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Abstract 

In the present research, the errors for characterising the stress-strain behaviour under simple shear 

deformation are identified via theoretical analysis and experimental and numerical studies, based on 

the V-Notched Rail (VNR) shear tests performed on the solid-state Poly-Ether-Ether-Ketone (PEEK). 

By analysing the stress-strain behaviour of PEEK obtained from numerical simulations, the errors 

caused by the rotation factor and the nonuniformity factor are mathematically linked to the 

deformation. A two-step correction method is proposed to correct the calculation errors and, 

therefore, to obtain real stress-strain behaviour. This correction method is then validated using the 

VNR shear test conducted on the PEEK. Besides, this correction method is also examined by two sets 

of VNR shear simulations performed at a different testing condition with PEEK and on a different 

material (Polyamide 6, PA6). Both numerical and experimental results show that, at large 

deformation (when the effective strain is higher than 0.1) of solid-state polymers under VNR shear 

deformation, the calculation errors are nonnegligible, and the proposed two-step correction method 

can correct the VNR shear test results. To the best of the authors’ knowledge, this research is the 

first time to thoroughly analyse the simple shear deformation, and evaluate the calculation errors on 

the effective stress-strain properties of solid-state polymers characterised through the VNR shear 

tests. The proposed two-step correction method is proven to be robust and can be adapted to other 

solid-state polymers under different testing conditions.  
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1. Introduction 

Material characterisation methods on sheet materials are worthy of study for various engineering 

applications, of which the stress-strain responses under shear loading have been attracting great 

interests [1]. In shear deformation interpretation, pure shear and simple shear are two distinct 

concepts and need to be discriminated when evaluating the mechanical behaviour from shear tests 

[2]. The commonly used shear test methods on sheet materials, such as the V-Notched Rail (VNR) 

shear test according to ASTM 7078 [3], the two rail and three rail tests according to ASTM D4255 [4, 

5], and the Iosipescu test according to ASTM D5379 [6, 7], are all based on simple shear 

deformation. For these shear test methods, many researchers considered simple shear as a 

combination of pure shear and rigid-body rotation within small deformation [8, 9]. However, this 

simplification is not applicable to large deformations [1] and will cause calculation errors. The  

calculation errors and corresponding correction methods are required to study for further 

understanding, especially for polymers, as there is an increasing application of polymers and 

Polymer Matrix Composites (PMCs) for lightweight panel components, and for both materials the 

forming process involves large deformation [10]. In addition, as mentioned by several researchers [2, 
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11, 12], deviatoric stresses have more influence on the mechanical behaviour of polymers, which 

confirms the significance of accurately characterising the stress-strain response of polymers under 

shear loading.  

For the fundamental understanding of the simple shear deformation, Thiel et al. [2] explained the 

incompatibility of Cauchy pure shear stress and simple shear deformation. Also, they introduced the 

notion of idealised finite simple shear form that can be applied to certain classes of hyperelastic 

materials under plane stress conditions without pressure, such as the Mooney-Rivlin material. 

Belytscho et al. [13] presented solutions to simple shear problems by introducing the objective 

stress rates on hyperelastic materials; however, the equations for solving the stress state under 

simple shear deformation were complicated, and different results would be obtained by using 

various objective stress rates. To study the deformation of a cylinder without axial load, Rajagopal et 

al. [14] established the shear strain field of the simple shear deformation in the form of stretch 

ratios along the principal axes of the nonlinear isotropic elastic material. The comparison between 

the simple shear and the pure shear on a hyperelastic material under large deformation was 

conducted by Moreira et al. [1]. In their research, the simple shear deformation was achieved by a 

single lap joint test, and the pure shear deformation was obtained using the planar tension test. 

Although the above studies have provided insights into the deformation mechanisms of simple shear 

and identified the differences between simple shear and pure shear, the stress and strain state of 

materials under simple shear are still unclear, not to mention a unified post-processing method.  

For the stress-strain behaviour calculated from simple shear tests, there are studies that indicated 

several error sources. The rotation of principal strains under simple shear deformation was reported 

by G'Sell et al. [15] and Dayan et al. [9]. Due to the existence of principal strains’ rotation, the 

directions of the principal stresses also rotate continuously during the simple shear test. As a result, 

the effective stress that calculated according to pure shear deformation is not accurate anymore. In 

addition to the error due to rotation, Hedner et al. [16] reported that the shear stresses were not 

uniformly distributed when simulating the simple shear deformation of polymers. This nonuniform 

deformation could affect the effective stress-strain calculation results if the stress localisation was 

not well addressed. Melin et al. [17] also mentioned the calculation errors generated by the 

nonuniform deformation. To achieve a more uniform deformation, they redesigned the Iosipescu 

test specimen by rescaling the opening angle of the test specimen according to the orthotropic ratio, 

which is the ratio of the two in-plane principal Young’s moduli. For the post-processing of testing 

data and the correction of these calculation errors, several methods have been proposed by giving 

correction factors to improve the accuracy of calculations. For example, Oh et al. [18] identified the 

strain measurement errors while conducting the Iosipescu test on Carbon/Epoxy composites, which 

resulted in an error with measured shear modulus. They defined a correction factor which was 

denoted as the ratio of the average strain over the central area to the central point strain of the 

testing specimen, based on the Finite Element Analysis (FEA) results, to obtain a more precise shear 

modulus. Taheri-Behrooz et al. [19] also used similar correction factors to correct the nonuniformity-
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induced shear stresses via FEA. However, these correction factors are usually fixed numbers and can 

only be applied to specific testing materials and conditions. In summary, although there are studies 

that have pointed out several error sources of simple shear tests and proposed correct solutions, 

none of them proposed a universal correction method that suited for a variety of materials under a 

simple shear test method.  

The objectives of this research are to show the errors during the VNR shear tests on polymers, give a 

detailed analysis of the error sources, and then present a universal post-processing method to 

calculate the effective stress-strain properties of solid-state polymers using the VNR shear tests. The 

structure of this paper is as follows. Section 2 presents experimental investigations on solid-state 

polymers to offer a ground truth of the properties of the studied material and present the errors at 

large deformation if use the traditional calculation method. Section 3 gives a detailed theoretical 

analysis of the error source and approaches of strain measurement. After understanding the 

research problem, the numerical simulation of the VNR shear deformation is presented in Section 4, 

so that a full field of the stress-strain data can be obtained and the corresponding mechanism 

articulated in section 3 can be better understood. And using the full field stress-strain date shown in 

section 4, a two-step correction method is proposed and validated in Section 5. Section 6 lists the 

key conclusions of this study.  

 

2. Experimental investigation 

Two sets of experiments were designed and conducted for the following purposes:  

1) Tensile test. The tensile tests were conducted, as the tensile test is a common material 

characterisation practice to study the material behaviour [11]. From the tensile test results, 

a benchmark of the solid-state polymers can be established, so that the calculation errors of 

the VNR shear tests from the traditional calculation method can be visualised, and the 

numerical simulation can be conducted by using the constitutive model from the benchmark 

results.  

2) The VNR shear test. By conducting the VNR test and comparing the stress-strain properties 

calculated from the VNR shear test via traditional method, the calculation errors can be 

visualised clearly. Besides, the VNR shear test results will be used for validating the 

numerical simulation, and validating the correction method proposed in this research.  

2.1. Materials and specimens 

The PEEK and PA6 polymers were selected as the experimental materials. Both polymers are 

semicrystalline thermoplastics that are widely used as structural component materials or the 

matrices in thermoplastic polymer matrix composites (TPMCs). With these wide applications, there 

is a high demand for characterising the mechanical behaviour of these thermoplastics under shear 

loading. In this study, the PEEK and PA6 materials were supplied as 2 mm and 5.5 mm thick sheets, 

by Ai Engineering Plastics & Laminates and Direct Plastics in the UK, respectively.  
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Tensile testing specimens were designed according to the standard testing method defined by ASTM 

638 [20]. The tensile testing specimen and its dimensions are shown in Fig. 1a and 1b, respectively. 

Two holes were machined on the specimen at the two ends for mounting onto the bespoke 

lightweight grips. For the VNR shear test, as reported by Nunes et al. [12] and Daiyan et al. [9], there 

was severe distortion during deformation in the standard test specimen defined in ASTM 7078 [3]. 

This was also observed by conducting the VNR shear test on PEEK using the standard specimen in 

this study. Thus, to avoid specimen distortion and to achieve a larger deformation, a modification 

was made on the specimen design by reducing the ligament length. The dimensions of the modified 

VNR shear specimen are shown in Fig. 1c. Two deep notches were machined on the standard 

specimens. The ligament length of the modified specimen is 15.68 mm. The modified shear test 

specimen with the shear test grips is shown in Fig. 1d. While mounting the specimen to the fixtures 

during the VNR shear experiment, a pair of space blocks were used to guarantee the good alignment 

between the specimen ligament and the loading axis. Besides, special care was taken while 

tightening the bolts in the VNR shear grips to avoid any out-of-plane twisting.  

 

2.2. Testing procedure of tensile and VNR shear experiments 

Both tensile and shear tests were performed on an INSTRON 5584 universal tensile testing machine 

shown in Fig. 1e. An environmental chamber was mounted on the machine to heat the test specimen 

to the target temperatures. The temperature of the specimen was monitored by thermocouples 

connected to a data-logger during the experiments. A camera was used to record the testing images 

for strain measurements, at a recording speed of 60 frame-per-second (fps). A light source was also 

used to assist the image recording. Fans were used to prevent the overheating of the load cell and the 

machine itself.  To achieve a large deformation in the shear experiments, the tests were conducted at 

evaluated temperatures between the glass transition temperature (𝑇𝑔, 143 ℃ for PEEK, 47 ℃ for PA6) 

and melting temperature (𝑇𝑚, 343 ℃ for PEEK, 230 ℃ for PA6). First, for the characterisation purpose, 

the tensile and the VNR shear tests were conducted on PEEK at 180 ℃, at a starting strain rate of 0.1 

/s, with the crosshead speed set as 2.54 mm/s for the tensile tests, and 1.57 mm/s for the VNR shear 

tests. Second, for the validation purpose, tensile tests were conducted on PEEK at 240 ℃ and on PA6 

at 160 ℃, both at a strain rate of 0.1 /s. The consistency of experimental results was examined by 

repeating tests on these materials under their corresponding testing conditions. 
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Fig. 1. The experimental setup and specimen designs for the tensile and the VNR shear tests. The a) design and 
dimensions (unit: mm) and b) an example picture of the specimen and grip for the tensile test; the c) design 

and dimensions (unit: mm) and d) an example picture of the specimen and grip for the VNR shear test; e) 
Experimental setup: ①Tensile test grip; ②Tensile test specimen; ③VNR shear test grip; ④VNR shear test 
specimen; ⑤Instron 5584 load frame; ⑥Crosshead embedded with a load cell; ⑦Environmental chamber; 

⑧Light; ⑨Thermocouples and data-logger; ⑩Fan; ⑪Camera. 

For both tensile and shear tests, the digital image correlation (DIC) method was used for the strain 

measurement. In the tensile tests, three lines were drawn on the test specimen shown in Fig. 2a. The 

1st and the 3rd lines marked the two ends of the gauge length (7.62 mm at the undeformed state), and 

the 2nd line was drawn in the middle to assist the image processing. The image processing method was 

implemented using a self-developed MATLAB script according to the method introduced in Wang et 

al. [21]. The positions of the three lines were tracked during the tests, based on which the tensile 

strain within the gauge length can be calculated. 

 

Fig. 2. The in-situ measurement methods for a) the tensile test and b) the VNR shear test. 

In the VNR shear test, the test images were captured at a resolution of around 225 pixels/mm2 and 

processed by a two-dimensional (2D) DIC software, provided by GOM, Germany. A facet size of 16 × 

16 pixels with a distance of 14 pixels was defined in the software to create a surface component for 



6 
 

further calculation. For each facet, the software automatically calculated its strain state on the central 

point of the facet at each deformation stage. Therefore, the strain field can be extracted, as shown in 

Fig. 2b. The ROI was defined as the central section of the specimen at a length of the maximum 

recognisable length and a width of around 1 mm. The effective strain of the ROI at each deformation 

stage was defined by the arithmetic mean of the maximum principal strains within the ROI. According 

to the observation of experiments, it was confirmed that the DIC processing method was robust 

enough and slight change of camera position for each set of experiment would not impact the 

processing results.  

2.3. Experimental results 

To have an impression on that the calculation error would be introduced by following the standard 

post-processing method of the VNR shear test, the effective stress-strain properties were evaluated. 

For both tensile and shear test results, the effective strain and effective stress were defined as the 

von-Mises effective strain (𝜀̅ ) according to Eq.(1) and effective stress ( �̅� ) according to Eq. (2) 

respectively. The detailed calculation process is listed in Table 1.  

 𝜀 ̅ =
√2

3
√(𝜀1 − 𝜀2)

2 + (𝜀2 − 𝜀3)
2 + (𝜀3 − 𝜀1)

2 (1) 

 𝜎 =
√2

2
(√(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2) (2) 

Table 1. The detailed effective stress-strain calculation for the tensile and the VNR shear tests 

Variables The tensile test The VNR shear test 

Measured 
variables 

• Vertical load (𝐹𝑡) 

• Initial cross-section area (𝐴0
𝑡 ) 

• Engineering tensile strain 𝜀𝑒𝑛𝑔
𝑡  calculated 

from gauge length (𝑙) change 

• Vertical Load (𝐹𝑠) 

• Initial cross-section area (𝐴0
𝑠 ) 

• Mean value of maximum principal 
strains (engineering strain) within 
the ROI (𝜀�̅�𝑂𝐼) captured by GOM 
software 

Ture strain 𝜀𝑡𝑟𝑢𝑒
𝑡 = ln(1 + 𝜀𝑒𝑛𝑔

𝑡  ) (3) 𝜀𝑡𝑟𝑢𝑒
𝑠 = ln(1 + 𝜀�̅�𝑂𝐼  ) (4) 

Principal strains 
𝜀1

𝑡 = 𝜀𝑡𝑟𝑢𝑒
𝑡   

𝜀2
𝑡 = −𝜀1

𝑡/2   
𝜀3

𝑡 = −𝜀1
𝑡/2    

(5) 

 

𝜀1
𝑠 = 𝜀𝑡𝑟𝑢𝑒

𝑠
  

𝜀2
𝑡 = 0  

𝜀2
𝑡 = −𝜀1

𝑠 

(6) 

 

Effective strain 
𝜀t̅rue

𝑡 = 𝜀1
𝑡 

(7) 𝜀t̅rue
𝑡 =

2

√3
𝜀1

𝑠  (8) 

True stress 𝜎𝑡𝑟𝑢𝑒
𝑡 =

𝐹

𝐴0
𝑡 ∗ (1 + 𝜀𝑒𝑛𝑔

𝑡 )  (9) 𝜎𝑡𝑟𝑢𝑒
𝑠 =

𝐹

𝐴0
𝑠 ∗ (1 + 𝜀𝑅𝑂𝐼

𝑠 )  (10) 

Principal stresses 𝜎1
𝑡 = 𝜎𝑡𝑟𝑢𝑒

𝑡   
𝜎2

𝑡 = 0  
𝜎3

𝑡 = 0  

(11) 
𝜎1

𝑠 = 𝜎𝑡𝑟𝑢𝑒
𝑠   

𝜎2
𝑠 = 0   

𝜎3
𝑠 = −𝜎𝑡𝑟𝑢𝑒

𝑠   

(12) 

Effective stress 
𝜎true

𝑡 = 𝜎1
𝑡  

(13) 
𝜎true

𝑠 = √3𝜎1
𝑠  

(14) 

 

The effective stress-strain curves obtained from the tensile and the VNR shear tests on the PEEK 

specimens at 180 ℃ and 0.1 /s are shown in Fig. 3. As can be observed, there are obvious differences 
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between the effective stress-strain curves obtained from the tensile and VNR shear characterisation. 

Various error sources can cause these differences. As the potential error sources, such as the 

machining and measurement deviation, have been minimised with considerable efforts in this study, 

the calculation errors in the VNR shear test are deemed to exist for these obvious differences. To gain 

insight into the stress and strain state, the detailed theoretical analysis is presented in Section 3. 

 

Fig. 3. The effective stress-strain curves obtained from the tensile and the VNR shear tests on PEEK at a 
temperature of 180 ℃ and at a strain rate of 0.1 /s. 

3. A detailed explanation of VNR shear tests for stress-strain characterisation problem  

This section will give a detailed explanation of the error sources that introduced from theoretical 

analysis. Besides, because of practical experimental procedure, the stress and strain measurement 

can also affect the calculation results. Therefore, the strain measurement methods are also 

explained to severe for the later work on proposing a universal correction method that can be 

adopted under different experimental approaches.  

3.1. Deformation mechanism of the VNR shear specimen  

The deformation mechanism of the VNR shear specimen can be understood from two aspects: the 

stress and deformation state within an infinitesimal element; and the overall strain distribution within 

the whole deformed area on the specimen.  

Fig. 4 illustrates the stress and deformation state within an infinitesimal element and the common 

practice for understanding the VNR shear deformation. The stress state and deformation state of the 

central infinitesimal element in the ligament of the specimen are presented in Fig. 4a. There is a 

vertical load 𝐹 along the loading direction and a constraining force on the other side, making the 

central elements deform as simple shear deformation. To maintain the simple shear deformation, 

shear stress (𝜎12)  and normal stresses (𝜎11  and 𝜎22 ) exist within the analysed element. During 

experiment, the vertical load 𝐹  is the measurable variable, which accounts for the vertical stress 

components 𝜎12  and 𝜎22 . The term 𝛾𝑚−𝑠  is the maximum shear strain of an analysed element in 

simple shear deformation. For small deformation, to simplify the calculation, the simple shear is 
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normally simplified to pure shear with a rigid-body rotation, shown in Fig. 4b. The term 𝛾𝑚−𝑝 denotes 

the maximum shear strain of an analysed element in pure shear. In pure shear deformation, there is 

only a shear stress 𝜎12 in the analysed unit element. Therefore, the measured load 𝐹 accounts for only 

the shear stress. Clearly, the effective stress-strain is easier to calculate from the pure shear 

deformation as the stress state is less complicated.   

 

Fig. 4. Deformation mechanism of the VNR shear specimen. a) Simple shear deformation; b) Simplification of 
the deformation mechanism at small deformation: pure shear deformation + rigid body rotation. (Terms 

𝜎11, 𝜎22, 𝜎12 are the stress components of the analysed element. Terms 𝛾𝑚−𝑠 and 𝛾𝑚−𝑝 are the maximum shear 

strains in simple shear and pure shear deformation, respectively.) 

To understand the difference between simple shear and pure shear, the detailed analysis is shown in 

Fig. 5. The pure shear is shown in Fig. 5a. As for the simple shear deformation, since it combines stretch 

and rotation, RU polar decomposition will be analysed to isolate and understand the deformation 

mechanism, as illustrated in Fig. 5b.  

 

Fig. 5. Deformation mechanisms of a) Pure shear and b) Simple shear deformation. (The terms 𝑋𝑖
𝑜, 𝑋𝑖

𝑈, 𝑋𝑖
𝑑  (𝑖 =

1,2,3) are the coordinates of the original, stretched, and deformed configurations, respectively. The arrows, 

𝜽𝒑
𝒐 ,𝜽𝒑

𝒅 represent the maximum principal strain directions of pure shear under original and deformed 

configurations, respectively; 𝜽𝒔
𝒐, 𝜽𝒔

𝑼, 𝜽𝒔
𝒅 are the maximum principal strain directions of simple shear under the 

original, stretched, and deformed configurations, respectively. Note: 𝜽𝒑
𝒐 , 𝜽𝒔

𝒐 are two virtual directions for the 
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purpose of angle calculations. The terms 𝛾𝑚−𝑝, 𝛾𝑚−𝑠 are the maximum shear strain of the pure shear and 

simple shear deformation, respectively.) 

By taking the central element as the analysed element, and using terms 𝑋𝑖
𝑜, 𝑋𝑖

𝑈 , 𝑋𝑖
𝑑  (𝑖 = 1,2,3) to 

represent the coordinates of the original, stretched, and deformed configurations, the coordinates 

of each configuration can be calculated according to the geometry change accordingly.  

For pure shear deformation, by comparing Fig. 5a)-1 and a)-3 the in-plane coordinates of the 

deformed elements, 𝑋1
𝑑 , 𝑋2

𝑑 can be represented by Eq. (15-1):  

 𝑋1
𝑑 = 𝑋1

𝑜 + 𝑋2
𝑜 ∙ tan (

𝛾max−p

2
) ;   𝑋2

𝑑 = 𝑋1
𝑜 ∙ tan (

𝛾max−p

2
) + 𝑋2

𝑜. (15-1) 

Based on the incompressible assumption[22] on solid-state polymers, 𝑋3
𝑑

 can be calculated as below:  

 𝑋3
𝑑 =

|𝑋1
𝑜||𝑋2

𝑜|

|𝑋1
𝑑||𝑋2

𝑑|
∙ 𝑋3

𝑜. (15-2) 

Therefore, the relationship between the original configuration 𝑿𝒐 and the deformed configuration 

𝑿𝒅, can be represented as Eq.(16). 

  

 𝑿𝒅 =

[
 
 
 
 1 tan (

𝛾𝑚−𝑝

2
) 0

tan (
𝛾𝑚−𝑝

2
) 1 0

0 0
1

1−tan2(
𝛾𝑚−𝑝

2
)]
 
 
 
 

∙ 𝑿𝒐. (16) 

And the deformation gradient of pure shear, 𝐹𝑝 can be calculated accordingly: 

 𝑭𝒑 =
𝜕𝑿𝒅

𝜕𝑿𝒐 =

[
 
 
 
 1 tan (

γ𝑚−𝑝

2
) 0

tan (
γ𝑚−𝑝

2
) 1 0

0 0
1

1−tan2(
𝛾𝑚−𝑝

2
)]
 
 
 
 

. (17) 

As shown in Eq. (17), the deformation gradient tensor of pure shear, 𝑭𝒑 , is symmetrical, which 

indicates that no rotation but only stretch exists in pure shear deformation. Therefore, the angle 

between the maximum principal strain and the 𝑋1 axis remains 45° (𝜽𝒑
𝒐, 𝜽𝒑

𝒅 in Fig. 5a)-2) all the time.  

Similarly, for simple shear deformation, by comparing Fig. 5b)-1 and b)-4 the deformed configuration 

can be calculated as Eq. (18). 

 𝑋1
𝑑 = 𝑋1

𝑜;  𝑋2
𝑑 = tan(𝛾𝑚−𝑠) ∙ 𝑋1

𝑜 + 𝑋2
𝑜;  𝑋3

𝑑 = 𝑋3
𝑜 (18) 

the deformation gradient tensor, 𝑭𝒔, can be expressed as: 

 𝑭𝒔 =
𝜕𝑿𝒅

𝜕𝑿𝒐 = [
1 0 0

tan (𝛾𝑚−𝑠) 1 0
0 0 1

]. (19) 

Eq.(19) shows that the deformation gradient tensor of simple shear, 𝑭𝒔, is asymmetric, which indicates 

that rotation exists during such deformation. After polar decomposition with 𝑭𝒔, the rotation tensor 

𝑹 and stretch tensor 𝑼 , in a relation of  𝑭𝑺 = 𝑹𝑼, can be obtained as below:  
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 𝑹 =

[
 
 
 
 

1

√1 + 𝑏2

−𝑏

√1 + 𝑏2
0

𝑏

√1 + 𝑏2

1

√1 + 𝑏2
0

0 0 1]
 
 
 
 

;    𝑼 =

[
 
 
 
 
 
1 + 2𝑏2

√1 + 𝑏2

𝑏

√1 + 𝑏2
0

𝑏

√1 + 𝑏2

1

√1 + 𝑏2
0

0 0 1]
 
 
 
 
 

 (20) 

The stretch process is illustrated in Fig. 5b)-2, the eigenvectors of 𝑼 are the directions principal strains, 

and of which the first eigenvector, �̂�𝟏 , is corresponding to 𝜽𝒔
𝒍  (𝑙 refers to ‘o’, ‘U’ for original and 

deformed configurations, respectively) illustrated in Fig. 5b.  �̂�𝟏 can be expressed as Eq. (21). 

 �̂�𝟏 = [
√1 + 𝑏2 + 𝑏

1
0

]. (21) 

The direction of the maximum principal strain, �̂�𝟏, can be understood as below:  

• In the original configuration, as shown in Fig. 5b)-1, 𝑏 = 0, therefore, �̂�𝟏 = [1 1 0]𝑇, which 

means �̂�𝟏 is at a direction of 45° with the 𝑋1 axis, shown as 𝜽𝒔
𝒐. It is worth mentioning that 

𝜽𝒔
𝒐  is listed in the figure only for the purpose of calculating the rotation angle of the principal 

strain and no actual physical meaning is represented.  

• In the stretched configuration, as shown in Fig. 5b)-2, the angle between the maximum 

principal strain and the 𝑋1  axis, i.e. the angle between 𝜽𝒔
𝑼  and 𝑋1  axis, can be calculated 

according to �̂�𝟏:  

 tan(𝜽𝒔
𝑼) =

1

√1+𝑏2+𝑏
= √1 + 𝑏2 − 𝑏;  (22) 

Accordingly, from Fig. 5b)-1 to b)-2, the change of the direction of maximum principal strain can be 

calculated: 

 tan(𝜽𝒔
𝒐𝑼) = tan(𝜽𝒔

𝑼 − 𝜽𝒔
𝒐) =

tan(𝜽𝒔
𝑼) − tan (𝜽𝒔

𝐨)

1 + tan (𝜽𝒔
𝑼) ∙ tan(𝜽𝒔

𝒐)
=

1 − √1 + 𝑏2

𝑏
 (23) 

The rotation process is illustrated in Fig. 5b)-3. The counterclockwise rotational angle of the analysed 

element (i.e., the rigid body rotation) 𝜽𝒔
𝑼𝒅 = 𝜽𝒔

𝒅 − 𝜽𝒔
𝑼. According to the definition of rational tensor 

𝑹 , in the form of 𝜽𝒔
𝑼𝒅, 𝑹 can be represented as:  

 𝑅 = [

cos(𝜽𝒔
𝑼𝒅) − sin(𝜽𝒔

𝑼𝒅) 0

sin(𝜽𝒔
𝑼𝒅) cos(𝜽𝒔

𝑼𝒅) 0

0 0 1

] (24) 

By comparing Eqs. (20) and (24), 𝜽𝒔
𝑼𝒅 can be calculated as below: 

 tan(𝜽𝒔
𝑼𝒅) = 𝑏.  (25) 

It is found from Eq. (25) that 

 tan (
𝜽𝒔

𝑼𝒅

2
) =

sin(𝜽𝒔
𝑼𝒅)

1 + cos (𝜽𝒔
𝑼𝒅)

=
√1 + b2 − 1

b
 (26) 

Therefore, comparing Eqs. (23) and (26), the following expression can be obtained: 

 𝜽𝒔
𝒐𝑼 = −

1

2
𝜽𝒔

𝑼𝒅 = −arctan(
√1 + b2 − 1

b
) (27) 
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Then the change of the maximum principal strain from the original configuration to the deformed 

configuration can be obtained accordingly: 

 𝜽𝒔
𝒐𝒅 = 𝜽𝒔

𝒐𝑼 + 𝜽𝒔
𝑼𝒅 = arctan (

√1 + b2 − 1

b
) (28) 

From Eqs. (22) to (28), it is proved that  𝜽𝒔
𝒐𝒅 = −𝜽𝒔

𝒐𝑼 = 𝜽𝒔
𝑼𝒅/2. This means the principal strain axes 

rotation angle is different with the element rotation angle, and both angles are related to the shear 

strain. This rotation of principal strain axes will eventually induce the rotation of principal stress axes. 

The simplification from simple shear to pure shear has failed to address the stress state changes and 

the relation between the vertical load 𝐹 and the stress components (𝜎22, 𝜎12). Therefore, the effective 

stress calculation is inaccurate when the principal axes keep changing, and the stress components are 

not available.  

The above explanations are all within the central infinitesimal element. When taking the overall 

deformed area into consideration, however, due to the stress concentration effect, the material does 

not deform uniformly , as mentioned by several researchers [16, 17, 19, 23], which is also observed 

during the experimental investigation as shown in Fig. 2b. With the measurement of vertical load F, 

only average stress along the ligament can be obtained, but the average stress cannot accurately 

reflect the real material behaviour. Therefore, the nonuniformity factor is another error source for the 

effective stress-strain calculation.  

3.2. Strain measurement methods used in the VNR shear test  

From the experimental perspective, the measurable variables and related characterisation methods 

are also essential for assessing the experimental methods and analysing the calculation errors. In the 

shear tests, the measurable variables include the vertical load 𝐹 which is a stress-related variable, and 

the strain or the strain field of the deformed material, depending on the strain measurement methods. 

 

Fig. 6. The shear strain measurement methods in the VNR shear test. a) Using strain gauge; b) Using DIC. 

According to the testing standard ASTM 7078 [3] of the VNR shear test, the shear strain can be 

measured using two strain gauges mounted along the +45° and -45° directions to the loading axis at 

the ligament centre, shown as Fig. 6a. According to the basic rule of strain transformation, the 

strains along the +45° and -45° directions can be written as:  
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𝜀+45° =
𝜀𝑥+𝜀𝑦

2
+ 

𝜀𝑥−𝜀𝑦

2
 cos(2 × (+45°)) +

𝛾𝑥𝑦

2
sin(2 × (+45°)); 

𝜀−45° =
𝜀𝑥+𝜀𝑦

2
+ 

𝜀𝑥−𝜀𝑦

2
 cos(2 × (−45°)) +

𝛾𝑥𝑦

2
sin(2 × (−45°)), 

(29-1) 

(29-2) 

where, 𝜀+45° and 𝜀−45° are strains measured from the +45° and -45° strain gauges, respectively. The 

strains of 𝜀𝑥 , 𝜀𝑦 and 𝛾𝑥𝑦 are the strain components of the analysed element at the specimen centre in 

the 𝑥 − 𝑦 plane shown in Fig. 6a. Subtracting Eq. (29-1)  from Eq. (29-1), the maximum shear strain (𝛾𝑥𝑦) 

of the analysed element can be obtained as:  

 𝛾𝑥𝑦 = 𝜀+45° − 𝜀−45° (30) 

Theoretically, if the centre element is under pure shear deformation mode, +45° and -45° are two 

principal axes of the deformed element (analysed in Section 3.1). Therefore, two opposite values 

should be obtained from these two strain gauges. Taheri-Behrooz et al. [19] analysed the strains 

obtained by two strain gauges in the VNR shear test at a small deformation degree (less than 2%), and 

the two strain gauges gave the same absolute value but opposite in sign, which showed that within 

small deformation, it is acceptable to simplify the simple shear to pure shear deformation mode. 

However, the absolute values of the two strain gauges differ from each other with the increase of 

deformation due to the rotation of principal axes.  

Another commonly used strain measurement method is the DIC method, as shown in Fig. 6b and 

stated in Section 2.2. For this strain measurement method, the test specimen is pre-processed by 

creating a speckle grayscale distribution on the target deformation area, and the images of the 

speckled area are captured during the deformation.  After that, an image processing algorithm is 

applied to the captured images to obtain the strain field. Finally, the shear strain of the specimen is 

calculated by the average strain over the region of interest (ROI). Under the pure shear assumption, 

the shear strain equals the maximum principal strain in magnitude. Therefore, the maximum 

principal strain is normally employed to calculate the effective strain.  The size and shape of ROI are 

defined differently in different studies. For example, while conducting the VNR shear tests, Nunes et 

al. [12] defined the ROI as a small central zone on the ligament; Filho et al. [24] defined the ROI as 

five evenly distributed subregions along the ligament; Daiyan et al. [9] defined the ROI as a circle at 

the centre with a radius of 1-2% of the ligament length (31 mm for standard specimen); Totry et al. 

[25] defined the ROI as a rectangular at 25 mm × 2 mm in the middle of the ligament. 

To summarise, researchers adopted various methods with different technical details to obtain the 

shear strain of the VNR shear test. These measurement methods are important factors influencing 

the calculation errors of the VNR shear test as they are using different measured data from various 

deformation regions on the specimen.  

Based on the above mechanism and strain measurement analysis, it was found to be difficult to 

establish the calculation method for obtaining the real material properties, using only the obtained 

experimental data, and the error would vary with different strain measurement methods. To have a 

clear view of the stress-strain field of the VNR shear test specimen and evaluate the calculation 

error, the numerical simulation on the VNR shear test was conducted due to its ability to show the 

full field stress/strain data of the deformation.  
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4. Numerical simulations  

4.1. Temperature-dependent Johnson-Cook constitutive model 

The effective stress-strain curve proceeded from the tensile tests at 180 ℃ was used to define the 

material constitutive model for the studied materials. The constitutive model was established as a 

linear elastic part followed by a nonlinear plastic flow. A temperature-dependent Johnson-Cook (JC) 

plastic model [26], [27] was employed and calibrated using the tensile test data. The mathematic 

form of the temperature-dependent JC model between 𝑇𝑔 and 𝑇𝑚 is given below:  

 𝜎0 = [𝐴 + 𝐵(𝜀 ̅𝑝𝑙)𝑛] (1 − (
𝜃−𝜃𝑟𝑒𝑓

𝜃𝑚𝑒𝑙𝑡−𝜃𝑟𝑒𝑓
)

𝑚

) , 𝜃𝑟𝑒𝑓 < 𝜃 < 𝜃𝑚𝑒𝑙𝑡 , (31) 

where the flow stress, 𝜎0, is a function of the plastic strain, 𝜀̅𝑝𝑙, and the temperature, 𝜃. The terms 

𝜃𝑟𝑒𝑓 and 𝜃𝑚𝑒𝑙𝑡 are material constants representing the reference temperature and the melting 

temperature, respectively. All temperatures in this model are in absolute temperatures. The terms 

𝐴, 𝐵, 𝑛,𝑚 are the material constants to be determined.  

To identify the material constants, the yield stress and yield strain need to be determined first. Fig. 3 

reveals that there is no obvious yield point for PEEK material at the test condition. Therefore, the 

extrinsic yield point introduced by Brinson et al.[11] was used to identify the yield stress and yield 

strain of the PEEK specimen under tension. The extrinsic yield point was identified by extrapolating 

the tangent line of points in the stress-strain curve, and locating the point when the intersection of 

the tangent line with the x-axis is -0.01. The elastic modulus was defined by the slope of the line 

connecting the undeformed point (i.e., origin) and the extrinsic yield point. With the yield properties 

identified, an in-house MATLAB code was developed to identify the JC model constants. The 

lsqnonlin function in MATLAB was adopted to solve the nonlinear least-squares problem. The 

specific material model parameters are listed in Table 2. The flow stress-plastic strain curves of the 

experimental result and the fitted model are shown in Fig. 7.  

 

Fig. 7. Flow stress comparison between the JC numerical model and the experimental result of PEEK at a 
temperature of 180 ℃ and at a strain rate of 0.1 /s. 

4.2. Finite element model set-up 

In ABAQUS, the virtual specimen was modelled as a deformable part with five integration points 

through the thickness of the specimens. The 4-node shell element with reduced integration (S4R) was 

used to define the mesh, and there were 6283 elements in total in the whole model.  The numerical 
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boundary condition was consistent with the experimental setup. Displacement control was applied to 

the sample during the simulation, and the total displacement was defined as 5 mm. The model was 

solved using the explicit solver in a Windows system with four CPUs. The total CPU time for completing 

one case was around 64 minutes. The input parameters required for this model are listed in Table 2. 

Table 2. Input parameters required for the VNR shear test simulation 

Properties Parameters 

Density (tonne/mm3) 𝜌 =  1.3 × 10−9 

Modulus (MPa) 𝐸 =  415.948 

Poisson’s ratio 𝜈 =  0.48 

John-Cook model parameters 

 

A=15.651, 

B=29.079,  

n=0.298,  

m =0.947,  

𝜃𝑟𝑒𝑓= 453K (180 ℃) 

𝜃𝑚𝑒𝑙𝑡  = 616 K (343 ℃) 

Predefined field temperature  453 K (180 ℃)  

 

4.3. Model validation 

To validate the correctness of the simulation results, the strain distribution and the vertical load were 

compared with the experimental results for the VNR shear test on PEEK. The maximum principal strain 

distribution proceeds from numerical simulation, and the experimental results obtained from the DIC 

analysis were also compared at four deformation stages, as presented in Fig. 8a. These four 

deformation stages were selected by coordinating the experimental and simulation results, with an 

interval of around 0.7 mm. The region of 0 to 1 represented the relative position on the ligament of 

the specimen, with 0 refers to the lower end and 1 refers to the upper end. Fig. 8b and 8c show the 

strain field measured from the experiment and simulation, respectively, at a certain stage of 

displacement equals 1.98 mm. The vertical loads obtained from the experiment and simulation are 

compared in Fig. 8d. The comparison between the experimental and numerical results shows that the 

strain fields of the numerical results (solid lines) and the experimental results (dot lines) agree with 

each other well, and vertical loads of both the experimental and numerical results are also consistent, 

which demonstrates that the numerical simulation results are valid. 
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Fig. 8. Validation of the numerical model by comparing a) strain distribution along the ligament at four 
displacement stages (Solid lines are the numerical results; Dot lines are the experimental results); strain fields 

of b) experimental and c) numerical results at Stage 3; d) vertical loads obtained from experimental and 
numerical results. 

5. Error analysis and a new correction method 

5.1. Analysis of the deformation state of tested materials 

The forming limit diagram is normally used to analyse the deformation state of the material. According 

to the strain field on the specimen shown in Fig. 9a, there is strain localisation along the ligament, 

making it reasonable to choose two representing nodes for analysis. The two representative nodes on 

the ligament are the strain localised point near the upper end and the central point of the ligament, 

i.e., Node 1 and Node 2, respectively. The maximum and minimum principal strains of these two nodes 

at different deformation stages are presented in Fig. 9b. The green reference line at a slope of -1 

represents the strain state under pure shear deformation. It can be observed that Node 2, which is 

also the central point of the ligament, is under shear state almost during the whole deformation 

procedure. In contrast, Node 1, which is the strain localised point near the upper end, deflects the 

shear state at an early stage and starts to deviate from the reference line (green line) when the 

minimum principal strain equals to c.a. 0.25. Therefore, the central point should be chosen to analyse 

the real material properties under shear loading.  
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Fig. 9. The deformation state of two representing nodes, Node 1 and Node 2, on the test specimen: a) 
illustration of the analysed nodes, and b) deformation state of the two analysed nodes in the forming limit 

diagram. 

5.2. The analytical ground truth and error source 

From the numerical simulation results, the strain and stress state of each node can be extracted for 

further analysis. Therefore, to obtain the effective stress-strain curves of the central point, three 

principal strains and three principal stresses were extracted against each deformation stage. The 

effective strains (𝜀𝑐) and effective stresses (𝜎𝑐) of the central point were calculated according to Eqs.(1) 

and (2) , respectively.  

The ground truth of this material property is the input constitutive JC model. The comparison of the 

central point data and the input model data are shown in Fig. 10. The effective stress-strain curve of 

the central point agrees well with the input constitutive JC model. Therefore, the properties extracted 

from the ligament central point can be used as the ground truth property of the studied material. 

Consequently, corrections need to be made on the effective stress-strain curve calculated from the 

experimental results to obtain the effective stress-strain curve of the central point. 



17 
 

 

Fig. 10. The ground truth validation: effective stress-strain curves of the central point (Node 2 in Fig. 9) and the 
input constitutive model (the JC model). 

As mentioned in Section 3.2, the characterisation results are also influenced by the measurement 

methods. Therefore, it is worth identifying the calculation errors for both measurement methods 

corresponding to the experimental procedures. For experiments using the strain gauge measurement, 

as explained by Eq.(30), the measured strain is actually the maximum shear strain, which equals to the 

maximum principal strain under the pure shear assumption. Therefore, by adopting the method listed 

in Eqs. (3) to (14), the effective strain (εSG) and effective stress (σSG) are calculated as: 

 𝜀𝑆𝐺 =
2

√3
∙ 𝛾𝑚−𝑐  ; (32) 

 𝜎𝑆𝐺 = √3
𝐹

𝐴0
 (1 +

2

√3
(𝑒𝜀𝑆𝐺 − 1)) ; (33) 

where 𝛾𝑚−𝑐   is the maximum shear strain of the central point. The term 𝐹 is the measured vertical 

load. The term 𝐴0 is the initial area of the cross-section along the ligament of the specimen. The term 

(1 + 2(𝑒𝜀𝑆𝐺 − 1)/√3) in Eq. (33) is the process of converting the engineering stress to true stress.  

For the experiments using DIC measurement, the ROI is defined by the central section, i.e., a node set 

composed of all the nodes along the central line of the ligament, corresponding to the experimental 

calculation in Section 2.3. With a similar method explained in Section 2.3, the effective strain (𝜀𝐷𝐼𝐶) 

and effective stress (𝜎𝐷𝐼𝐶) are calculated as: 

 𝜀𝐷𝐼𝐶 =
2

√3
𝜀�̅�𝑂𝐼  ; 

(34) 

 𝜎𝐷𝐼𝐶 = √3
𝐹

𝐴0
 (1 +

2

√3
(𝑒𝜀𝐷𝐼𝐶 − 1)) ; (35) 

where 𝜀�̅�𝑂𝐼  is the arithmetic mean of maximum principal strains of all nodes in the ROI. The term 

(1 + 2(𝑒𝜀𝐷𝐼𝐶 − 1)/√3) in Eq. (35) is also the process of converting the engineering stress to true stress. 

The effective strains and the effective stresses measured by strain gauges and DIC during shear tests 

are compared with the ground truth data obtained from the central point during tensile tests, as 

shown in Fig. 11. It demonstrates that no matter which measurement method is used, for the effective 

strain, the measured strain through the strain gauge and DIC agree well with the ground truth, 

whereas for the effective stresses, the measured stress through the strain gauge and DIC are quite 

different from the ground truth. As indicated in Fig. 11b, when the effective strain is higher than 0.102, 

the calculation errors are nonnegligible, and errors of both measurement methods, i.e., 𝜉𝑆𝐺  and 𝜉𝐷𝐼𝐶, 
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are observed as around 12.3%. Therefore, a correction method is required for the effective stress 

calculation at large deformation of the VNR shear test.   

 

Fig. 11. Comparison between the results of strain gauge and DIC measurements and the ground truth of 
material properties: a) effective strains and b) effective stresses. 

5.3. A new two-step correction method 

As explained in Section 3.1, the errors of characterisation results by simple shear tests come from two 

main factors: the rotation factor and the nonuniformity factor. Also, Fig. 11 has indicated that the 

main error is introduced through the calculation of effective stress. This section proposes a two-step 

correction method to correct the two factors that caused the calculation error of effective stress 

characterised by the VNR shear test. The detailed process is shown in Fig. 12. And the detailed 

calculation variables are listed in Table 3. 

Without considering the nonuniformity, the effective stress should be the average stress of all the 

nodes on the ligament, as the measured load consists of contributions from all nodes. Therefore, for 

the rotation factor, the first step of the correction aims to convert the initial calculations, presented 

in Eqs. (33) and (35), into the effective stress that considering every single node in the ROI. A virtual 

state is built up as the target curve of this correction step. The effective strain of the target curve ( 𝜀𝑙𝑔) 

is defined by the average value of maximum principal strains (𝜀�̅�−𝑙𝑔) of all nodes in the ROI, while the 

effective stress of the target curve (𝜎𝑙𝑔 , Eq. (40) ) is defined by the averaged value of maximum 

principal stresses (�̅�𝑚−𝑙𝑔) of all the nodes in the ROI. With this aim, the first step is to establish the 

relationship between the errors and the rotational angles of the whole deformation element shown 

in Fig. 12a)-1 and 12a)-2. The rotational angle is also illustrated as 𝛥𝜃12 in Fig. 5, and can be calculated 

geometrically from the maximum shear strain as shown in Eq.(6). The calculation of the rotation angle 

for the target curve, using strain gauges or DIC results is listed as Eqs.(36-38), respectively, 

where  �̅�𝑚−𝑙𝑔  refers to the mean maximum shear strain values of all the nodes in the ROI. The 

differences between Eqs.(37) and (38) is caused by the difference between the available data of these 

two different measurement methods. For the strain gauge measurement, only one set of data is 

obtained (𝛾𝑚−𝑐), whereas, for the DIC measurement, the strain data of all nodes inside the ROI are 

utilised. As for the calculation errors, for both sets of data, the errors should equal to the ratio of the 

initial effective stresses (𝜎𝑆𝐺, 𝜎𝐷𝐼𝐶) and the target effective stresses (𝜎𝑙𝑔). The errors related to the 

rotational angle are illustrated in Fig. 12a)-2. Here the correction factor regarding the rotation 
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influence is proposed as the reference line in Fig. 12a)-2 (Eq.(41) or (42)). It is worthwhile to mention 

that, although Eqs. (41) and (42) are in the same exponential form, the calculated results could be 

different as these two equations take different input data. The results after the correction on the 

rotation factor are shown in Fig. 12a)-3. It is obvious that the rotation correction factor works well for 

both measurement methods.  

For the nonuniformity factor, the objective of the correction is to adjust the effective stresses after 

the first step correction (𝜎𝑆𝐺
𝑐𝑜𝑟𝑟1 and 𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟1)  to match the ground truth of the material properties. 

Therefore, the target curve of this step is the effective stress-strain (𝜎𝑐 and 𝜀𝑐) curve of the central 

point of the specimen, i.e., the ground truth. Although this step aims to deal with the nonuniformity 

influence, it is still reasonable to do the similar step as the first step correction, since Fig. 8a shows 

that the strain localisation is also highly related to the shear strain, which simplifies the form of the 

correction factor. The second step of the correction process is presented in Fig. 12b)-1 and 12b)-2. In 

this step, the rotational angle for the target curve (𝜔𝑐) is calculated using the maximum shear strain 

of the central point (𝛾𝑚−𝑐). Similar to the first step correction, the nonuniformity correction factor 

related to the rotational angles is calculated by obtaining the ratio of the present effective stress 

(𝜎𝑆𝐺
𝑐𝑜𝑟𝑟1 and 𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟1) and the target effective stress (𝜎𝑐). The correction factor corresponding to the 

nonuniform deformation is shown as the reference line in Fig. 12b)-2, which is calculated via Eq (46) 

or (47). The results after the correction on the nonuniformity factor are shown in Fig. 12b)-3. It can be 

clearly observed that, the effective stress-strain curve of the VNR shear test can be corrected to the 

ground truth of the material properties using the two-step correction based on the experimentally 

measured data, regardless of the measurement methods. Besides, Fig. 12b)-3 shows that for 

experiments with strain measured by DIC method (green line), the final results show more reliability 

at large deformation compared with the strain gauge measurement (black line), which is because 

more nodes are considered inside the ROI, and the results are more robust. 
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Table 3. Details of the two-step correction method 

Variables The target curve Using strain gauges (SG) Using DIC 

The first step correction 

Rotational angle 
𝜔𝑙𝑔 = arctan (

tan (�̅�𝑚−𝑙𝑔)

2
)     𝜔𝑆𝐺 = arctan (

tan (𝛾𝑚−𝑐)

2
)      𝜔𝐷𝐼𝐶 = arctan (

tan (�̅�𝑚−𝑙𝑔)

2
)  

(36) (37) (38) 

Effective strain 𝜀𝑙𝑔 =
2

√3
∙ 𝜀�̅�−𝑙𝑔      (39) 𝜀𝑆𝐺  (Eq. (32)) 𝜀𝐷𝐼𝐶   (Eq. (34)) 

Effective stress 
before correction 

𝜎𝑙𝑔 = √3 ∙  �̅�𝑚−𝑙𝑔     (40) 𝜎𝑆𝐺 (Eq. (33)) 𝜎𝐷𝐼𝐶  (Eq.(35)) 

The first correct 
factor 

\ 𝑓𝑆𝐺
1 = 𝑒

𝜔𝑆𝐺
2  (41) 𝑓𝐷𝐼𝐶

1 = 𝑒
𝜔𝐷𝐼𝐶

2                (42) 

Effective stress 
after the first step 

correction 
\ 𝜎𝑆𝐺

𝑐𝑜𝑟𝑟1 =
𝜎𝑆𝐺

𝑓𝑆𝐺
1  (43) 𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟1 =
𝜎𝐷𝐼𝐶

𝑓𝐷𝐼𝐶
1   (44) 

The second step correction  

Rotational angle 
𝜔𝑐 = arctan (

tan (𝛾𝑚−𝑐)

2
)  

𝜔𝑆𝐺  𝜔𝐷𝐼𝐶  

(45) 

Effective strain 𝜀𝑐 (Eq. (1)) 𝜀𝑆𝐺  𝜀𝐷𝐼𝐶  

Effective stress 
before correction 

𝜎𝑐 (Eq.(2))  𝜎𝑆𝐺
𝑐𝑜𝑟𝑟1 𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟1 

The second 
correct factor 

\ 𝑓𝑆𝐺
2 = 𝑒

2∙ 𝜔𝑆𝐺
3  (46) 𝑓𝐷𝐼𝐶

2 = 𝑒
2 ∙ 𝜔𝐷𝐼𝐶

3             (47) 

Effective stress 
after the second 
step correction 

\ 𝜎𝑆𝐺
𝑐𝑜𝑟𝑟2 =

𝜎𝑆𝐺
𝑐𝑜𝑟𝑟1

𝑓𝑆𝐺
2  (48) 𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟2 =
𝜎𝐷𝐼𝐶

𝑐𝑜𝑟𝑟1

𝑓𝐷𝐼𝐶
2  (49) 
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Fig. 12. Two-step correction for the effective stress-strain curves measured using strain gauge and DIC. a) The 1st correction step: a)-1, The relationship between 

effective stresses and rotational angle; a)-2, The relationship between the calculation errors and rotational angle; a)-3, The first step correction effect; b) The 

second correction step: b)-1, The relationship between effective stresses and rotational angle; b)-2, The relationship between the calculation errors and rotational 

angle; b)-3, The second step correction effect. 
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Fig. 13 shows the comparison of the effective stress-strain curves of strain gauge and DIC 

methods before and after the two-step correction.  

  

Fig. 13. Comparison of the effective stress-strain curves of strain gauge and DIC methods before and 
after the two-step correction. (BC means before correction, and AC means after correction). 

The above correction process is analysed and calculated according to numerical results. As 
the initial problem indicated in Fig. 3, the effective stress-strain curves calculated from the 
tensile and the VNR shear test data are considerably different without the correction 
procedure. Therefore, by adopting the two-step correction method proposed above, the 
shear test results can be corrected. The effective stress-strain curves under tensile and the 
VNR shear tests on PEEK at 180 ℃ is shown in Fig. 14. Compared to Fig. 3, the characterised 
material properties after corrections show more reliability.  

 

Fig. 14. The effective stress-strain curves of the tensile and the VNR shear tests (after the two-step 

correction) on PEEK at a temperature of 180 ℃ and at a strain rate of 0.1/s. (The uncorrected results 

are shown in Fig. 3.)  
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5.4. Validation of the developed correction method 

To further validate the correction method, the model constants fitted from the corrected and 
uncorrected VNR shear test data were entered into ABAQUS, to show the detailed difference 
of the final material properties before and after correction. Fig. 15 shows the JC model fitting 
results using the experimental data before and after correction. The fitted material 
parameters are listed in Table 4. The most notable difference is shown by the 𝑛 parameter in 
JC model, representing the strain hardening exponent, which is also bolded in Table 4. Without 
the correction, the strain hardening exponent, 𝑛, might be more than twice of the real value. 
The numerical simulation setup is the same as the previous setup described in Section 4.2.  

 
Fig. 15. Flow stress-plastic strain curves obtained from the JC model predicted results and the VNR 
shear experimental results at a temperature of 180 ℃ and a strain rate of 0.1/s. (BC means before 

correction, AC means after correction. Exp refers to the experimental results) 

Table 4. Input parameters required for the numerical simulations (using the VNR shear test data)  

Properties Parameters before correction Parameters after correction 

Density (tonne/mm3) 𝜌 = 1.3 × 10−9 𝜌 = 1.3 × 10−9 

Modulus (MPa) 𝐸 = 372.314 𝐸 = 312.559 

Poisson's ratio 𝜈 = 0.48 𝜈 = 0.48 

Johnson-Cook model parameters 

(A, B, n, m, 𝜃𝑟𝑒𝑓, 𝜃𝑚𝑒𝑙𝑡) 

A=18.517, 

B=62.864,  

n=0.530, 

m =0.652,  

𝜃𝑟𝑒𝑓= 453K (180 ℃) 

𝜃𝑚𝑒𝑙𝑡  = 616 K (343 ℃) 

A=14.032, 

B=29.569,  

n=0.245,  

m =0.675,  

𝜃𝑟𝑒𝑓= 453K (180 ℃) 

𝜃𝑚𝑒𝑙𝑡  = 616 K (343 ℃) 

Predefined field temperature 453 K (180 ℃) 453 K (180 ℃) 

     

The simulation results regarding these two sets of model input parameters were analysed 

and compared with the experimental results obtained from the DIC measurement. Similar to 

the previous analysis, the maximum principal strain distribution along the ligament was 

analysed at four displacement stages shown in Fig. 16a and 16b, respectively. Under small 

deformation, i.e., when the displacement is lower than that defined in the first deformation 

stage (the effective strain is around 0.093 at this stage), the strain distributions are similar 
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regardless of the model is fitted for uncorrected or corrected test data. However, with the 

deformation increases, the model output begins to deflect the experimental results with the 

model fitted using the uncorrected testing data. Besides, the results show that the extent of 

deflection increases with the increasing deformation. In contrast, with the model fitted from 

the corrected testing data, the predicted strain fields comply with the experimental results 

very well.  

 

Fig. 16. Comparison between experimental and numerical results using shear test results as model input 

at 180 ℃: strain field comparison at four displacement stages using a) model fitted using uncorrected 

shear test data and b) model fitted using corrected shear test data. (The solid lines are the numerical 

results, and the dot lines are the experimental results.)  

The above analysis and validation are all based on the material properties of PEEK at 180 ℃. 

To further validate the universality of the two-step correction method on the post-processing 

of the VNR shear test results against other conditions and even on different materials, another 

two groups of simulation were conducted: 1) the PEEK material at 240 ℃; 2) the PA6 material 

at 160 ℃. As mentioned in Section 3.1, tensile tests on PEEK at 240 ℃ and PA6 at 160 ℃ were 

also conducted.  The JC model parameters of PEEK are the same as listed in Table 2. The JC 

model constants of PA6 were also calibrated by the tensile test results. The parameters 

required for these two sets of simulation are listed in Table 5. 

Table 5. Input parameters required for the numerical simulations 
(using tensile test results of the validation materials)  

Properties Parameters of PEEK at 240 ℃ Parameters of PA6 at 160 ℃ 

Density (tonne/mm3) 𝜌 = 1.3 × 10−9  𝜌 = 1.5 × 10−9   

Modulus (MPa) 𝐸 = 167.295  𝐸 = 180.13  

Poisson's ratio 𝜈 = 0.48  𝜈 = 0.48   

John-Cook model parameters 

(A, B, n, m, 𝜃𝑟𝑒𝑓, 𝜃𝑚𝑒𝑙𝑡) 

A=15.651, 

B=29.079,  

n=0.298,  

m =0.947,  

𝜃𝑟𝑒𝑓= 453K (180 ℃) 

𝜃𝑚𝑒𝑙𝑡  = 616 K (343 ℃) 

A=11.489, 

B=14.531,  

n=0.729,  

m =1.079,  

𝜃𝑟𝑒𝑓= 433K (160 ℃) 

𝜃𝑚𝑒𝑙𝑡  = 503 K (230 ℃) 
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Predefined field temperature 513 K (240 ℃) 433 K (160 ℃) 

 

Fig. 17 compares the effective stress-strain curves of these two validation simulations before 

and after correction. There are similarities between Fig. 13 and Fig. 17, in which the effective 

stress-strain curves without correction always deflect from the ground truth at large 

deformation, regardless of the strain measurement methods. By adopting the two-step 

correction method on post-processing of the VNR shear test data, the correct material 

properties can be obtained against different conditions or even with different materials.  

 

 

Fig. 17. Verification of the correction method by a) changing the test condition of the same material 
(PEEK); and b) changing the material (PA6). (BC means before correction, and AC means after 

correction). 

6. Conclusions 

In this study, the mechanism of the simple shear deformation was analysed. The rotation 

factor and the non-uniformity factor were identified as error sources. The tensile 

experiments, the V-Notched Rail (VNR) shear experiments and simulations were performed 

to quantify these two factors. A two-step correction method is proposed for post-processing 

of the VNR shear test results to obtain the real effective stress-strain properties. The main 

conclusions are drawn as follows: 

1) There is rigid-body rotation during the simple shear deformation, and the rotation angle 

of the deformation is related to the shear deformation. Therefore, the rotation factor is an 

important factor that influences the characterisation of the material properties. Besides, the 

nonuniformity of deformation is another nonnegligible factor that can affect the 

characterisation results. 
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2) Through the numerical simulation using ABAQUS, the full stress/strain field can be 

extracted, and therefore the post-processing errors can be quantified. It is found that, when 

the simple shear was simplified as pure shear, there are significant errors in the effective 

stress calculation of the VNR shear test, especially at large deformation (when the effective 

strain is higher than 0.1). 

3) A two-step correction method is proposed to mitigate the two error sources, i.e., the 

rotation factor and the nonuniformity factor. The correction factors for the two influential 

factors are all in an exponential relationship to the rotation angle, which can be calculated 

from the shear strain.  

4) The numerical validation on the two-step correction method has been conducted using 

material models fitted from the VNR shear test results, before and after correction. The  

correlation between the experimentally and numerically obtained strain fields confirmed the 

validity of this two-step correction method. Besides, this two-step correction method is also 

validated by the same material at a different condition and different thermoplastic 

materials, which demonstrates the robustness of the proposed correction method.  
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