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Abstract—Designing new storage solutions for optimized per-
formance is an active research area. In this paper, we discuss the
emerging storage technologies that show the potential to signifi-
cantly improve the performance of the applications. Specifically,
we summarize the key benefits and applications of such four
storage technologies, i.e., Zoned Namespace SSD, Key-value SSD,
Multi-Stream SSD, and Non-volatile Main Memory.

I. INTRODUCTION

The increased availability and usage of digital devices are
producing an overwhelming amount of data. Nowadays, 2.5
quintillion bytes of data are being generated every day [1]. To
store this vast amount of data, efficient storage technologies
are essential. Due to this timely demand for optimized storage
solutions, the storage research world is actively proposing
modern storage solutions. In this paper, we discuss the back-
ground and related works on some of these emerging storage
technologies.

Hard-Disk-Drives (HDD) have already been replaced the
Solid-State-Drives (SSD) because of SSDs’ improved perfor-
mance and enhanced capacity. However, recent works focus
on emerging storage technologies that can outperform the
traditional SSDs in many cases. We discuss such four storage
technologies, i.e., Zoned Namespace SSD, Key-value SSD,
Multi-Stream SSD, and Non-volatile Main Memory. We first
discuss the design of these techniques, then we focus on the
key advantages and limitations of each of these solutions, and
finally, we summarize some of the key works on these storage
solutions.

II. EMERGING STORAGE TECHNOLOGIES

A. Zoned Namespace SSD

The Zoned Namespace SSD (ZNS) differs from the tra-
ditional SSDs by dividing the address space into multiple
equally-sized zones. Unlike the traditional SSDs, which sup-
ports random writes, the zones only support append-only,
i.e., sequential writes to any zone. Read operation in ZNS
remains same. The ZNS interface which replaces the previ-
ous block interface on the traditional SSDs, also eliminates
the costly garbage collection, media over-provisioning, and
reduces DRAM usage. This is because, in ZNS, the control is
given to the host to manage the write amplification, and ZNS
enables the host to take data placement and I/O scheduling
decisions by being more workload aware. The popularity of
the ZNS is increasing so rapidly that [2] argues that research
efforts on the traditional SSDs is obsolete and the research
community should focus on the ZNS instead.

Although ZNS devices have been standardized, there are
many unsolved research opportunities, such as the improve-
ment of zone management, the interaction between the ap-
plications and zones, finding the best I/O scheduling for the
host, and others [2]. Ref. [3], [4] investigate the impact
of different ZNS features on the performance. Ref. [5], [6]
analyzes how log-based file systems, databases, and LSM trees
can benefit from the ZNS’s append-only zone structure. LSM-
based garbage collection for zones is proposed by [7]. The
ZNS+ interface is introduced to further optimize the ZNS
interface to support in-storage zone compaction [8].

B. Key-value SSD

Key-value SSDs (KV-SSD) are another emerging technol-
ogy that specifically aims to improve the performance of the
key-value stores. In the traditional SSDs, the key-value stores
run on the top of the block interface which maintains all the
mappings, from the key-values to the flash pages. However,
KV-SSDs eliminate all the data management overhead of the
block layer and provides direct access to data to the key-
value storage applications. Ref. [9] describes the design of the
KV-SSDs in detail. Among the recent works, [10] discusses
the advantages and limitations of the KV-SSDs. Ref. [11]
introduces hybrid data reliability for the key-value devices.
’PinK’ [12] implements LSM-tree-based KV-SSD to improve
the tail latency. Others implement concurrency for parallel key-
value stores in KV-SSDs [13], enables distributed key-value
stores on KV-SSDs [14], [15], new append feature for the
KV-SSDs [16], and others [17], [18].

C. Multi-Stream SSD

To improve the endurance and performance of the traditional
SSDs, Multi-Stream SSDs(MS-SSD) [19] are introduced [20].
MS-SSDs split the incoming storage data streams into multiple
streams and write to physically separated blocks. To split the
data stream into multiple streams, MS-SSDs use the lifetime
of the data, so that data with similar lifetime could be grouped
together for improved lifetime and performance. There are
several works on stream management techniques. Ref. [21]
introduces fully automatic stream identification, [22], [23] use
workload features for stream identification, and [24] analyzes
workload in the runtime to find the best stream identifica-
tion technique. To automatically tune the parameters used
by different stream identification techniques, [25] designs a
novel framework for the MS-SSDs. Ref. [26] proposes the
concept of virtual streams for the MS-SSDs to overcome the



limited numbers of streams supported by the device. Other
recent works on MS-SSDs include techniques for garbage
collection in MS-SSDs [27], [28] and methods for maintaining
the quality of service of streams [29].

D. Non-volatile Main Memory

In addition to the emerging SSD technologies discussed
above, Non-volatile Main Memory(NVMM) devices are new
types of memory and storage solutions that provide some
unique properties. NVMMs come in the DIMM form factor
and thus can be directly connected to the mainboard. Hence,
NVMMs can be used as both storage and memory devices.
NVMMs provide lower access latency than the SSDs but
higher than the DRAM. To exploit the performance and byte-
addressability provided by the NVMMs, there is an extensive
amount of work that implements filesystems [30]–[34] and
optimized interfaces for NVMMs [35]–[37]. Moreover, some
works [38], [39] focus on the data security on the NVMM
devices. Furthermore, improved hybrid memory systems have
been designed using DRAM and NVMMs. State-of-the-art
works in designing hybrid memory systems include [40]–
[43].

III. CONCLUSION

In this work, we summarize and discuss four emerging stor-
age technologies. We expect that the background knowledge
and relevant works on these emerging technologies provided
in this paper will help the research community to design better
storage solutions.
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