102 

length of the matrix crack 2𝑎 indicated by the green arrow, which is in accord with the previous 103 

experimental and computational observations [4, 11, 12] as well as the present micromechanical 104 

simulation results in Fig. 2(b) of the main paper. With continuing to apply the load, however, some 105 

matrix damages appear in the direction of loading, as indicated by the yellow dashed box in Fig S5(b), 106 

which are not directly associated with the main crack growth process that is transverse to the loading 107 

direction. These damages are mainly caused by the compressive and shear deformation of the matrix 108 

near the fibres, due to the squashing effect caused by the upper and lower loading fibres, which does 109 

not conform to the intended application of the R-curve for the context of interest. Furthermore, Fig. 110 

S6 shows the plastic zone generated by this approach of loading. It is now clear that the severe non-111 

associated plastic deformation and damage caused by the loading fibres along the direction of loading 112 

are responsible for the inelastic unloading response shown in Fig. S4, and the contribution of this 113 

extraneous energy dissipation to the work of fracture could not readily be quantified. 114 
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 115 

Fig. S5 Contour maps of the damage variable at the tip-to-tip length of the matrix crack of (a) 5 𝜇𝑚 116 

and of (b) 40 𝜇𝑚. 117 

 118 

 119 

Fig. S6 Contour maps of the equivalent plastic strain at the tip-to-tip length of the matrix crack of 120 

40 𝜇𝑚. 121 
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S6. Curve fit of the results for 𝒈(𝒂/𝒕𝟏), for 𝑬𝑻/𝑬𝑳 = 𝟎. 𝟎𝟓 122 

 123 

 124 

Fig. S7 Fourth-order polynomial curve fit of the results for 𝑔(𝑎/𝑡1) in 𝑎/𝑡1, for 𝐸𝑇/𝐸𝐿 = 0.05, along 125 

with the curve-fit quality analysis done by using MATLAB [13]. 126 

  127 
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S7. Intra-ply thermal residual stresses at the completion of Step 1 128 

 129 

Fig. S8 (a) The intra-ply thermal residual stresses field at the completion of Step 1. (b) The interfacial 130 

normal stress at the completion of Step 1, along the prospective crack path as (c) the crack of length 131 

of 76 𝜇𝑚 generated in Step 2. 132 

 133 

S8. Laminate analysis for calculating the thermal residual strain at the ply level, 𝜺𝒚𝒚
𝒕𝒉  134 

Consider the cross-ply laminate shown in Fig. 6(a) of the main paper, which has undergone a 135 

quenching process (Step 1) with a resulting temperature change 𝛥𝑇 = −278𝐾 as given in Section 136 

5.1 of the main paper, the thermal strains in a ply are [14]: 137 

{𝜀}12
𝑇 = [𝜃]−𝑇{𝛼𝐿}𝛥𝑇 − {𝛼𝑃}𝛥𝑇,                                                                                                        (S7) 138 

where the subscripts “12” denote quantities in the local material coordinate (i.e. fibre direction=1, 139 

lateral direction=2), 𝛼 the coefficient of thermal expansion (CTE). The subscripts “𝑃” and “𝐿” signify 140 

quantifies pertinent to the ply and laminate, and [𝜃]−𝑇the transfer matrix given by: 141 

 142 
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[𝜃]−𝑇 = [
𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2

], 143 

𝑚 = cos(𝜃) , 𝑛 = sin(𝜃).                                                                                                                            (S8) 144 

For the inner 90° ply, 𝜃 = 90°. Having known the material properties of a ply including CTEs {𝛼𝐿} 145 

(see Table 4 of the main paper), the laminate CTEs {𝛼𝑃} can be calculated by using conventional 146 

lamination theory [15]. Finally, the lateral thermal residual strain 𝜀𝑦𝑦
𝑡ℎ  incorporated in Eq. (4) of the 147 

main paper is: 148 

 𝜀𝑦𝑦
𝑡ℎ = 𝜀22

𝑇 ,                                                                                                                                            (S9) 149 

where 𝜀22
𝑇  is the component of {𝜀}12

𝑇  pertinent to the lateral strain. 150 

In Figs. 9(a-c) and Figs. 10(a-c) of the main paper, the dotted vertical lines represent the 151 

thermal strain on 90° layer 𝜀𝑦𝑦
𝑡ℎ  at the completion of Step 1. There is little change in the value of 𝜀𝑦𝑦

𝑡ℎ  152 

for various inner layer thickness: 𝜀𝑡ℎ = 1.04%  for 2𝑡1 = 40 𝜇𝑚,  and 𝜀𝑡ℎ = 1.03%  for 2𝑡1 =153 

160 𝜇𝑚. This lack of sensitivity to the inner layer thickness is partly the consequence due to the 154 

relatively thick outer layer thickness employed in the present laminate configuration to conform to 155 

the experimental setup by Saito et al. [11]. Nevertheless, these values of inter-ply residual strain 156 

exceed the failure-initiation strain for fibre-matrix debonding, particularly when 2𝑡1 = 160 𝜇𝑚 for 157 

which even the full-thickness cracking is predicted to occur when 𝐺𝑐 = 60 𝐽/𝑚2, i.e., no applied 158 

strain is required to cause ply cracking, as can be seen from Fig 9(d) of the main paper. The 159 

representative contours illustrating the extent of matrix cracking for baseline matrix toughness 𝐺𝑐 =160 

120 𝐽/𝑚2 at the completion of Step 1 of the micromechanical simulations are presented below in Fig. 161 

S9. 162 

  163 
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 164 

Fig. S9 Contour maps of the damage variable at the completion of Step 1 for various inner 90° layer 165 

thicknesses: 2𝑡1 = 40, 80 and 160 𝜇𝑚 (the through-thickness cracks that are selected for measuring 166 

the crack length are indicated by the green dashed rectangles, and only the inner 90° layer is shown). 167 

 168 
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