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Abstract

A reliability formulation for mooring chain fatigue is developed based on the S–N approach. The effects

of mean load and degradation due to corrosion are included by starting from a S-N model with parameterized

dependence to the mean load and a customized corrosion condition scale. Partial dependence between the

failure events of individual links within a chain segment is addressed by distinguishing between properties

and loads that are assumed to be either independent or fully correlated between links. The paper includes

a thorough case study, based on a realistic case. A global sensitivity analysis is presented, to assess the

importance of interaction between random variables and to justify a reduction of the model dimension.

A reliability analysis is then performed, and the effect on failure probability from variation of a range of

parameters and model assumptions is studied.
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1. Introduction

Fatigue assessment of offshore mooring systems is required by relevant rules and standards [1, 2], to

demonstrate satisfactory resistance towards exposure to cyclic loads. These fatigue calculations are subject

to considerable uncertainties with respect to both loads and capacity, requiring fatigue safety factors typically

ranging from 5 to 8 [2]. These fairly large safety factors aim to satisfy a maximum annual probability of

mooring line failure in the range from 10−3 to 10−5 [2–4]. Nevertheless, mooring lines historically tend to

fail at a much higher rate [5–7]. The root causes are diverse, however; almost half of the events described

in [7] were related to chain components and almost half of those were caused by fatigue and corrosion. Likely

contributors to these failures are uncertainties in dynamic loads and a lack of proper models to account for

effects governing the fatigue capacity of mooring chains.
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The fatigue capacity curves prescribed by current design codes [1, 2] are based on fatigue tests of new

chain performed at a mean load of 20% of the minimum breaking load (MBL) [8]. In the fatigue calculations,

the actual mean loads of the mooring lines are disregarded, whereas degradation due to corrosion is accounted

for in a simplified manner by reducing the cross section area of the chains, giving an increase in the effective

stress ranges entering the calculations. However; full scale fatigue tests performed in recent years for both

new and used studless mooring chains have revealed that (i) the fatigue capacity of chains is strongly

dependent on the mean load, and (ii) realistic corrosion pits have a detrimental effect not well represented

by the simplified approach prescribed by the standards [8–12]. Hence, proper treatment of mean load effect

and degradation due to corrosion in the calculations seems imperative to enable improved estimation of

mooring line fatigue life.

Based on test results for new and used chain, tested at a range of mean load levels and with various

degrees of corrosion, Lone et al. [12] established a fatigue capacity model with parameterized dependence

to mean load and a customized corrosion measure. This work formed the basis for a probabilistic fatigue

damage model, presented in [13]. In the present paper, we further develop the probabilistic model into a

formulation of fatigue reliability for mooring chain segments that for the first time accounts properly for

mean load and corrosion effects. We herewith provide the necessary basis for enabling a reliability-based

integrity management of mooring chain fatigue (illustrated in Figure 1). This is the main contribution

of the paper. However, it is written in a more comprehensive way, for accessibility to readers with main

background in mooring line engineering and to a lesser extent in reliability methods.

The paper is organized as follows. In Section 2, we review the mean load and corrosion dependent

fatigue capacity model and the probabilistic fatigue damage model. In Section 3, we develop the reliability

formulation for fatigue failure of mooring chain segments, and discuss the need for extension into considering

entire mooring lines as well as some relevant aspects of the reliability model. In Section 4, we apply the

reliability formulation to a case study to discuss relevant assumptions and properties of the fatigue reliability

model. Conclusions are given in Section 5.

Reliability analysis:

probability of mooring

chain fatigue failure

Load measurements

or calculations

Decision making:

inspection planning,

replacement schemes

Mooring chain

inspections

Figure 1: Simplified illustration of reliability-based integrity management of mooring chain fatigue. The scope of the present

study is indicated by the red box with solid border.
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2. Probabilistic fatigue model

In this section, we review the mean load and corrosion dependent fatigue capacity model and the prob-

abilistic fatigue damage model in the context of the present paper. We apply the usual convention of

describing random variables by capital letters (e.g., X), small letters to describe a realization of a random

variable (e.g., x), and bold symbols to denote vectors or matrices (e.g., X,x).

2.1. Mean load and corrosion dependent fatigue capacity

The S-N approach to fatigue of mooring chain is considered. Fatigue capacity is then expressed in terms

of a stress-life (S-N) curve, defined as

N · Sm = A (1)

where N is the number of cycles to failure at constant stress range S, m is the slope parameter and A is

referred to as the intercept parameter. To account for the effect of mean load and corrosion on the fatigue

capacity, Lone et al. [12] expressed the intercept parameter as function of these parameters:

logA(σm, c) = B0 +B1 · g1(σm) +B2 · g2(c) (2)

where log(.) is the common logarithm, (Bj)j∈{0,1,2} are coefficients and g1(σm) and g2(c) are monotonically

increasing functions of the mean stress (σm) and a corrosion grade (c), respectively. The corrosion grade

applied here is based on a customized scale ranging from 1 (new chain or mild corrosion) to 7 (severe

corrosion), see [12] for details.

Equations (1) and (2) constitute a mean load and corrosion dependent S-N model as follows. For a given

stress range effect (m), the fatigue capacity (or number of cycles to failure) is proportional to the intercept

parameter, A. The first term in (2) describes the constant (time-invariant) part of the fatigue capacity.

The second term describes the mean load effect; a negative value of B1 implies that the fatigue capacity

increases when the mean load is reduced. The last term describes the deteriorating effect of corrosion; a

negative value of B2 implies that the fatigue capacity is reduced when the corrosion grade increases.

The coefficients of the mean load and corrosion dependent S-N model were estimated empirically from a

database of full scale fatigue tests, by considering the following regression model

logNi = B0 +B1 · g1(σm,i) +B2 · g2(ci)−m · logSi + ϵi

ϵi ∼ N(0, σ2
ϵ )

(3)

with the stress range effect fixed at m = 3. Here, the subscript i is a counter for fatigue test samples and ϵ

is the regression error representing the predictive uncertainty of the regression model, see e.g., [14].

In total the database consisted of 125 samples of studless chain, tested at various mean loads and for

various degrees of corrosion; 77 tests for used chains retrieved after operation in the North Sea, and 48 tests
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Figure 2: S-N curve intercept parameter fitted to fatigue tests of used and new chains [12], as function of mean load (left)

and corrosion grade (right). The horizontal dotted line is located at a reference value A = 1.346 × 1011 (logA = 11.129)

corresponding to λm = 20 [% MBL] and c = 1.

for new chains. Different functional relationships to the mean load and corrosion grade were assessed, and

the most adequate mean load function was found to be g2(σm) = λm, where λm is the mean load expressed

in percentage of the minimum breaking load (MBL). For corrosion grade, the best fit to data was achieved

with g2(c) = c. S-N model parameters obtained from least-squares regression in [12] are listed in Table 1,

and the corresponding intercept parameter is visualized in Figure 2 for various values of the mean load and

corrosion grade.

Table 1: S-N curve parameters estimated by least-squares regression with m = 3, from fatigue tests of used and new studless

chains [12].

g1(σm) g2(c) B̂0 B̂1 B̂2 σ̂ϵ

λm c 12.249 -0.0507 -0.106 0.17

This S-N model forms the basis for the probabilistic fatigue damage model described in the next subsec-

tion. Note that although we have presented the preferred functional relationships between the intercept and

mean load and corrosion grade, we will retain the generic notation g1(.) and g2(.) in the subsequent section

for the sake of generality.

2.2. Probabilistic fatigue damage

We now introduce the following assumptions:

• The Palmgren-Miner hypothesis on linear accumulation of the fatigue effect from each stress cycle is

adopted for variable amplitude loading.

• The S-N curve slope parameter (stress range effect, m) is assumed fixed.

• Time-variant random variables may be considered as piecewise time-invariant.
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Furthermore, we introduce a fatigue load variable as

Z = n0 · E[Sm] (4)

where n0 is the number of stress cycles and E[Sm] is the mth moment of the stress range distribution for a

given time period. By application of Miner’s rule, the fatigue damage after Ny years may then be expressed

as a summation over annual contributions [13]:

D(X;Ny) =

Ny∑
k=1

Zk

10(B0+B1·G∗
1,k+B2·G∗

2,k+ϵ)
(5)

where X = (B0, B1, B2, ϵ,Z,G∗
1,G

∗
2) is a vector of the underlying random variables, k is a counter for years,

and G∗
1,k and G∗

2,k are representative values of the mean load and the corrosion grade functions in the kth

year, respectively. Note that in [13], the uncertainty associated with the S-N model error (ϵ) was included

in the uncertainty of B0. Here, we choose to express this uncertainty explicitly, for reasons that will become

clear in Section 3. Also note that, when expressed as a function of the random vector X, the fatigue damage

in (5) is stochastic quantity. In the following, we will describe (5) and define the elements of X that were

not covered by the description of the S-N model in the previous subsection, namely Z, G∗
1 and G∗

2.

This fatigue damage model enables accounting for both prior, known loads and future, uncertain loads.

Hence, the vector Z, containing fatigue loads for each of the Ny years, may consist of both deterministic

and random quantities. For instance; if the damage is estimated for Np prior years and Nf future years, we

have Z = (z1, . . . , zNp , ZNy−Nf+1, . . . , ZNy ). That is, Z then consists of Np deterministic quantities and Nf

random quantities.

The mean load and corrosion dependent intercept parameter in (2) introduces a time-dependency to the

fatigue capacity, which varies both over years and during the course of each year due to mean load variations

and the temporal corrosion development. The annual variations are accounted for by allowing the values

of G∗
1 and G∗

2 to vary by year in Equation (5). By introducing representative values for the mean load and

corrosion grade functions, we ensure that the piecewise time-invariant summation accounts properly also for

the within-year variations.

The vector of representative mean load values (G∗
1) is constructed in a way similar to that of the fatigue

loads. For the Np prior years with known load history, the representative mean load values are calculated

deterministically from the joint, empirical distributions of mean loads and stress ranges for each year [13]:

g∗1,k = − 1

b1
log

[∑
i ni · smi · 10−b1 · g1(σm,i)

n0,k · E[Sm]k

]
(6)

where index i refers to tuples with (ni, si, σm,i) from a joint histogram of stress ranges and mean stress:

ni is the number of joint occurrences of stress range si and mean stress σm,i, n0,k =
∑

i ni is the total

number of stress cycles, E[Sm]k = 1
n0,k

∑
i ni · smi is the mth moment of the stress range distribution, and
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all summations are over observations in the kth year. In this calculation, the mean load coefficient B1 is

assumed fixed at a given value b1. However, as demonstrated by the following example, the representative

mean load calculated from (6) is typically insensitive to variations in the mean load coefficient.

Example 1. We consider the hindcast-based simulations presented in [13] for the mooring system of a

typical semi-submersible production unit in the Norwegian Sea.1 The representative mean load is calculated

for the years 2001-2010 using Equation (6) with the mean load function g1(σm) = λm [% MBL] with

three different values of b1: the estimated value from regression analysis, B̂1 = −0.0507 (Table 1), and

B̂1 ± 2 · σ̂B1
where σ̂B1

= 0.0045 is the estimated standard error of B̂1 [13, Sec. 4]. The resulting values for

g∗1 are presented in Figure 3, showing negligible difference for the lower and upper values of the estimated

representative mean load for each year. Hence, for the S-N model in Table 1 and the mooring line considered

in the current example, a fixed value of B1 may be used for the calculation of representative mean load,

regardless of whether a fixed or stochastic mean load coefficient is assumed for the probabilistic analysis.

2002 2004 2006 2008 2010
Year

11.5

12.0

12.5

13.0

13.5

14.0

g
* 1
 [%

 M
BL

]

Figure 3: Example of annual representative mean loads for a semi-submersible in the Norwegian Sea, calculated for b1 = B̂1

(bars) and b1 = B̂1 ± 2 · σ̂B1
(error bars). The limits of the vertical axis have been narrowed down to make the upper and

lower values of the error bars distinguishable.

For the Nf future years, the representative mean load is generally represented by stochastic quantities.

A fixed value for future years may however be justified if the annual variability is found to be sufficiently

low, or if the effect of annual variability on the quantity of interest is shown to be negligible. Note that

results presented in [13] showed that the representative mean load may be correlated with the annual fatigue

load. Alternative ways to address this correlation are discussed in Section 3.

For the corrosion grade function,G∗
2 is a tuple containing the representative value for each of theNy years,

implicitly describing the corrosion grade development and the corresponding chain degradation. However,

unlike the fatigue load and representative mean load, the corrosion grade may be subject to uncertainty for

both prior and future years. This may be the case even if inspections are performed, since the categorization

from inspection will itself be subject to some uncertainty. Furthermore, inspections are discrete events and

1The current calculations are performed for mooring line 1 of the system considered, see [13, Sec. 3] for details.
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will therefore yield corrosion grade estimates for those specific points in time, but not for the intermediate

time periods. Hence, in the case of chain inspections, the construction of G∗
2 must be based on an assessment

of the quality and uncertainty of the inspections, as well as the uncertainty of the intermediate and future

states. On the other hand, if nothing is known about the corrosion state of the chains it may be convenient

to let G∗
2 be a function of some underlying random variable(s), such as for instance the corrosion grade at

the end of the service life and some parameter that describes the shape of its temporal development. This

is illustrated in the following example.

Example 2. Consider the corrosion grade function g2(c) = c, and the following model for the corrosion

grade development [13]:

Ck = 1 + (Cend − 1) · (k − a

L
)η (7)

where L ∈ N∗ is the service life, k ∈ {1, . . . , L} is a counter for year, Cend is a random variable representing

the corrosion grade at the end of the service life, η is an exponent that determines the shape of the time

history, and a ∈ [0, 1] controls which value is taken as the representative one. For example, a = 0.5 implies

that the corrosion grade is represented by its value halfway through that year, whereas a = 0 means that

the value at the end of the year is used. A reasonable choice for the representative corrosion grade function

would then be G∗
2,k = Ck, which gives G∗

2 = (C1, ..., CNy
). Hence, assuming that the parameters (a, L, η) are

fixed, the vector G∗
2 is a function of the random variable Cend only. Examples of corrosion grade histories

for different shape parameters are shown in Figure 4.
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Figure 4: Examples of corrosion grade histories calculated from Equation (7) with Cend = 4, L = 15, a = 0.5 and different

shape parameters.

In summary, the fatigue damage model in Equation (5) represents an adaption of Miner’s rule for damage

accumulation that enables accounting for (i) the annual fatigue load variability, (ii) the effect on fatigue

capacity from mean load (including time dependent variations) and degradation due to corrosion, and (iii)

possible interactions between these. This forms the basis for the mooring chain reliability formulation that

is developed in the next section.
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3. Reliability formulation

In this section, we first define the failure criterion for a single chain link. This is thereafter used as a

starting point for developing the reliability formulation for a chain segment. We proceed by defining limit

state functions for link and segment failure, and discuss various aspects of the probabilistic model.

3.1. Failure of single link

For a deterministic case, fatigue failure is assumed to occur when the fatigue damage reaches unity.

The corresponding failure criterion is then D ≥ 1. In practice, Miner’s rule is imperfect and subject

to considerable uncertainty. Wirsching [15] therefore argued that a more appropriate failure criterion is

D ≥ Dcr, where Dcr ∈ R+ is a random variable denoting the “critical” damage (i.e., the Miner’s sum at

failure). The probability of failure for a single chain link may then be expressed as

p
(1)
f = P [Dcr ≤ D(X;Ny)] (8)

where superscript ·(1) indicates that the failure event is for one link.

3.2. Failure of chain segment

A chain segment is here defined as a continuous mooring line section, composed of identical chain links.

As such, it constitutes a classical series system where failure of a single component (here: chain link) leads

to system (segment) failure. Unfortunately, the formulation in (8) is inappropriate for direct calculation of

segment failure probability in the presence of partial correlation between the failure events of the links. As

illustrated by the following example, segment failure probability may be considerably over- or underestimated

if partial dependence between the individual links is ignored or mistreated.

Example 3. Consider a mooring chain segment composed of N identical links, and let the probability of

failure in any one of these links be identical and equal to p
(1)
f . Two limiting cases may then be defined for

the failure probability for this segment: (i) the failure events for each of the links are fully correlated, or (ii)

the failure events are mutually independent. The failure probability for these limiting cases is [see e.g., 16,

Chapter 3]:

p
(N)
f =

p
(1)
f if fully correlated

1−
[
1− p

(1)
f

]N
if independent

(9)

The resulting failure probability is shown as a function of number of components (links) in Figure 5, assuming

p
(1)
f = 10−6. With 100 links, the failure probability is two orders of magnitude higher for the case with

independence, and with 1000 links the difference is three orders of magnitude.
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Figure 5: Probability of failure for a series system as function of number of components for the two limiting cases (independent

vs. fully correlated failure events), assuming probability of failure in any one component is 10−6.

Instead of considering the failure events as either fully correlated or independent, Larsen and Mathisen [17]

accounted for the partial correlation by distinguishing between the variables that are fully correlated be-

tween links and those that may be assumed to be independent. A similar approach is applied here. We

assume that the following variables and properties are the same between links:

• Z (fatigue loads). This is considered a reasonable and realistic assumption, as links within a chain

segment will indeed be exposed to very similar dynamic loads (hence, similar stress range distributions).

Any deviations in the loads within a segment are assumed to be of minor importance.

• G∗
1 (mean loads). Analogously, the mean loads are assumed to be the same for links within a segment.

This is a slightly less accurate assumption, since the mean load in a catenary line will generally decrease

with increasing distance from the fairlead in direction of the anchor.2 Nevertheless, the mean loads

within a segment will be practically fully correlated, and conservatism may be ensured by using the

highest mean load within the segment (that is, typically the mean load for the link closest to the

fairlead).

• G∗
2 (corrosion grades). Some variation of the corrosion grade would be expected along a segment,

depending on segment length, location (position in water column, sea bed contact, etc.) and due to

the inherent variability of the corrosion process. The need for a model addressing its spatial variation

could therefore be justified. Here, we simplify the problem by assuming that the same corrosion grade

applies to the entire segment. Conservatism may then be ensured by considering the most severe

corrosion grade along the segment length as representative for all links. In the case that inspections

reveal a systematic variation from one end of the segment to the other, this could be addressed by

modeling the segment as two or more separate segments with different values for the corrosion grade.

• B0, B1, B2 (S-N model parameters). This implies that the mean load and corrosion grade effects are

2There are exceptions to this general rule, for instance in the presence of buoys. However, by definition, chain links on

different sides of a buoy would be considered as parts of separate chain segments.
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assumed to be the same, and consequently, that the median fatigue capacity is the same for each link.

This is consistent with the regression model in Equation (3).

• Dcr (Miner’s sum at failure). According to Lotsberg [18, p. 115], the accuracy of Miner’s rule is related

to the shape of the fatigue load spectra. Hence, following the above assumption of similar fatigue loads,

it is reasonable to assume the same Miner’s sum at failure for links within a segment.

On the other hand, we assume that the deviation from the median fatigue capacity, expressed in terms

of the S-N model error (ϵ), is independent and identically distributed (i.i.d.) for each link. Again, this

assumption is consistent with the regression model in Equation (3).

The fatigue damage for the ith component may then be expressed as:

Di(Xi;Ny) =
1

10ϵi

Ny∑
k=1

Zk

10(B0+B1·G∗
1,k+B2·G∗

2,k)
(10)

where the vector of random variables Xi here contains one independent variable (ϵi), whereas the remaining

variables take on the same value for all links (B0, B1, B2,Z,G∗
1,G

∗
2). The corresponding failure probability

for the ith component is then:

p
(i)
f = P

Dcr ≤
1

10ϵi

Ny∑
k=1

Zk

10(B0+B1·G∗
1,k+B2·G∗

2,k)

 (11)

We now define two auxiliary variables that will be useful in the following:

R := 10ϵ (12)

V (X;Ny) :=
1

Dcr

Ny∑
k=1

Zk

10(B0+B1·G∗
1,k+B2·G∗

2,k)
(13)

For notational convenience, the variable Dcr is here appended to the vector of fully dependent random

variables, X. By utilizing that R and Dcr are always positive, Equation (11) may be reorganized into

p
(i)
f = P [Ri ≤ V (X;Ny)] (14)

This expression has the form of a classical load-resistance formulation for a series system exposed to a

common “load” V and with i.i.d. “resistance” Ri. The probability of segment failure may be expressed by

means of the event that any of the N links fails or, equivalently, as the complement of the event that all the

components survive:

p
(N)
f = P

[
N⋃
i=1

(Ri ≤ V (X;Ny))

]
= 1− P

[
N⋂
i=1

(Ri > V (X;Ny))

]
(15)

By conditioning on a realization of the variables that are fully correlated between links, v = V (x), the

failure (or survival) events become statistically independent. Recalling that the Ri are i.i.d., the conditional
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probability of segment failure is then

p
(N)
f |X=x = 1−

N∏
i=1

P [Ri > v] = 1− P [R > v]
N

= 1− [1− FR(v)]
N

(16)

where FR(v) = P [R ≤ v] is the cumulative distribution function (CDF) of R for any single link, evaluated

at v. From order statistics, the resulting expression is recognized as the exact distribution of the extreme

minimum value of N i.i.d. variables R, see e.g., [19]. In other words, Equation (16) describes an intuitive

result; when the “load” (here: v) is the same for all components, segment failure is controlled by the

resistance of the weakest link.

Now, let

W := min {R1, . . . , RN} (17)

denote the deviation from median fatigue capacity for the weakest out of N chain links, and let FW (.) denote

its CDF. The conditional segment failure probability may then be expressed in a more compact form as

p
(N)
f |X=x = FW (v;N) (18)

The marginal segment failure probability is obtained from the total probability theorem:

p
(N)
f =

∫
X

FW (V (x);N) fX(x) dx (19)

where fX(.) is the joint probability density function for X. This resulting integral is equivalent to the

probability statement [see e.g., 20, Ch. 3]

p
(N)
f = P [W ≤ V ] (20)

which gives an intuitive representation, stating that segment failure is the event that the weakest link

“resistance” is less than or equal to the random “load” V . By defining the weakest link fatigue damage as

DW (X;Ny, N) :=
1

W

Ny∑
k=1

Zk

10(B0+B1·G∗
1,k+B2·G∗

2,k)
(21)

where W is defined in (17), we may reorganize (20) into

p
(N)
f = P [Dcr ≤ DW (X;Ny, N)] (22)

which expresses the probability of segment failure on the same format as that describing single link failure

in Equation (8).

3.3. Model uncertainties

Model uncertainties are included in probabilistic models to account for the uncertainties and possible

bias in the mathematical models representing physical effects, and the inaccuracies in the underlying data
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used to define the input to the calculations. Relevant examples include the use of a S-N model and Miner’s

rule to represent the fatigue effect, and inaccuracies in load measurements or in numerical models used for

response simulations. In fact, we have already included one model uncertainty by introducing the random

variable Dcr to represent the Miner’s sum at failure (cf. Section 3.1). Here, we introduce additional random

variables to account for inaccuracies in stress ranges, mean loads and corrosion grade.

Stress ranges. Estimated stress ranges normally originate from one of the following sources: (i) mooring

line tension measurements, (ii) mooring system response calculations or (iii) a combination of these. In the

former case, measurement errors cause inaccuracies that will depend on for instance sensor type, time since

last calibration and frequency resolution. In the case of response calculations, stress range errors arise from

for instance inaccuracies in the numerical models (e.g., mooring component properties and environmental

load coefficients for the floater), assumptions about operational parameters (e.g., draft and heading of

floater, mooring line pretension) and the modeling of environmental loads (wind, waves and current). In

general, the magnitude of the respective errors may be reduced by increasing the estimation effort, for

instance by improved sensors or measurement techniques, by use of model tests for calibration of numerical

models [21, 22] or by combining measurements and response calculations in a sensible way. The errors

may, however, never be completely eliminated. For all cases, we assume that the true stress range may be

quantified as S′ = Qs · S, where Qs is a random variable denoting stress range error and S is the estimated

stress range. Assuming that Qs is time-invariant and independent of the estimated stress range, the true

fatigue load may then be expressed as

Z ′ = n0

∫
S

(Qs · s)mfS(s)ds = Qm
s · Z (23)

where Z is the estimated fatigue load.

Mean loads. The mean load error is of similar nature and origin as that for the stress ranges, but is likely to

be different in magnitude. For instance, if stress ranges and mean loads are taken from measurements, signal

drift will directly influence the mean loads but not necessarily the dynamic loads (i.e., stress ranges) [23].

We therefore introduce a separate modeling error for the mean loads, and assume that the true mean stress

may be expressed as σ′
m = Qm · σm, where Qm is the mean load error and σm is the estimated mean stress.

The true representative mean load is then obtained by substituting σ′
m for σm in Equation (6):3

G∗
1,k

′ = − 1

b1
log

[∑
i ni · smi · 10−b1 · g1(Qm · σm,i)

n0,k · E[Sm]k

]
(24)

3Strictly, the true mean stress S′ should also be substituted for the estimated mean stress S in Equation (24). However,

the stress range error (Qs) cancels out since it enters the inner fraction in both numerator and denominator.
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where G∗
1,k

′ denotes the true representative mean load. This is inconvenient, since the numerator of the

inner expression must be re-evaluated for each realization of the random variable Qm. However, if the mean

load function is on the form g1(σm) ∝ σm, the true representative mean load may be approximated as

G∗
1
′ ≈ Qm ·G∗

1 (25)

where G∗
1 is the estimated representative mean load. A comparison of Equations (24) and (25) is shown

in Figure 6 for two realizations qm of the mean load error with g1(σm) = λm, demonstrating that the

approximation error introduced by (25) is negligible for the case considered.

2002 2004 2006 2008 2010
Year

0.0
2.5
5.0
7.5

10.0
12.5
15.0

g
* 1
′  [

%
 M

BL
]

qm = 1.2, exact
qm = 0.8, exact

approximation
qm = 1.0

Figure 6: Comparison of true representative mean loads evaluated by Equations (24) (“exact”) and (25) (“approximation”) for

qm ∈ {0.8, 1.2} with g1(σm) = λm [% MBL], using the joint stress range and mean load distributions applied in Example 1.

Representative mean loads for qm = 1.0 are included for reference.

Corrosion grade. A source of corrosion grade error is the categorization from inspections, in particular

for the subjective scale used for the model described in Section 2. If a more objective scale were used,

with categorization from for instance 3-D scans, the categorization error could be reduced but not fully

eliminated.4 Errors may also arise in the assumptions about the development of the corrosion grade between

two inspection events. Analogously to the inclusion of stress range and mean load errors, we assume that

the true corrosion grade may be expressed as C ′ = Qc · C where Qc is the corrosion grade categorization

error and C is the estimated corrosion grade. The implications for the true representative value of the

corrosion grade function, G∗
2
′, then depends on the assumed form of the corrosion grade function, g2(c). For

the function described in Section 2 and used in Example 2, gc(c) = c, it is

G∗
2,k

′ = Qc · Ck (26)

where Ck is the estimated corrosion grade for the kth year.

4See Gabrielsen et al. [24] for preliminary results from ongoing work, aiming to develop computer algorithms that may be

used to determine the corrosion grade based on 3-D scans of the chain links.
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Fatigue damage including model uncertainty. An adjusted expression for the weakest link fatigue damage

is now obtained by substituting true values (Z ′, G∗
1
′, G∗

2
′) for estimated values (Z,G∗

1, G
∗
2) in Equation (21):

DW (X;Ny, N) =
1

W

Ny∑
k=1

Qm
s · Zk

10(B0+B1·Qm·G∗
1,k+B2·Qc·Ck)

(27)

where we have assumed that the approximation in (25) holds, and that the representation in (26) is applica-

ble. Note that we have here implicitly assumed that the model uncertainties (Qs, Qm, Qc) take on the same

value for all components within a segment.

3.4. Limit state function

A common representation of the failure criterion is in terms of a limit state function, g(X), which divides

the space of the random variables into a failure domain and a safe domain for the failure mode considered:

failure domain: g(x) ≤ 0

safe domain: g(x) > 0
(28)

The failure probability may then be expressed as the probability that a realization of the random vector

X falls into the failure domain, pf = P [g(X) ≤ 0]. Hence, based on Equation (22), we define the limit state

function for fatigue failure of a chain segment as

g(X;Ny, N) = Dcr −DW (X;Ny, N) (29)

where DW (.) is the fatigue damage of the weakest link as defined in Equation (27). The limit state function

for single link failure is then obtained as a special case of (29), with N = 1 (in which case W = R = 10ϵ).

3.5. Bounds on the failure of a mooring line

A mooring line is normally composed of more than one segment. The segments may be of the same type

(e.g., all studless chains, possibly with different diameters), or they may be composed of different component

types (e.g., chains and steel wire rope). In any case, it is a series system for which failure of any one segment

leads to line failure. To formulate this, we first define the event Ej to denote fatigue failure for segment j,

and Ēj to denote its complement (the event that segment j survives):

Ej : g(Xj ;Ny, Nj) ≤ 0

Ēj : g(Xj ;Ny, Nj) > 0
(30)

where Nj is the number of components in segment j. Note that to simplify the notation slightly, we have

here assumed that the same limit state function, g(.), is applicable to all segments. In principle, however, it

may differ for segments of different component types.
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Analogous to Equation (15) describing segment failure, the probability of a mooring line fatigue failure

may be expressed either by means of the event that any one segment fails, or by means of the complement

of the event that all segments survive:

pf,line = P

 J⋃
j=1

Ej

 = 1− P

 J⋂
j=1

Ēj

 (31)

where J is the number of segments in the mooring line. In order to proceed from this point we would

need to address the partial correlation of the segment failure events. A natural way forward could be to

address the dependence or independence between the random variables contained in each random vector

Xj , similar to what was done for the partial dependence for the segment failure formulation. However,

identical assumptions to those made for within segment dependence and independence cannot necessarily

be justified. Specifically;

• The S-N model coefficients will differ between segments with different component types.

• The fatigue loads will be highly correlated, but are likely to be of different magnitude due to for

instance different component dimensions, damping effects along the line or even different stress range

effect (S-N curve slope parameter, m, cf. Equations (1) and (4)).

• Mean loads are also highly correlated, but with magnitudes that depend on segment positions along

the line.

• Corrosion grades may be anywhere between highly correlated (e.g., for segments that are close to

each other and of similar component types) or completely uncorrelated (e.g., for segments in different

positions along the line, such as fairlead chain vs. bottom chain, or for chain segments of different

material grades).

• Replacement of individual segments, for any reason, leads to different number of years in service (Ny)

between segments.

Hence, mooring line failure cannot be formulated in the same compact form as that for segment failure in

the general case.

As an alternative to further developing Equation (31), crude bounds (similar to those discussed in

Example 3) may be given as [25, Ch. 5]:

J
max
j=1
{P[Ej ]} ≤ pf,line ≤ 1−

J∏
j=1

(1− P [Ej ]) (32)

where the lower bound is exact for fully dependent failure events Ej whereas the upper bound is exact for

completely independent events. Note that if the failure events are rare (i.e., P[Ej ]≪ 1 for all j), the upper

bound may approximated by p
(upper)
f,line ≈

∑J
j=1 P[Ej ]. For the general series system these bounds may be too

wide to be of any practical value, but not necessarily for a mooring line with a limited number of segments.

This is illustrated by the following example.
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Example 4. Consider a mooring line composed of J = 5 segments, and let pf,j = P[Ej ] denote the

marginal probability of failure for segment number j. We first consider a case where one of the segments is

more exposed to fatigue than the remaining segments: pf,1 = 10−4 and pf,j = 10−5 for j ∈ (2, ..., 5). The

mooring line failure probability is then bounded by pf,line =
[
1.0× 10−4, 1.4× 10−4

]
, with a ratio between

the upper and lower bounds of 1.4. Next, we consider a case that is perhaps less likely for a mooring line

in practice; we assume that all segments are equally exposed to fatigue with marginal failure probabilities

pf,j = 10−4 for j ∈ (1, ..., 5). This gives the bounds pf,line =
[
1.0× 10−4, 5.0× 10−4

]
, with a ratio of 5

between upper and lower bounds.

Firstly, the initial case illustrates that mooring line fatigue failure is likely to be dominated by the critical

segment. Secondly; the probability bounds are actually fairly narrow for both the cases in this example,

considering that structural reliability calculations are normally concerned with orders of magnitude rather

than exact numbers. In any case, the starting point for assessment of mooring line failure probability is to

calculate the failure probability for each segment properly, and this will be the focus for the remainder of

this paper. Note that an extension of a fatigue reliability formulation into considering failure of two mooring

lines is presented and discussed by Mathisen and Hørte [4].

3.6. Distribution of weakest link resistance

We will now elaborate on the distribution of W , defined in (17) and describing the deviation from median

fatigue capacity for the weakest link in a segment, and used to define the weakest link fatigue damage in

Equation (21). Let ϵ be normally distributed with mean µϵ and variance σ2
ϵ , denoted ϵ ∼ N(µϵ, σ

2
ϵ ).

5 The

random variable R = 10ϵ then follows a lognormal distribution, denoted R ∼ LN(µlnR, σlnR), which is

defined by

fR(r ; µlnR, σlnR) =
1

r · σlnR ·
√
2π

exp

[
−1

2

(
ln r − µlnR

σlnR

)2
]

(33)

FR(r ; µlnR, σlnR) = Φ

(
ln r − µlnR

σlnR

)
(34)

where fR(.) is the probability density function (PDF) and FR(.) is the cumulative distribution function

(CDF). The parameters µlnR and σlnR correspond to respectively mean value and standard deviation of the

normal variate lnR, and Φ(.) is the standard normal CDF. The distribution parameters for R may then be

obtained from

µlnR = E[lnR] = ln 10 µϵ (35)

σlnR =
√
Var[lnR] = ln 10 σϵ (36)

5Strictly, following the regression model in Equation (3), we have µϵ := 0. However, for the generality of the current

subsection, we prefer to maintain the possibility for a non-zero µϵ.
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As previously noted, the exact distribution of W = min {R1, . . . , RN} is obtained from order statistics,

see e.g., [19], as:

fW (w;N) = N [1− FR(w)]
N−1

fR(w) (37)

FW (w;N) = 1− [1− FR(w)]
N

(38)

where fR(.) and FR(.) are respectively the PDF and the CDF of the underlying distribution (for a single

link). Note that (37) and (38) are exact regardless of the underlying distribution type.

When the underlying distribution is lognormal, the distribution of the weakest link asymptotically (as

N →∞) approaches the type III extreme value distribution of minima (Weibull) [19]. The Weibull distri-

bution is defined by

fW (w; α, γ) =
γ

α

(w
α

)γ−1

exp
[
−
(w
α

)γ ]
(39)

FW (w; α, γ) = 1− exp
[
−
(w
α

)γ ]
(40)

where α and γ are scale and shape parameters, respectively. These distribution parameters may be obtained

from those of the underlying distribution as [26]

α = e µlnR − an σlnR = 10 µϵ − an σϵ (41)

γ =
1

bn σlnR
=

1

bn ln 10σϵ
(42)

where the coefficients an and bn are functions of the number of links, and given by [26]

an =
2 lnN − 0.5 ln (lnN)− ln(2

√
π)√

2 lnN
(43)

bn =
1√

2 lnN
(44)

In many cases, using the exact distribution in (38) for numerical calculations is straightforward. However,

the Weibull distribution in (40) may be easier to work with and is commonly available in software for

probabilistic analysis. The following example illustrates the effect of the number of links on the weakest link

resistance, and also that the asymptotic distribution may be a reasonable approximation even for a finite

number of components.

Example 5. Consider a case with ϵ ∼ N(0, 0.172), which corresponds to the S-N models in Table 1.

The single link distribution is then R ∼ LN(0, 0.39). The exact and asymptotic distributions of W are

shown in Figure 7 for three different segment sizes, along with the lognormal distribution for a single link.

Distribution statistics are listed in Table 2. These clearly show that when the segment size (N) increases,

the distribution is shifted towards lower resistance and becomes more narrow. Reasonable agreement is

observed between the exact and the asymptotic (Weibull) distributions, including the lower regions (left
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tails) of the distributions. For instance, the difference in 1-percentile is around 10% for N = 20 and roughly

5% for N = 500 with the asymptotic distribution on the low side.
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(a) Probability density function (PDF).
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(b) Cumulative distribution function (CDF).

Figure 7: Example of weakest link resistance for N ∈ {20, 100, 500}: exact distribution vs. asymptotic Weibull distribution, for

ϵ ∼ N(0, 0.172). Single link distribution included for comparison.

Table 2: Statistics for W from Example 5.

Exact Asymptotic

N Median Mean St.dev. CoV p1 p1

1a 1.00 1.08 0.44 0.41 0.40 −

20 0.49 0.49 0.10 0.20 0.28 0.25

100 0.38 0.38 0.06 0.16 0.23 0.22

500 0.31 0.31 0.04 0.14 0.20 0.19

St.dev.: standard deviation. CoV: coefficient of variation. p1: 1-percentile.

a Single link, i.e., W = R.

3.7. On the correlation between Z and G∗
1

The fatigue load (Z) and the representative mean load (G∗
1) originate from the same underlying load

process, and may therefore be correlated with each other. Results presented in [13, Sec. 3] for a typical

production system in the Norwegian Sea showed that for each mooring line, the sign and magnitude of

this correlation depend on its orientation compared to the dominating directions of environmental loads.

Consequently, if the annual variability of Z and G∗
1 is of importance for the problem at hand, the correlation

between them may be important as well. In the following we will present three alternative ways to address

this in the reliability calculations.

The first option it to model Z and G∗
1 as dependent random variables. The practical implications of this

approach will depend on the choice of method for dependence modeling and the calculation method for the
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reliability problem.

A second alternative is to introduce the random variable Z∗ = Z · 10−B1·G∗
1 as an “effective” fatigue

load that includes the mean load effect on the capacity, as proposed in [13]. A probabilistic model for the

variability of Z∗ may then be established from joint statistics of Z and G∗
1, implicitly accounting for the

correlation between them. However, two premises are necessary for this approach to be useful. Firstly,

the mean load coefficient (B1) should be modeled as fixed. Otherwise, the probabilistic model for Z∗

will depend on the random variable B1, in which case the introduction of Z∗ offers no convenience over

modeling the correlation between Z and G∗
1 as described in the first alternative. Secondly, inclusion of

model uncertainties for stress ranges and mean loads to obtain the true value of the effective fatigue load

yields Z∗′ = Qm
s · Z · 10−B1·Qm·G∗

1 (assuming that the approximation in Equation (25) is applicable). That

is, the true effective fatigue load (Z∗′) cannot be expressed as an explicit function of the estimated effective

fatigue load (Z∗) unless a fixed value is assumed for the mean load error (Qm). A possible remedy could

be to set a fixed value for the mean load error (typically, Qm = 1), and substitute an alternative model

uncertainty Qse for Qs to represent the total model error for the effective fatigue load. This new model

uncertainty, Qse, cannot be determined directly from Qs and Qm, and would then need to be estimated

separately.

Finally, a third alternative is to neglect the dependence between Z and G∗
1 and model them as mutually

independent variable. This may be justified if (i) the correlation between them is weak, or (ii) the annual

variability of Z andG∗
1 is shown to be of limited importance for the quantity of interest, or (iii) the correlation

between Z and G∗
1 is found to be negative (if the correlation between them is negative, implying that a

high fatigue load is likely to be combined with a low mean load, the assumption of independence will be

conservative with respect to fatigue damage). Note that this third approach, assuming independence, will

be applied in the case study in Section 4.

3.8. Summary

Starting from the failure criterion for single link failure in Equation (8), we have developed a fatigue

reliability model for mooring chain segment failure that includes the effect of mean load and degradation

due to corrosion. A fundamental assumption for the current formulation of segment failure is that the

random variables may be divided into two groups as follows: (i) variables that are fully correlated and each

takes on the same value for links within a segment (dynamic loads, mean loads, corrosion grade, S-N model

coefficients and model uncertainties), and (ii) variables that are independent across links within a segment

(S-N model regression error). The resulting limit state function for segment failure is given in Equation (29),

which is expressed in terms of the fatigue damage of the weakest link and includes single link failure as a

special case. The weakest link is identified as the one with the largest negative realization of the S-N model

error, that is, the link with the least favorable deviation from the median fatigue capacity.
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4. Case study

The reliability formulation developed in Section 3 is now applied for a case study. First, the scope and

the basis for the study are described. Then, the calculation methods applied are outlined. Finally, results

are presented and discussed, and some main conclusions of the case study are summarized.

4.1. Scope and objectives

We consider fatigue of a mooring chain segment, and the case study is divided into three parts:

1. A global sensitivity analysis, to (a) identify random variables that may be fixed in order to simplify

the model and reduce the dimension of the problem, and (b) assess the importance of interactions

between random variables in the model.

2. A reliability analysis, to (a) calculate the probability of fatigue failure for the base case, (b) validate

the selected approach, and (c) assess the importance of the respective variables compared to the results

from the global sensitivity analysis.

3. A parametric study, to demonstrate the impact on failure probability from (a) alternative cases such

as higher fatigue loads or mean loads and (b) alternative S-N models neglecting mean load or corrosion

effects.

4.2. Basis

The base case is defined as follows:

• A service life of 15 years.

• The segment consists of 500 chain links.

• Fatigue capacity described by a S-N model with stress range effect m = 3, and intercept parameter

according to Equation (2) with g1(σm) = λm [% MBL] and g2(c) = c.

Probability distributions applied for the random variables in the base case are listed in Table 3, and

are defined on the basis described in the subsequent paragraphs. The base case is partly related to the

case study presented in [13], but with higher fatigue loads. The idea is that it will be more interesting to

assess interaction effects and the influence of main parameters for a case with failure probability closer to a

minimum acceptable safety level.

Critical damage. Wirsching and Chen [27] list statistics for the uncertainty in Miner’s sum at failure from

various sources, with median values ranging from 0.69 to 1.15 and coefficient of variation (CoV) ranging from

0.19 to 0.67. In their example of tendon fatigue for a tension-leg platform they modeled it as a lognormal

variable with a median value of 1.0 and a CoV of 0.30. This model has since been widely used for fatigue
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Table 3: Random variables for base case.

Variable Symbol Unit Dimensiona Distributed as Mean St.dev. CoVb

Miner’s sum at failure Dcr - 1 LN(0, 0.29) 1.04 0.31 0.30

Predictive uncertainty of S-N model ϵ - 1 N(0, 0.172) 0 0.17 -

Time-invariant term of S-N intercept B0 - 1 see notec 12.249 0.088 -

Mean load effect B1 - 1 see notec −0.0507 0.0045 -

Corrosion grade effect B2 - 1 see notec −0.106 0.0075 -

Annual fatigue loads Z MPa3 Ny LN(19.96, 0.39) 5×108 2×108 0.40

Annual representative mean loads G∗
1 % MBL Ny N(15.0, 0.62) 15.0 0.6 0.04

Corrosion grade at end of service life Cend - 1 U(1, 7) 4 1.7 -

Model uncertainty (stress ranges) Qs - 1 N(1.0, 0.102) 1.0 0.10 0.10

Model uncertainty (mean loads) Qm - 1 N(1.0, 0.102) 1.0 0.10 0.10

Model uncertainty (corrosion grade) Qc - − Fixed 1.0 - -

Dimension: number of random variables. St.dev.: standard deviation. CoV: coefficient of variation.

a Number of i.i.d. random variables with this distribution.

b CoV is given when used to define the distribution.

c Multivariate normal with covariance matrix given in Equation (45). Listed standard deviations correspond to the square

roots of the diagonal terms of the covariance matrix.

reliability of marine structures, including the DNVGL-OS-E301 design code calibration [4] and the JCSS

probabilistic code for fatigue [28], and is also used for Dcr in the present study.6

Weakest link resistance. The weakest link resistance, W , is here defined indirectly by means of the S-N

model regression error, ϵ, representing deviation from the median fatigue capacity of individual links. The

model is identical to that applied for Example 5 in Section 3.6. For the calculations in the present study,

the exact distribution of W as defined in Equation (38) is used.

S-N model intercept coefficients. The uncertainty in the coefficients of the S-N model intercept parameter,

(Bj)j∈{0,1,2}, represents the inferential uncertainty [see e.g., 14] of the regression model in Equation (3).

They are jointly distributed according to a multivariate normal distribution, N(µ,Σ), with mean vector µ

defined from the least-squares estimates in Table 1 and covariance matrix [13]

Σ =


7.770×10−3 −3.829×10−4 −4.453×10−4

−3.829×10−4 2.046×10−5 1.714×10−5

−4.453×10−4 1.714×10−5 5.612×10−5

 (45)

6Strictly, JCSS [28] suggests that the Miner’s sum uncertainty is modeled as lognormal with mean 1.0, whereas Wirsching

and Chen [27] suggested a median value of 1.0. The latter is adopted here, and corresponds to a mean value of 1.04 with a

CoV of 0.30.
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In [13], the inferential uncertainty of the Bj coefficients was found to be non-influential for the fatigue

damage of the lines considered. This will be reassessed in the present study, including the importance of

possible interactions with other random variables.

Fatigue loads. The probability distribution assigned to Z represents the annual variability of the fatigue

loads, hence, Ny i.i.d. random variables are needed to model the fatigue damage afterNy years. The expected

value is increased compared to those reported for the mooring system considered in [13], and is here set

to E[Z] = 5×108. This is the maximum annual fatigue load that meets the design code requirements in

DNVGL-OS-E301 [2] with a fatigue safety factor of 8 without accounting for corrosion in any way.7 The

underlying calculations to obtain this value are given in Appendix A. For the mooring lines considered in

[13], the CoV of Z was found to be in the range 0.24–0.38. For the base case of the present study we set the

CoV to 0.40, just above the upper value of the given range. The annual fatigue loads are assumed to follow

a lognormal distribution, based on the test-of-fit results reported in [13].

Representative mean loads. As for the fatigue loads, the probability distribution assigned to G∗
1 represents

the annual variability of the representative mean load. For the present study we assume an expected value

of 15 [% MBL] and a CoV of 0.04. The mean value is slightly higher than that reported for the mooring lines

considered in [13]. However, the mean load is sensitive to parameters such as chain dimension and material

grade, operational measures (e.g., pretension), type of unit and orientation of line, so any value from 10%

to 20% (or even outside this range in certain cases) is of relevance for the study. The selected CoV is in the

high end of the range reported in [13] (0.02–0.04). For convenience, the annual mean loads are assumed to

follow a normal distribution. Furthermore, they are assumed to be independent of the annual fatigue loads,

which implies that the possible correlation between them is neglected. This latter choice will be assessed in

connection with the global sensitivity analysis.

Corrosion grade. We assume that nothing is known about the corrosion grade of the segment, either because

the assessment is performed prior to operation or because inspections have not been carried out. The only

information available is then that the grade is bounded by its value at installation (c = 1) and what is

presently considered as the upper limit of the corrosion grade scale (c = 7). One could imagine that more

narrow bounds for the most likely corrosion grade development could be defined based on previous experience

for similar chain segments (e.g., comparable depth and location along line), but this is not addressed here.

Hence, the corrosion grade at the end of the service life, Cend, is modeled as a uniform variable with

support [1, 7], in accordance with the maximum entropy principle [29]. The temporal development is assumed

to be described by Equation (7) in Example 2, with parameters a = 0.5, η = 1.0 and L = 15.

7The relation between the expected annual fatigue load and the design code requirements is given for convenience, and

should not be interpreted as an attempt to quantify the safety level inherent in DNVGL-OS-E301 [2].
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Model uncertainties. The model uncertainties may be hard to quantify, as they represent deviation between

the estimated and the true (and generally unknown) values. We here apply normal distributions with a

mean of 1.0 and a CoV of 0.10 to model the uncertainty in both stress ranges and mean loads (Qs and

Qm, respectively). This is comparable in magnitude to the model uncertainties applied in [4] (although

they are included in the reliability model in different ways). In general, if the basis for quantifying the

model uncertainties is poorly justified and the reliability calculations demonstrate a sensitivity to these

variables, an effort to improve the basis for quantification is recommendable. For corrosion grade, the model

uncertainty is here fixed to 1.0. The rationale is that in the present study, we have already modeled complete

ignorance about the value of the corrosion grade, Cend.

Model dimension and dependence between variables. In summary, the base case probabilistic model has a

dimension of 8+ 2 ·Ny, that is, 38 random variables are used to evaluate the limit state function at the end

of the service life of 15 years. These random variables are all assumed to be mutually independent, except

for the Bj coefficients of the S-N model which are jointly distributed according to a multivariate normal

distribution.

4.3. Method

The methods applied for the case study are now described. We first outline the sensitivity measures and

corresponding estimators used for the global sensitivity analysis, then describe each step of the reliability

analysis performed for the present work. The objective of the reliability analysis is to calculate the probability

of failure, pf , by computing

pf = P[g(X) ≤ 0] =

∫
g(X)≤0

fX(x) dx (46)

where g(X) is the limit state function given in Equation (29) and fX(.) is the joint PDF for the random vector

X. For the present study, we first approximate (46) through performing a FORM (first-order reliability

method) analysis. The FORM result is then used as the basis for estimating the integral more accurately

by means of importance sampling. A byproduct of FORM is a set of sensitivity measures referred to

as importance factors, which are described thereafter. We close this subsection by briefly addressing the

difference between the accumulated and the annual probability of fatigue failure.

4.3.1. Global sensitivity analysis

Consider the output of a generic model, Y = f(X), where X = (X1, X2, . . . , XM ) is a random vector

of size M . In the context of the present study, the model f(.) may be the fatigue damage in Equation (21)

or the limit state function in Equation (29), and X contains the random variables in Table 3. A global

sensitivity analysis is concerned with quantifying the impact on the uncertainty of Y from the uncertainty

of each of the components, Xi, over the entire range of possible outcomes.
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We here employ a set of variance-based sensitivity indices, commonly known as Sobol’ indices after his

work on variance-based sensitivity measures [e.g., 30]. The brief outline given below is based on Saltelli et

al. [31].

Assuming that the components in X are mutually independent, a variance-based first-order sensitivity

index is

Si =
VarXi(EX∼i [Y |Xi])

Var(Y )
(47)

where Var(.) denotes variance and E[.] is the expectation. The subscript ·Xi means that the variance (or

expectation) is taken over the range of possible outcomes for component Xi, whereas subscript ·X∼i
means

that it is taken over the range of possible outcomes for all components except Xi. Hence, the first-order

index in (47) is a measure of the variance of the conditional expectation of Y given Xi, over the range of

Xi, normalized with respect to the total variance Var(Y ). In other words; it quantifies the proportion of the

uncertainty in Y that may be attributed to the uncertainty in Xi alone, and is a number between 0 and 1.

A related sensitivity measure is the total effect index:

STi = 1− VarX∼i(EXi [Y |X∼i])

Var(Y )
=

EX∼i(VarXi [Y |X∼i])

Var(Y )
(48)

which quantifies the total contribution from uncertainty in Xi to the variance of Y , including interactions

with other random variables. For a purely additive model, we have STi = Si and
∑

i Si = 1. The quantity

1 −
∑

i Si may therefore be used to quantify the proportion of the variance that is caused by non-additive

interactions in the model. Furthermore, zero total effect (STi = 0) is a necessary and sufficient condition for

Xi to be non-influential. Hence; given STi = 0, the random variable Xi may be fixed to any value without

affecting the variance of Y .

Note that the index i may be replaced by a vector referring to a group of components, Xi. The sensitivity

indices (Si, ST i) then quantify the effect of this group of components combined. Also, in case the requirement

of independent variables is not fully satisfied, independence may be achieved by grouping interdependent

components [32]. For instance, for the random variables in Table 3, the S-N model coefficients (B0, B1, B2)

may be grouped to obtain independence from the remaining variables.

In practice, Si and STi may be estimated by Monte Carlo simulation (MCS). The sampling scheme and

estimators adapted for the present study are from Saltelli et al. [33]:

VarXi(EX∼i [Y |Xi]) =
1

NMC

NMC∑
j=1

f(B)j

(
f(A

(i)
B )j − f(A)j

)
(49)

EX∼i
(VarXi

[Y |X∼i]) =
1

2NMC

NMC∑
j=1

(
f(A)j − f(A

(i)
B )j

)2
(50)

Var(Y ) =
1

NMC

NMC∑
j=1

f(A)2j −

 1

NMC

NMC∑
j=1

f(A)j

2

(51)
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where A and B are NMC×M sample matrices (i.e., for each of them, column i contains a sample with NMC

realizations of component Xi); A
(i)
B is matrix A with column i replaced by the corresponding column from

B; and f(.)j should be interpreted as a model evaluation for the sample in row j of the argument (e.g.,

f(A)j refers to a model evaluation for row j of A). In total, NMC × (M + 2) model evaluations are needed

to estimate Si and STi for all M components by these estimators. Alternative methods using surrogate

models of f(.) exist, such as the one presented by Sudret [34].

4.3.2. FORM analysis

The FORM procedure is now outlined. For further details, see e.g., [20, 25].

The first step of the FORM analysis is the isoprobabilistic transformation

U = T (X) (52)

where T (.) denotes a transformation from the random vector X ∈ RM in physical space to an independent

standard normal vector U ∈ RM ; that is, Ui ∼ N(0, 1) for i ∈ {1, ...,M}. If the random variables in X are

mutually independent, the transformation may be performed independently for each component Xi:
8

Ui = Ti(Xi) (53)

For a given value ui or xi, this transformation (or its inverse) is then constructed by requiring Φ(ui) = FXi
(xi),

such that

ui = Φ−1(FXi
(xi)) ←→ xi = F−1

Xi
(Φ(ui)) (54)

where Φ(.) is the standard normal CDF and FXi(.) is the CDF of component Xi. The limit state function

may now be computed for a point in the transformed U -space by evaluating

gU (u) = g(T−1(u)) (55)

The second step in the FORM analysis is identification of the design point, which is the point in the

failure domain with the shortest distance to the origin of the standard normal space:

u∗ = argmin {∥u∥ ; gU (u) ≤ 0} (56)

See Figure 13 in Section 4.4 for an illustration of the design point. Equation (56) is a constrained minimiza-

tion problem that may be solved by for instance the HLRF (Hasofer-Lind-Rackwitz-Fiessler) algorithm [35],

the improved version by Zhang and Der Kiureghian [36] (often referred to as the iHLRF algorithm), or by gen-

eral optimization routines that are fit for purpose (e.g., scipy.optimize.minimize(method=’SLSQP’) [37]).

For the present work, the iHLRF algorithm is implemented.

8For dependent variables, the transformation to standard normal space must be performed by alternative techniques such

as for instance the Rosenblatt or Nataf transformations, see e.g., [20, 25].
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The FORM reliability index, also known as the Hasofer-Lind index, is defined as the distance from the

origin of the U -space to the design point:

β = ∥u∗∥ (57)

and is related to the probability of failure through

pf,FORM = Φ(−β) (58)

in which the limit state surface is implicitly approximated by a tangent hyperplane at u∗. Hence, FORM is

exact only if the limit state surface is linear in U -space, and the accuracy of the approximation depends on

its shape at the design point and the dimension of the problem [20, pp. 173 and 214].

4.3.3. Importance sampling

The integral in (46) may be rewritten to formulate the probability of failure as

pf =

∫
X

Ig(x)≤0(x) fX(x) dx (59)

where I is the indicator function. An unbiased estimate of this integral may be obtained from MCS, and

the crude MCS estimate is

p̂f,MC =
1

NMC

NMC∑
j=1

Ig(x)≤0(xj) (60)

where NMC is the sample size and xj is the jth random sample of X. The convergence of the crude MCS

is slow, in particular for low failure probabilities, resulting in high variance estimates. An effective variance

reduction technique is the simulation procedure known as importance sampling (IS). Instead of sampling

from the joint distribution of the random variables, fX(.), samples are drawn from a separate sampling

distribution, denoted hX(.). By noting that (59) may be written as

pf =

∫
X

Ig(x)≤0(x)
fX(x)

hX(x)
hX(x) dx (61)

the IS estimate of the failure probability is obtained from

p̂f,IS =
1

NMC

NMC∑
j=1

{
IgX(x)≤0(xj)

fX(xj)

hX(xj)

}
(62)

where the fraction fX(xj)/hX(xj) may be interpreted as a weighting function accounting for the use of

a sampling distribution that deviates from fX(.). The efficiency of IS may significantly surpass that of

crude MCS if the sampling distribution is wisely selected: a good choice for hX(.) is considered to be a

multivariate and independent normal distribution, centered at the FORM design point and with standard

deviations equal to those of each variable Xi [25]. For the present work, the sampling is performed in
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U -space with sampling distribution hU (.) = N(u∗, IM ), where IM is an M×M identity matrix. The failure

probability is thus estimated from

p̂f,IS =
1

NMC

NMC∑
j=1

{
IgU (u)≤0(uj)

ϕM (uj)

ϕM (uj − u∗)

}
(63)

where ϕM (.) denotes a multivariate and independent standard normal PDF. A corresponding estimate for

the sampling variability of p̂f,IS is [20]

Var[p̂f,IS] ≈
1

NMC − 1

 1

NMC

NMC∑
j=1

{
IgU (u)≤0(uj)

(
ϕM (uj)

ϕM (uj − u∗)

)2
}
− p̂2f,IS

 (64)

which may be used to verify that the CoV of the estimated failure probability is acceptable.

4.3.4. FORM-based sensitivity measures

The design point may also be expressed as

u∗ = βα (65)

where α = (u∗
1/β, . . . , u

∗
M/β) is a vector containing directional cosines.9 It also represents the normal vector

of the limit state surface at the design point under the FORM assumption, and it follows from (57) that

∥α∥ = αTα = 1, and β = αTu∗. Hence:
∂β

∂ui

∣∣∣∣
u=u∗

= αi (66)

which means that αi is a local measure of the sensitivity of the reliability index to the uncertainty in ui,

evaluated at the design point. This sensitivity measure is referred to as the FORM importance factors, and

is commonly presented in terms of its squared value, α2
i . The interpretation of α2

i is as follows. The linear

approximation to the limit state function in U -space may be expressed as

gU ,l(u) = ∇gU (u∗)T (u− u∗) = ∥∇gU (u∗)∥ (β −αTu) (67)

where ∇gU (u∗) is the gradient vector of the limit state function evaluated at u∗, and we have utilized that

α is a unit vector which is parallel to the gradient at this point, α = −∇gU (u∗)/∥∇gU (u∗)∥. The variance

of gU ,l(u) is Var[gU ,l(u)] = ∥∇gU (u∗)∥2 αTα = ∥∇gU (u∗)∥2
∑

i α
2
i . Hence; α2

i describes the proportion

of the variance of the linearized limit state function that is caused by the uncertainty in Ui [38]. When the

random variables are independent in physical space, there is a one-to-one relation between Ui and Xi, and

this interpretation of α2
i is valid also for the importance of Xi. Recently, Papaioannou and Straub [39] noted

9With the definition in (65), the vector α points into the failure domain. Some authors define α in the opposite direction,

in which case u∗ = −βα. See e.g., [20, 25].
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that α2
i corresponds to the first-order Sobol’ index for the effect of Ui on the linearized limit state function

and – since gU ,l(u) is purely additive – it is also equal the total effect index.

The omission sensitivity factors introduced by Madsen [38] represent another set of FORM-based sen-

sitivity measures. They quantify the relative change in the reliability index if the random variable Xi is

replaced by a fixed value. Specifically; for independent variables in physical space, the change in reliability

index if Xi is replaced by its mean value is [38]:

β(Xi=µXi
)

β
=

1√
1− α2

i

(68)

No large error is therefore made in estimation of the reliability index by fixing variables associated with

small values of α2
i .

4.3.5. Accumulated vs. annual failure probability

The failure probability considered for the present work is on the form pf = P[g(X; t) ≤ 0], where t

denotes time. In general, this quantity describes the point-in-time failure probability, and neglects the

possibility that failure may have occurred at any point in time prior to t (i.e., that the event g(X; t′) ≤ 0

may have occurred for t′ < t) [40]. However; the limit state function for fatigue (based on the S-N approach)

will decrease monotonically. The point-in-time probability expressed through the limit state function defined

in (29), pf = P[g(X;Ny, N) ≤ 0], therefore represents an accumulated probability of failure for all years up

to and including year Ny.

Design codes such as DNVGL-OS-E301 [2] are usually calibrated towards a target annual probability

of failure. Following [4], the annual failure probability may be expressed as the increase in accumulated

probability from the year before, conditional on survival prior to the year considered. By introducing the

notation pf (Ny) = P[g(X;Ny, N) ≤ 0] for the accumulated probability, this annual probability of failure is

pf,annual =
pf (Ny)− pf (Ny − 1)

1− pf (Ny − 1)
(69)

Equation (69) may be viewed as a discrete approximation to the hazard function [e.g., 40], with year as the

time unit, describing the annual failure rate conditional on survival up to and including Ny−1 years.

4.4. Results and discussion

4.4.1. Global sensitivity analysis

We start by the global sensitivity analysis, to identify variables that may be fixed, and to assess the

importance of interaction effects. Sobol’ indices have been estimated for the base case using MCS with

NMC = 106, and are presented in Figure 8. The variance of the limit state function (Figure 8a) is largely

dominated by the uncertainty in critical fatigue damage (Dcr), making it hard to assess the importance of

the remaining variables. An additional MCS is therefore performed to obtain Sobol’ indices for the fatigue
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damage of the weakest link (Figure 8b). For the latter simulations, the following random variables have been

grouped so that the indices represent the effect of more than one variable: Bj represents (B0, B1, B2) which

are grouped to achieve independence, G1 represents (G∗
1,k)k∈{1,...,Ny} and Z represents (Zk)k∈{1,...,Ny}.
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(a) Limit state function, g(X;Ny =15, N=500).
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(b) Fatigue damage, DW (X;Ny =15, N=500).

Figure 8: Sobol’ indices for limit state function and weakest link fatigue damage for final year of base case. See Table 3 for a

description of the variables.

Consider now the sensitivity indices for fatigue damage in Figure 8b. Firstly – and most importantly –

the total effect indices are close to zero for Bj and for G1. This means that the inferential uncertainty of

the S-N curve coefficients and the annual variability of the representative mean loads are practically non-

influential. Further implications are that (i) the simplification introduced by neglecting possible correlation

between annual fatigue loads (Z) and mean loads (G∗
1) is justified, and (ii) (B0, B1, B2) and G∗

1 may be

fixed to their respective mean values for the subsequent reliability analysis with negligible impact on the

estimated failure probability. Secondly, the sum of the first-order indices is
∑

i Si = 0.927, meaning that

roughly 7% of the fatigue damage uncertainty is caused by non-additive interaction effects. Judging by

the difference between STi and Si, the variables with the most interaction are Qs and Cend (although, not

necessarily just with each other), followed by Qm and W . Thirdly, the importance of modeling the annual

variability of the fatigue loads (Z) is seen to be limited but not negligible, contributing to around 6% of the

fatigue damage uncertainty in total.

The influence of the annual fatigue loads is investigated in more detail by assessing sensitivity indices for

the fatigue load during each year, shown in Figure 9. Both the first-order and the total effect indices for Zk

increase with increasing k, meaning that the fatigue loads experienced during the last years influence the

fatigue damage uncertainty more than those experienced during early years. The reason is the following.

The expected corrosion grade increases with time, causing a temporal degradation of the expected fatigue
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capacity. Uncertainty in annual fatigue load for the last years will therefore yield larger contributions to

fatigue damage variance than uncertainty in fatigue loads for the first years. This effect causes the increase

in the first-order index, Si. The relatively larger increase in the total effect index (STi) is because the

corrosion grade uncertainty also increases with time, interacting with the fatigue load uncertainty in the

final years.

Z1 Z3 Z5 Z7 Z9 Z11 Z13 Z15
0.000

0.005

0.010

0.015

0.020

0.025

0.030

S i
, S

Ti

Si
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Figure 9: Sobol’ indices for effect on DW (X;Ny = 15, N = 500) from annual fatigue load uncertainty. Note the scale of the

vertical axis.
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Figure 10: Sobol’ indices for DW (X;Ny=15, N) with different segment sizes, N . First-order indices in foreground (color code

in legend), and total effect indices in background (grey).

For the base case in Figure 8b, the uncertainty in weakest link resistance (W ) is seen to be of moderate

importance. Figure 10 shows how the Sobol’ indices vary as a function of the segment size. For a single link

(N = 1), the resistance is clearly the most influential variable. Its impact on the fatigue damage uncertainty

drops quickly when the number of links is increased, and the dominant position is overtaken by the stress

range uncertainty (Qs), with larger impact also from the uncertainties in Cend and Qm. This effect is

consistent with a narrower distribution for W with increasing N , as previously illustrated in Example 5.
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Keep in mind, however, that the reduced uncertainty for W will also result in less total variance for the

fatigue damage. Since the sensitivity indices are normalized quantities, this is not reflected in Figure 10.

4.4.2. Reliability analysis

Based on the global sensitivity analysis, the S-N curve coefficients (B0, B1, B2) and the annual mean

loads G∗
1 are now fixed to their mean values. This reduces the dimension of the model to M = 5 + Ny,

that is, M = 20 random variables to calculate the failure probability after Ny = 15 years. Furthermore, the

remaining random variables may be assumed to be mutually independent.

Resulting failure probabilities for the final year of the base case are shown in Table 4. The probability

of failure estimated from importance sampling is based on a sample size of NMC = 104, which is seen to

yield low uncertainty in the estimated value with a CoV of just 2%. It is also noted that FORM is seen to

perform reasonably well for the current problem, with pf,FORM/p̂f,IS ≈ 0.8, indicating that the limit state

surface is not too nonlinear in the vicinity of the design point.

Accumulated and annual failure probabilities differ by a factor of around 1.7 for the final year, with the

annual failure probability on the low side. The temporal development of both quantities is compared in

Figure 11, showing that the difference occurs mainly towards the end of the service life as the accumulated

failure probability increases less steeply. In any case, the limited ratio between these quantities suggests

that the use of either one over the other is unlikely to be decisive for the problem at hand.

Table 4: Results for the failure probabilities. Base case, final year (Ny=15).

Accumulated Annual

β 3.63

pf,FORM 1.42×10−4 8.55×10−5

p̂f,IS 1.86×10−4 1.08×10−4

CoV(p̂f,IS) 0.02

The FORM design point is listed in Table 5, and the corresponding importance factors are visualized

in Figure 12. Fatigue damage at failure (Dcr) is seen to be the most important variable. Nevertheless,

its relative importance is far less than that suggested by the Sobol’ indices for the limit state function

(Figure 8a). A plausible explanation is the following. The lognormal distribution applied for Dcr is right-

skewed. Since the Sobol’ indices consider the uncertainty over the range of outcomes, they include the

contribution from the upper (right) tail, which is fatter than the left tail. The design point, however, is

located in the thinner left tail of the distribution, effectively reducing the importance of uncertainty in Dcr

in the vicinity of the design point.

A striking observation from the importance factors for the current case (Figure 12) is that the model

uncertainties (Dcr, Qs and Qm), that are quite likely the three most difficult variables to model accurately,

31



5 6 7 8 9 10 11 12 13 14 15
Year

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Pr
ob

ab
ilit

y 
of

 fa
ilu

re
, p

f [
-]

Accumulated
Annual

Figure 11: Probability of failure for the last 10 years of the base case, estimated by importance sampling. Comparison of

accumulated vs. annual failure probabilities.

contribute to around 70% of the variance of the linearized limit state function. This stresses the poten-

tial benefit from improved modeling accuracy, or conversely, the potential pitfall in underestimating their

uncertainties.

The relative importance of the corrosion grade uncertainty, expressed through Cend, is also reduced

compared to that seen from the global sensitivity analysis (that is, relative to the other variables except

Dcr). This may be explained by considering a 2–dimensional section through the design point and the

failure surface (gU (u) = 0) in standard normal space, shown in Figure 13. The distance from the failure

surface to the origin of the U -space increases rapidly with increasing value for U3 = T3(Cend), meaning

that no substantial contribution to the failure probability is obtained from going further into the tail of the

distribution of Cend. This effect is a consequence of the corrosion grade scale applied. For the present work

it is defined with an absolute upper limit of c = 7, as reflected by the uniform distribution used to model its

uncertainty. Any degradation of the chain larger than that prescribed by c = 7 is thus precluded. Hence, it

might be in its place to consider the need for a probability distribution that allows the corrosion grade to

exceed 7, however small the probability.

Lastly, the importance of annual fatigue load variability is seen to be limited, with the sum of the

importance factors for Zk at only 4.3%. From Equation (68), the corresponding omission sensitivity factor

is 1.02 if the fatigue load in each year is fixed to its expected value. For the reliability index given in Table 4,

this implies that the (FORM) failure probability is underestimated by a factor of Φ(−β)/Φ(−β · 1.02) ≈ 1.3

if the annual fatigue load variability is neglected, an error that may be considered negligible in this context.

Even so, we will retain the fatigue load variability for the subsequent parameter variation so that the

influence on failure probability in earlier years may be assessed.
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Figure 12: FORM importance factors, α2
i . Importance factor for Z is the sum of α2

i for (Zk)k∈{1,...,Ny}.

Figure 13: FORM design point in standard normal space for Cend and Dcr, along with a section of the failure surface and 500

points from the importance sampling.
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Table 5: FORM design point for base case, final year (Ny =15). Data for Z2−Z14 lie in the range between the values listed

for Z1 and Z15, and are omitted here.

Xi u∗
i x∗

i FXi
(x∗

i )

Dcr -2.11 0.53 0.017

W -1.39 0.25 0.083

Cend 1.21 6.32 0.89

Qs 1.79 1.18 0.96

Qm 1.23 1.12 0.89

Z1 0.09 4.80×108 0.54

Z15 0.32 5.26×108 0.63

4.4.3. Parametric study

The effect on probability of fatigue failure from selected parameters is now assessed. The parameters

that are varied may be grouped roughly into two main categories: (i) those that may be regarded as system

properties (annual fatigue load, representative mean load, number of chain links), and (ii) modeling param-

eters or choices (corrosion parameters, S-N model with or without mean load and corrosion dependency).

Results for the last ten years of the service life are presented in Figure 14, in terms of annual failure proba-

bility obtained from importance sampling with sample size NMC=104. Each of the cases is described and

discussed in the following paragraphs.

Annual fatigue load variability. The CoV of the annual fatigue load is varied in Figure 14a, from the base

case with CoV(Z) = 0.40 and down to a lowest value of CoV(Z) = 0.05. For the final year, the difference

in failure probability is less than a factor of 1.3. This is consistent with the omission sensitivity factor

discussed previously, predicting a negligible error for failure probability after 15 years if the variability of Z

is neglected. A larger difference is observed for the first years shown in the figure (i.e., years 5-6), but the

ratio between the failure probabilities for largest and lowest fatigue load variability is still within one order

of magnitude.

Mean annual fatigue load. In Figure 14b, the expected annual fatigue load is varied by ±20% and ± 40%

compared to the base case value. With stress range effect m = 3, this corresponds to adjustments of the

nominal chain diameter ranging from −5% to +10% (for highest and lowest fatigue loads, respectively) – if

one assumes that the tension range distribution is unaffected by the change in diameter.10 The expected

fatigue damage is directly proportional the to mean annual fatigue load (cf. Equation (27)), and thus

increases by the same factor as E[Z]. This has a substantial effect on the failure probability, as one might

10In practice, a change in chain diameter will also affect the mean load measured in percentage of MBL, and thereby affect

the failure probability also through a reduction or increase in fatigue capacity.
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(a) CoV of annual fatigue load.
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(b) Mean annual fatigue load.
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(c) Representative mean load.
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(d) Number of links.
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(e) Corrosion grade development.
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(f) Treatment of mean load and corrosion effects.

Figure 14: Parametric study: influence of fatigue load, mean load, number of links, corrosion grade development and treatment

of mean load and corrosion effects on probability of failure. Bases case result is shown by solid blue line in all subfigures. See

main text for case descriptions.
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expect. An increase of E[Z] by 40% increases the probability of failure by one order of magnitude for the

final year, whereas a reduction of E[Z] by 40% reduces it by nearly two orders of magnitude.

Representative mean load. The effect of the representative mean load is shown in Figure 14c, for mean

loads ranging from 10% to 20% of MBL – all of which are realistic mean load levels for offshore mooring

systems. The mean load effect on the fatigue capacity is seen to significantly impact the fatigue reliability.

Compared to the base case at 15% MBL, a change in mean load by ±2.5% MBL increases or reduces the

failure probability by approximately one order of magnitude. For 10% mean load the failure probability is

more than two orders of magnitude below the base case, whereas for 20% it is higher by a factor of 40.

Number of links. In Figure 14d, the segment size is varied between N = 1 (single link) and N = 500.

The resulting weakest link distributions are identical to those presented in Example 5. The probability of

failure for the last year with N = 500 is larger by a factor of roughly 10 compared to the much shorter

segment with N = 20, and larger by more than two orders of magnitude compared to N = 1. This leads to

the following interesting observation. If we consider the simplified treatment of dependence between links

described in Example 3, the upper bound of the segment failure is p
(N)
f ≤ 1− (1− p

(1)
f )N (corresponding to

independent failure events for each of the links, see Equation (9)). From Figure 14d we obtain p
(1)
f = 4×10−7,

which gives the upper bound p
(500)
f ≤ 2×10−4. Compared to the value obtained here, p

(500)
f ≈ 1×10−4,

the upper bound is larger by a factor of 2 (which is quite modest in connection with failure probabilities,

for which orders of magnitude are most important). This means that the current reliability formulation

yields results that correspond closely to independent failure events. In other words; the assumption that

ϵi is independent between links has, in practice, a much stronger effect on the failure probability than the

assumption of variables that are fully dependent between links (i.e., Dcr, Z, Cend, Qs and Qm among those

that have not been fixed).

Corrosion grade development. We now consider variation of the corrosion grade development in Figure 14e.

The legend descriptions refer to the shape parameter in Equation (7) (see also Figure 4). With η = 0.5, the

corrosion grade is assumed to develop more rapidly towards its value at the end of the service life. For early

years, this is seen to increase the failure probability by more than one order of magnitude compared to the

base case with η = 1. In the final year, however, the difference is reduced to a factor of around 3. If a slower

initial corrosion grade development is assumed (η = 2), accelerating towards the end of the service life, the

failure probability in the final year is a factor of 3 below the base case. Hence, for the two very different

corrosion grade histories described by η = 0.5 and η = 2, the difference in failure probability is around one

order of magnitude at the end of the service life.

Treatment of mean load and corrosion effects. The cases considered in Figure 14f require some further

explanations. Referring to the figure legend, these are defined as follows:
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1) Excl. mean load effect : Mean load effect on fatigue capacity is neglected, i.e., fixed values G∗
1 = 20

[% MBL] and Qm = 1 are used.

2) Excl. corrosion effect : Degradation due to corrosion is neglected, by fixing Cend = 1.

3) Excl. mean load and corrosion effects: The first two cases combined.

4) Excl. mean load, incl. corr. rate: Same as the previous case, but corrosion is accounted for by a

reduction of the cross section area, expressed though a corrosion rate describing the annual material

loss. See Appendix A for related calculations. We have assumed that the nominal diameter is 120

mm, and a (fixed) corrosion rate of 0.4 mm/year is applied.

Note that the latter case resembles how corrosion is accounted for in the current design code approach [2].

The results in Figure 14f show that the failure probability is significantly overestimated if one neglects the

mean load effect while at the same time accounting for degradation due to corrosion (case 1). Conversely,

the failure probability is underestimated by even more if the beneficial effect of a mean load below 20% is

realized without accounting for corrosion (case 2). When both mean load and degradation are neglected (case

3), the failure probability increases less steeply with time. Compared to the base case, it is overestimated

for the early years and underestimated for the final years. A similar development of the failure probability

with time is seen for the case with a simplified corrosion model (case 4), slightly on the high side of the

previous case. Coincidentally, the failure probability in the final year matches that obtained for the base

case. However; (i) the good agreement would not be seen if a different mean load had been applied for the

base case, and (ii) the failure probability in subsequent years would most likely be underestimated by the

simplified approach, considering the different slopes of the curves.

4.5. Conclusions of case study

A global sensitivity analysis was used to identify non-influential variables and to assess the amount of

interactions in the model. For the applied S-N model and the case defined for the present study it was

found that (i) the S-N curve coefficients (B0, B1, B2) and the annual representative mean load (G∗
1) may

be fixed to their mean values with negligible impact on the fatigue damage variance, and (ii) the random

variables interact moderately within the model, with interactions contributing around 7% of the uncertainty

in fatigue damage after 15 years for the base case.

A reliability analysis was conducted thereafter, including variation of system properties and model pa-

rameters. The main findings were the following:

• Based on the FORM importance factors, fatigue failure is dominated by the model uncertainties

(uncertainty in Miner’s rule, as well as stress range and mean load uncertainties).

• The relative importance of uncertainty in corrosion grade is constrained by the choice of a uniform

distribution to represent it, thereby restricting the maximum degradation of the chain.
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• Annual fatigue load variability has insignificant influence on the failure probability, expect for the early

years of service, despite temporal degradation of the fatigue capacity and some degree of interaction

with the corrosion grade uncertainty.

• The formulation for segment failure gives results that are close to those obtained if independent events

with equal probability are assumed for failure of individual links. This indicates that the assumption

of independent S-N model regression errors has a stronger effect on the reliability than the assumptions

that all the links are exposed to the same loads and degradation, and that they fail at the same critical

level of fatigue damage.

• Mean load and degradation due to corrosion both have a substantial impact on the failure probability.

These effects have, in practice, opposite consequences for fatigue life. Coincidentally, for the particular

case considered here, including both effects leads to similar failure probability at end of service life as

neglecting both. This is not true in general.

• Accounting for corrosion in a simplified way, through a corrosion rate describing the annual reduction

of the chain diameter (and a corresponding increase in fatigue load), considerably underestimates the

corrosion effect on fatigue reliability compared to that predicted by the S-N model used for the present

study.

5. Conclusions

A new reliability formulation for fatigue failure of mooring chain segments has been developed, accounting

for the effects on fatigue capacity from mean load and degradation due to corrosion. The limit states function

is defined from a summation of the fatigue damage contribution per year of service, which enables accounting

for (i) both known fatigue loads during prior years of service and future, uncertain loads, and (ii) the temporal

development of the corrosion condition of the chain.

Partial dependence between the failure events of individual links within a segment is handled by dis-

tinguishing between variables that are either independent between links or fully dependent and take on

the same values. This leads to a weakest link formulation, making it straightforward to assess the fatigue

reliability for arbitrary segment size.

A thorough case study of a realistic floating system has been presented. We demonstrated the effect

on fatigue failure probability from a range of parameters, including system properties and modeling as-

sumptions. Specifically, it was found that the mean load and corrosion effects strongly influence the fatigue

reliability of mooring chain, and must both be accounted for to avoid the risk of considerably over- or un-

derestimating the failure probability. The case study results thus support the need for a fatigue reliability

formulation that accounts properly for mean load and chain degradation.
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Appendix A. Design code calculations

Appendix A.1. Maximum allowable annual fatigue load

The design equation for the fatigue limit state is [2]

dc · γF ≤ 1 (A.1)

where dc is a characteristic fatigue damage and γF is the fatigue safety factor. Let L denote the service life

in years, and let dc,yr denote the average, characteristic fatigue damage per year. The design equation may

then be written

L · dc,yr · γF ≤ 1 (A.2)

Now, the average annual fatigue damage may be expressed as

dc,yr =
E[n0 · Sm]

AD
=

Z

AD
(A.3)

where AD is the intercept parameter of the S-N design curve and Z = E[Z] is the expected annual fatigue

load. Combining (A.2) and (A.3), the maximum allowable annual fatigue load becomes

Z ≤ AD

L · γF
(A.4)

Hence, with L = 15 [years], γF = 8 and AD = 6×1010 [2], we get Z̄ ≤ 5×108 [MPa3].

Appendix A.2. Correction for material loss

When corrosion is accounted for by means of a corrosion rate, representing the annual material loss, the

effective chain diameter after k years is

d
(crs)
k = d

(crs)
0 − cr · k (A.5)

where d
(crs)
0 is the nominal diameter and cr is the corrosion rate expressing the reduction in diameter per

year. For a given tension range distribution, the annual fatigue load is inversely proportional to the cross

section area raised to m (the S-N curve stress range effect). The expected fatigue load in the kth year is

therefore related to the effective diameter by

Zk ∝

(
1

d
(crs)
k

)2m

(A.6)
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Combining (A.5) and (A.6), a scaling factor for the expected effective fatigue load may thus be expressed as

Zk

Z0

=

(
1− cr · k

d
(crs)
0

)−2m

(A.7)

where Z̄0 is the expected annual fatigue load calculated based on the nominal diameter.

Nomenclature

Xi ith component of random vector X

E[.] Mathematical expectation

P[.] Probability measure

Var[.] Variance

ln(.) Natural logarithm

log(.) Common logarithm

∼ distributed as

LN(µ, σ) Lognormal distribution with scale parameter exp{µ} and shape parameter σ

N(µ, σ2) Normal distribution with mean µ and variance σ2

U(a, b) Uniform distribution with support [a, b]

N∗ Natural integers excluding 0, i.e., {1, 2, 3, . . .}

N∗
M Natural integers less than M excluding 0, i.e., {1, 2, . . . ,M}

R+ Real numbers greater than or equal to zero

αi FORM importance factor, for i ∈ N∗
M , see (66)

β FORM reliability index, see (57)

ϵ Regression error, see (3)

η Exponent of probabilistic corrosion model, see (7)

µ Logarithm of scale parameter of lognormal distribution

Mean value
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σ Shape parameter of lognormal distribution

Standard deviation

σm Mean stress [MPa]

A(σm, c) Mean load and corrosion dependent intercept parameter of S-N curve, see (2)

B0 Coefficient of S-N curve intercept parameter, see (2)

B1 Coefficient of S-N curve intercept parameter (mean load effect), see (2)

B2 Coefficient of S-N curve intercept parameter (corrosion grade effect), see (2)

c Corrosion grade, support [1, 7]

Cend Corrosion grade at end of service life, see (7)

D Fatigue damage (Palmgren-Miner sum)

DW Fatigue damage of weakest link in a segment, see (21)

Dcr Critical fatigue damage, i.e., Miner’s sum at failure

g(X;Ny, N) Limit state function for fatigue failure after Ny years for chain segment with N links

g1(σm) Mean load function, see (2)

G∗
1 Representative value of mean load function over a specified period, see (6)

g2(c) Corrosion grade function, see (2)

G∗
2 Representative value of corrosion grade function over a specified period

gU (U) Limit state function in standard normal space, see (55)

k Index for year, for k ∈ {1, 2, . . . , Ny}

M Dimension of random vector

m Slope parameter of S-N curve

N Number of cycles to failure, see (1)

Number of links in the chain segment, see (17) and

Ny Number of years

NMC Sample size (number of realizations) generated in Monte Carlo simulation
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p
(N)
f Probability of failure for segment with N links, see (22)

Qs, Qm, Qc Model uncertainties for stress ranges, mean loads and corrosion grade, respectively, see Sec-

tion 3.3

S Stress range [MPa]

Si First-order Sobol’ index, for i ∈ N∗
M , see(47)

STi Total effect Sobol’ index, for i ∈ N∗
M , see(48)

W Deviation from median fatigue capacity for weakest link in a segment, see (17)

Z Fatigue load, see (4)

CoV Coefficient of Variation

FORM First Order Reliability Method

i.i.d. independent and identically distributed

IS Importance Sampling

MBL Minimum Breaking Load

MCS Monte Carlo Simulation
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