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        Testing and experimentation can, in general, be a 

costly or time consuming endeavor and, as such, 

companies are motivated to minimize costs. This often 

causes engineers to merge many different data sets, 

resulting in imbalanced multidimensional spaces of data. 

As a consequence, it becomes increasingly difficult to 

locate where hidden extrapolations have occurred when 

using these amorphous data sets. Thus, there is a need for 

a more rigorous method in extrapolation determination 

without requiring engineers to spend large of amounts of 

time parsing multidimensional data. A method relying on 

Gaussian Mixture Models for hidden extrapolation 

determination is presented in this paper.  

 

 

I. INTRODUCTION 

 

The nuclear industry is filled with data sets that are 

amalgamations of any and all available test data, ranging 

from data older than the 1970s through the present day. 

Many of the phenomena that impact safety calculations 

are quite difficult to accurately predict with mechanistic 

models, thereby requiring empirical models. Furthermore, 

new data is often difficult to obtain due to cost, time 

constraints, physical limitations, or safety.  

Thus, over time, data sets grow into amorphous 

imbalanced shapes that require complex 

regressions/correlations. This becomes a problem 

particularly when developing models that rely on 

variables that are themselves functions of other measured 

variables, such as non-uniform power shape factors used 

in critical heat flux correlations, fluid qualities, enthalpies, 

etc.   

Due to the multivariate nature of the phenomena of 

interest, when performing engineering calculations, it can 

be problematic for a human to know if they have 

accidently ventured outside the range of the available data 

and extrapolated into regions of unknown behavior.  All 

approved NRC models rely on one dimensional 

applicability ranges (i.e. range of applicable mass fluxes, 

qualities, pressures, etc.). 

This scenario has been referred to as a “hidden 

extrapolation.” Naively, one may expect simply staying 

within the one dimensional range of available data 

prevents any extrapolation from being an issue. However, 

as illustrated in Fig. 1, it is quite possible to use an 

empirical model within the range of the data, yet still 

extrapolate outside the region of space occupied by the 

data.  

The classical technique for hidden extrapolation 

detection is via the examination of the leverages, which 

are discussed in Section II. Unfortunately, this technique 

does not work well when the data set is amorphous and 

imbalanced. In Sections III and IV, this paper utilizes the 

more modern method of Gaussian Mixture Models to 

detect hidden extrapolations.  

 
Fig. 1. Depiction of hidden extrapolations. 

 

II. LEVERAGES 

 

The leverages of a sample data set are defined in Eq. 

(1) (see Kutner et al.
1
 for more details) in which 𝑋 is an n 

× (1+p) matrix, where n is the number of data points and 

p are the independent variables with the first column 

equaling ones for the intercept. Conceptually, data 

leverages can be thought of as a “lever” or line drawn 

between a specific data point and the centroid of the data. 

The further the data point is from the centroid, the more 

influence this data point will have over a regression fit to 

the data set (i.e. greater leverage). 

 

                ℎ = 𝑑𝑖𝑎𝑔(𝑋𝑖′(𝑋′𝑋)−1𝑋𝑖)         (1) 
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As recommended by Kutner et al.
1
, a data point (i.e. a 

new 1 × (1+p) vector 𝑋𝑛𝑒𝑤) of interest is likely a hidden 

extrapolation if the leverage of the new data point (Eq. 

(2)) is well outside the range of the leverages calculated in 

Eq. (1).  

 

          ℎ𝑛𝑒𝑤 = (𝑋𝑛𝑒𝑤
′ (𝑋′𝑋)−1𝑋𝑛𝑒𝑤)           (2) 

 

The general idea of using leverages for extrapolation 

detection is quite useful since it reduces data of any 

number of dimensions down to one dimension, which is 

easily understandable by a human.   

Unfortunately the major shortcoming of this method 

is the assumption of the hyper-ellipsoid. Reviewing only 

the maximum and minimum leverages is an excellent 

metric for hidden extrapolation detection only if the 

multivariate data exhibits a shape similar to a multivariate 

normal distribution. As described in Section I, such data 

is quite often not available in the nuclear industry.   

 

III. BRIEF DESCRIPTION OF GAUSSIAN 

MIXTURE MODELS  

 

The key difference between using leverages and 

Gaussian Mixture Models (GMM) for extrapolation 

detection is the assumption of many multivariate normal 

distributions instead of one. A GMM is a model-based 

clustering algorithm in which the data is modeled as a 

mixture of many different normal (Gaussian) 

distributions. The available data is broken down into 

subgroups that resemble hyper-ellipsoids. 

A GMM was specifically chosen to provide a 

statistical model of the data. The well known kmeans
2
 

clustering was not used due to the expectation of 

heterogeneous covariance structures.  The myriad of 

hierarchical clustering methods (the most common are 

discussed in James et al.
3
) were not used as they do not 

readily provide a model for inferences.  Other model 

based clustering such as self-organizing maps
4
 were not 

used because they provided a less direct means of 

analyzing the statistical significance of sparse regions.   

Within the context of this paper, the R package 

mclust
5
 was used to fit the GMM to our hypothetical 

example data. The details of the mclust package are 

described in the technical report by Fraley et al.
6
. The two 

most relevant equations to accomplish the objective are 

Eq. (3) (the joint distribution of the data), which is the 

definition of the mixture model, and Eq. (4), which is a 

standard multivariate normal distribution (see Appendix 

of Dempster et al.
7
 for additional GMM details).   

 

∏ ∑ 𝜏𝑘𝜙𝑘(𝑥𝑖|𝜇𝑘 Σk)𝐺
𝑘=1

𝑛
𝑖=1                        (3) 

 

 

𝜙𝑘(𝑥𝑖|𝜇𝑘 Σk) = (2𝜋)−
𝑝

2|Σk|−
1

2exp {−
1

2
(𝑥𝑖 − 𝜇𝑘)𝑇Σk

−1(𝑥𝑖 − 𝜇𝑘)}  (4)                                                                  

 

GMMs work by assuming 𝐺 number of multivariate 

normal distributions for a data set of size 𝑛  and 𝑝 

dimensions (e.g. 𝑝 = 3  if analyzing data with three 

variables such as pressure, mass flux, and enthalpy). Then 

the expectation-maximization (EM) algorithm (originally 

developed by Dempster et al.
7
) is used to maximize the 

joint probability given in Eq. (3) by finding the best 

distribution parameters 𝜏𝑘, 𝜇𝑘, Σk for the assumed number 

of 𝐺 distributions.  

These steps are then repeated for various numbers of 

𝐺  distributions, in which the Bayesian Information 

Criterion (BIC), a model selection criteria that attempts to 

provide guidance on the most accurate model that does 

not overfit the sample data (see Schwarz and Gideon
8
) is 

recorded for each value of 𝐺. The value of 𝐺 that results 

in the largest BIC is considered to be the optimal number 

of Gaussian (normal) distributions to fit the available data 

while minimizing the chance of overfitting the data. 

 

III.A. COMMENT ON GEOMETRIC HULLS 

 

A problem tackled in geometric computation is the 

determination of the “data hull,” which is defined by 

drawing a multidimensional shell around the bounds of 

the data. Geometric hulls may seem to answer the 

objective of understanding the bounds of the data, but it 

assumes that all regions of data are of equal density, 

which is typically not true for empirical data. Hence, 

geometric hulls will not differentiate between the bulk of 

the data and outliers and sparse regions of data. 

There are also conceivable scenarios in which the 

hull will be too conservative in that it may assume a fluid 

dynamic system could make non-physical jumps. For 

these reasons, geometric hulls were not further 

investigated for hidden extrapolation detection. 

 

IV. APPLICATION OF GAUSSIAN MIXTURE 

MODELS 

 

To fully demonstrate the utility of a GMM, a random 

amorphous data set is generated, shown in Fig. 2.  While 

the data provided in Fig. 2 is synthetic, it does represent a 

data shape that is reasonably realistic for the highly 

controlled experiments performed in the nuclear industry. 

Included in Fig. 2 is a GMM with three groups. As shown 

in Fig. 3, the mclust package automatically runs a series 

of groups to find the best model based on BIC that fits the 

data. In addition, the package tests many different EM 

models used during the fitting of the data. These models 

make various assumptions like equal variance, unequal 

variance, equal-volume spherical, etc. A GMM with three 

groups (i.e. multivariate normal distributions) was found 

to best fit the sample data. 
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Fig. 2. The best GMM with three groups overlaid with a 

hypothetical data set. 

 

 
Fig. 3. Various EM models tested for different numbers of 

multivariate normal distributions for the Gaussian mixture 

model. 

 

Now that a probability density function that models 

the data has been determined, the probability of a new 

vector actually coming from the multi-dimensional space 

can be assessed. If the probability associated with the new 

vector is extremely low, then either 1) we have no data in 

this subregion or 2) the new vector is in a very sparse 

region of data. 

The problem of integrating a mixture density function 

must be solved, which will require numerical techniques.  

Monte Carlo importance sampling provides a robust and 

well-defined method for obtaining fast results that can be 

inserted into any engineering code. The Monte Carlo 

sampling portion can take some time to compute, but 

these results can be saved for later use and enable 

virtually instantaneous integration. 

There are many references that can provide in-depth 

theory for Monte Carlo importance sampling, but the 

following discussion describes specifically how the GMM 

can be integrated.  Eq. (5) provides the integral for a two 

dimensional example in which the probability that the 

new data point (c1,c2) could have come from the 

distribution of our tested region of data. Note that two 

dimensions were used only to demonstrate the approach 

and this GMM method can be used for any number of 

dimensions.  

 

𝑃(𝑥 > 𝑐1, 𝑦 > 𝑐2) = ∫ ∫ ∑ 𝜏𝑘𝜙𝑘(𝑥, 𝑦|𝜇𝑘  Σk)𝐺
𝑘=1 𝑑𝑦𝑑𝑥

∞

𝑐2

∞

𝑐1
       (5) 

 

The importance sampling version of Eq. (5) is then 

given in Eq. (6), where 𝑚 is the Monte Carlo sample size 

and 𝑥 is sampled from one of the 𝐺 multivariate normal 

distributions in which the probability of sampling from 

each of the distributions is given by 𝜏 as calculated by the 

EM algorithm. In other words, 𝑥(𝑗)~𝑁(𝜇𝑘 , Σk) , where 

there is a 𝜏𝑘 probability of selecting the 𝑘 distribution of 

the GMM. 

 

𝑃(𝑥 > 𝑐1, 𝑦 > 𝑐2) =
∑ ∑ 𝜏𝑘𝜙𝑘(𝑥(𝑗)>𝑐1,𝑦(𝑗)>𝑐2|𝜇𝑘 Σk)𝐺

𝑘=1
𝑚
𝑗=1

∑ ∑ 𝜏𝑘𝜙𝑘(𝑥(𝑗),𝑦(𝑗)|𝜇𝑘 Σk)𝐺
𝑘=1

𝑚
𝑗=1

            (6) 

 

Thus, with a fairly small number of samples (much 

less than 10
5
) Eq. (5) can be solved numerically and the 

desired probability obtained, which takes a few minutes to 

calculate. Each repeat use of the generated Monte Carlo 

data does not require resampling and only needs the 

numerator of Eq. (6) to be summed up across the desired 

region of space, which takes less than a second to 

calculate. Hence, any engineering code on a modern 

computer should be able to make online calculations for 

extrapolation determination. 

As an example using a dummy data set, if a 

regression model based on our sample data set were to be 

used at a mass flux and pressure of (1.5, 2.0), there is a 

0.395 probability that this statepoint came from the tested 

region of data (i.e. it is very likely). However, using a 

mass flux and pressure of (2.0, 5.0), there is a 6.2×10
-8

 

probability that this statepoint came from the tested region 

of data (i.e. extremely unlikely). 

As a point of comparison to the leverages discussed 

in Section II, the leverages for a grid of possible 

statepoints was compared against the criteria discussed in 

Section II. Fig. 4 displays the results of this calculation, 

demonstrating the inadequacy of leverages for our 

imbalanced data set. 

Fig. 5 uses the same grid of data with the GMM 

approach in which a fairly accurate assessment of which 

statepoints are likely hidden extrapolations can be seen. 
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Fig. 4. Hidden extrapolation detection using the leverage 

approach. 

 

 
Fig. 5. Hidden extrapolation detection using the GMM 

approach. 

 

 

V. GENERAL GUIDANCE FOR GMM 

EXTRAPOLATION DETERMINATION 
 

1. The inequalities for the calculation of the Eq. (6) 

probabilities need to be directed away from the 

centroid of the data to yield a meaningful value. 

Hence, the minimum of 2𝑝  combinations of 

inequalities need to be included in the algorithm 

that checks for extrapolations for each new 

vector.  It is recommended a computer algorithm 

is setup to perform this calculation as data sets 

with greater than three dimensions become 

exceedingly difficult to know where the centroid 

is based only on visual inspection. 

 

Example:  if we have five measured variables 

𝑋1, 𝑋2 … 𝑋5  , the minimum probability, i.e. the 

solution of Eq. (6) that is pointing away from the 

centroid is one of the 32 inequality 

combinations: 

 

𝑃(𝑋1 > 𝑐1, 𝑋2 > 𝑐2, … 𝑋5 > 𝑐5)

𝑃(𝑋1 < 𝑐1, 𝑋2 > 𝑐2, … 𝑋5 > 𝑐5)

𝑃(𝑋1 > 𝑐1, 𝑋2 < 𝑐2, … 𝑋5 > 𝑐5)
⋮

 

 

It is acknowledged that this method loses utility 

for ultra-high dimension datasets (e.g. greater 

than 20 dimensions). 

2. Standard inferencing can be used as a first pass 

criterion, e.g. a probability greater than 0.05 can 

be said to come from the tested region of data 

with 95% confidence. 

3. Probabilities less than a typical level of 

significance are not necessarily extrapolations, 

e.g. a probability of 0.0005 could be in a very 

sparse data region. It should also be expected 

that using regression models (such as Critical 

Heat Flux models) in these sparse data regions 

will exhibit appreciable increases in uncertainty 

of the predicted values. Thus, Eq. (6) 

probabilities that are less than the significance 

level but are greater than a user defined cutoff 

value (5×10
-5 

was used for the example data in 

this paper)
 

might not be extrapolations, but 

should be used with care due to low data density.  

The exact cutoff value for declaration of an 

extrapolation was determined via trial and error 

through inspection of the available data. 

Engineers may need to calibrate the cutoff 

criteria to their particular data set.    

4. Eq. (6) probabilities less than the cutoff value are 

very likely extrapolations and engineers should 

take great care in examining this region based on 

available data. 

 

 

VI. EXAMPLE CASE WITH REAL DATA 

 

The publically available EPRI Critical Heat Flux 

(CHF) data provided by Fighetti and Reddy
9
 is an 

excellent and quite representative dataset often used or 

referenced in the nuclear industry.  The Pressurized Water 

Reactor (PWR) data for Westinghouse designs was 

arbitrarily selected for this example.   

This dataset provides the added complexity of 

data points being taken in clusters around specific 

pressure/mass flux combinations.  Clusters of data points 

in CHF testing is not unusual as it limits stress on the 

experimental apparatus. 

For this study, simply relying on the BIC to 

select the best structure of the GMM did not work well 

since the clustered data misleads the GMM algorithm into 
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assuming the clusters are independent distributions with a 

very small probability of data existing between clusters. 

However, we know that the data points are covariates and 

we would expect interpolated points between clusters to 

exhibit similar behavior to the surrounding clusters of 

data. Thus the best model can be assessed manually. The 

ellipsoidal covariance structure with equal volume, shape, 

and orientation was selected based on visual trial and 

error (i.e. the ‘EEE’ model option in the mclust
5
 R 

package).  The selected data with the resulting fitted 

GMM are illustrated in Fig. 6.   

 

 

 
 

Fig. 6. Pair wise comparison of the EPRI data with a 

GMM fit to this dataset. 

 

 

Fig. 6. clearly demonstrates this dataset includes 

many pockets of missing data. In the scenario that the 

NRC approved a CHF correlation for use with this 

particular dataset, the standard review procedure would 

always request justification of sparse regions or missing 

regions of data.  For demonstration purposes, assume that 

this dataset is approved as is presented in Fig. 6.  The 

NRC “applicability range” would be given as:   

 
Pressure (MPa) 5.13 16.86 

Mass Flux (kg/s-m^2) 670.6 5076.6 

Fluid Quality -0.6872 0.6593 

Distance To Grid (cm) 6.6 74.51 

 

However it would be quite difficult to ensure any 

transient simulation does not unintentionally venture into 

a missing data region.  An example transient forcing 

function that stays within the bounds of the applicability 

range is given in Fig. 7 with a constant distance to grid of 

35.6cm.  As an added challenge to demonstrate the utility 

of a GMM, the transient ranges given in Fig. 7 were setup 

to stay within the bulk of the data provided in Fig. 6 (i.e. 

an attempt has been made to stay out of sparse data 

regions).  Hence, similar to a real life situation, the 

engineer would attempt to stay within the bounds of the 

data.  

After the GMM has been fit, a possible cutoff 

probability needs to be determined.  A total of 50,000 

samples were taken from the GMM for use with 

summations in Eq. (6).  The exact number of the samples 

depends on the complexity of the fitted GMM and should 

be increased until the probabilities converge. 

An initial test point is considered to ensure the 

Monte Carlo integration is behaving as expected. 

Reviewing the probability of a random point coming from 

pressure < 13.8MPa, mass flux > 2030kg/s-m
2
, any 

quality, and any distance to grid results in a probability of 

0.347, which agrees with expectations (i.e. a large value).  

Next, as a calibration test point, a data point is selected 

from a region with very sparse data (e.g. pressures < 8.62 

MPa, any mass flux, any quality, and any distance to 

grid), which results in a probability of 0.0025. This region 

includes a very small amount of data and thus it would be 

highly advised to review any data points that result in 

probabilities of approximately equal magnitude.  

Probabilities much less than this calibration value are very 

likely hidden extrapolations.  

 

 
Fig. 7. Example variable transient simulation for 

demonstration of GMM utility  

 

 

 The calibrated GMM can now be tested with an 

example transient scenario in which the mass flux is 

decreasing simultaneously with pressure, and quality is 

increasing.  The resulting probabilities of this transient 

coming from the approved database are shown in Fig. 8. 

The horizontal dashed line is drawn at half the calibration 

probability to ensure we are not being overly aggressive 

with our hunt for hidden extrapolations. Despite 

attempting to stay within the available dataset, 

simultaneously modifying three variables resulted in 

almost half the transient existing outside the approved 

database.  The first half of the transients is within the 

available pressure and mass flux, but in a hidden quality 

extrapolation.  The latter half of the transient is in a 
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hidden extrapolation region due to the quality and 

distance to grid. 

Thus, as a follow-up it would be prudent to 

review these newly identified areas and determine if any 

non-conservatism may exist in the resulting safety 

assessment. 

 

 

 
Fig. 8. Resulting probability of a transient coming from a 

dataset included in the approved database 
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