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Abstract. Within complex chemical engineering applications, subsystems or 

technologies have to be selected and evaluated, without being an expert in each 

technology. Here, a surrogate model can help, if it can be set up with easily avail-

able reliable tools and data from publications. A surrogate model for pressure 

swing adsorption processes to separate hydrogen from gaseous mixtures was de-

veloped here, using 90 published data sets for training and testing five different 

machine learning algorithms. The resulting specific surrogate model is valuable, 

as also the procedure of its development and analysis, which is transferable to 

other scientific questions. 

For these data sets a random forest regression yielded the best results, in terms of 

high coefficient of variation, low mean absolute error and low root mean square 

error, when 80 % of the data was used for training and 20 % for testing. The 

predicted hydrogen recovery deviated from the true value by 6.6 %.  

A subsequent global sensitivity analysis revealed that the hydrogen recovery is 

mainly dependent on the number of adsorption beds and adsorption time. The 

purity depends on the adsorption pressure and the purge to feed ratio but should 

be investigated further by increasing the number of data sets, as soon as more 

publications become available. In the future, the surrogate model shall be imple-

mented in a subordinate process concept model for testing the suitability of PSA 

processes for the separation of hydrogen from exhaust gas mixtures ordinating 

from fuel-rich operated HCCI engines. 

Keywords: Machine learning, pressure swing adsorption, hydrogen separation, 

surrogate model. 

1 Introduction 

Often in chemical and energy engineering processes it turns out that certain sub-sys-

tems, which are considered, are not as favorable as wanted, e.g. a certain separation 

process. In such cases it would be very helpful to investigate alternatives, but without 

being an expert in the alternative procedure, the selection of good process parameters 

is either difficult or very time consuming. To evaluate its suitability, either costly ex-

periments or extensive simulations could be performed. Both approaches demand either 

expertise in this research field or lots of effort in terms of time and workload. If the 

final outcome was interesting for the scientific community, this effort would have been 

worthwhile. However, if the outcome was that the PSA process is not feasible for the 
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desired application, a shortcut would have been preferred to speed up the evaluation of 

feasibility. Furthermore, with increasing model complexity and number of investigated 

parameters computational time can be challenging and surrogate models are discussed 

as promising solutions [1], and summarizing investigations from the literature would 

be helpful, if such a model can easily be set up with recent machine learning algorithms, 

as will be described here. But this also leads to the question, which of the different 

machine learning algorithms will lead to good predictions, while being robust with re-

spect to their usage. This will be investigated here for a specific problem, assuming that 

not only the specific results are helpful, but also the procedure for scientists facing sim-

ilar problems. 

In a recent study of fuel rich HCCI processes for polygeneration that can be used to 

produce work, heat, and synthesis gas or hydrogen, as shown in our recent work [2–4], 

it turned out that the implemented hydrogen separation with a membrane is the costliest 

part. Thus, the question arises whether alternatives would lead to a techno-economi-

cally more favorable process with the needed purities. One choice to evaluate is pres-

sure swing adsorption, which adsorbs CO2, H2O, and other impurities and provides a 

purified hydrogen flow [5]. However, due its dynamic behavior and large number of 

variables, e.g. adsorption pressure, adsorption time, purge to feed ratio, adsorption bed 

geometry etc., as well as its complex interaction of time- and position-dependent kinet-

ics and thermodynamics, high efforts are needed to implement such a model in a super-

ordinate model. Therefore, the performance of different easily available and established 

machine learning algorithms is evaluated with respect to the suitability of the derived 

surrogate model. 

Although this being a field with increasing interest, there is a small number of pub-

lications about surrogate models of pressure swing adsorption processes. The first pub-

lications stem from 2017, with increasing numbers in the following years. Most authors 

chose single hidden layer artificial neural network (ANN) methods for multi-objective 

optimizing product purity and yield of the PSA process.  

One of the early works was conducted in 2017 by Sant Anna et al. [6]. They trained 

a feedforward ANN model for N2/CH4 separation in a silicalite adsorbent and fed the 

neural network with data simulated with a vapor pressure swing adsorption (VPSA) 

model. Eventually, they used the ANN model for optimizing N2 purity and recovery. 

Ye et al. [7] and Xiao et al. [8] used a similar approach in 2019, but with different gas 

mixtures and thus different adsorbents. Ye et al. investigated the hydrogen separation 

from a H2/CO2/CO mixture with copper containing adsorbents (Cu-BTC). Xiao et al. 

used active carbon and zeolite 5A separately, and a layered bed, to separate hydrogen 

from a H2/CO2/CH4/CO/N2 mixture. Two years later, Tong et al. [9] used the same 

approach for H2/CH4 mixtures and zeolite 5A as adsorbent. They also investigated the 

influence of the number of neurons in the hidden layer and the number of samples on 

the surrogate model performance. 

Neural network surrogate models for PSA were also used for analyzing CO2 capture 

by Leperi et al. [10] and Subraveti et al. [11] in 2019. Leperi et al. trained the neural 

network with data from partial differential algebraic equation model simulations, using 

Ni-MOF-74 and zeolite 1X as adsorbents. They found that the highest relative error for 

CO2 purity and recovery was 1.42 % and thus concluded that the PSA process model 

can be accurately substituted by a well-trained neural network. 

In 2022 Rebello et al. [12] summarized some of the above mentioned publications 

that used neural networks and concluded that those methods are often applied without 
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evaluation of their limitations and the challenges the predictors entail. Rebello et al. 

therefore performed PSA experiments for CO2 capture from CO2/CO/H2 mixtures and 

trained three different neural network models with the data: feedforward neural network 

(FNN), recurrent neural network (RNN), and deep neural network (DNN). Their objec-

tive was to accurately predict the time dependent evolution of CO2 purity and CO2 re-

covery and to provide guidelines to creating neural network based surrogate models. 

Therefore, they firstly optimized the hyperparameters of the neural networks, which are 

the parameters that define the structure of the neural network. Afterwards, they trained 

the models and evaluated the coefficient of determination (R²), the mean absolute error 

(MAE), and the root mean square error (RMSE) of the predictions. The FNN model 

showed the best results for predicting the measured data, whereas the DNN model pre-

dicted the simulation results better. They concluded that for choosing the most suitable 

machine learning model it is crucial to consider the application of the model. 

There are only few works on surrogate models based on other methods than neural 

networks. One example is the work of Pai et al. [13] from 2020. They trained and com-

pared five different machine learning methods to model a 4-step VPSA for CO2 sepa-

ration from CO2/N2 mixtures on 13X zeolite. The methods were decision tree regression 

(DTR), random forest regression (RFR), support vector regression (SVR), gaussian 

process regression (GPR), and artificial neural networks (ANN). The data for model 

training was obtained with a detailed VPSA model and 800 data sets were created. 

Eventually, they used the surrogate models to optimize the CO2 purity and recovery, as 

well as the energy consumption and productivity. They found that the GPR model pre-

dicted their simulated data most accurately and matched their experimentally deter-

mined purity and recovery within an error of 5 %. 

Hao et al. [14] developed a methodology to efficiently generate a surrogate model 

for any existing model by using a support vector machine (SVM) classifier to reduce 

the amount of simulated data for surrogate learning to a reasonable minimum. They 

could thus reduce the time to generate surrogate models by 86 % for a PSA model and 

51 % for a gas-to-liquids model. 

Yan et al. [15] investigated the separation of O2 from N2/O2 mixtures via PSA to find 

the best suitable adsorbent material of different metal-organic frameworks. They 

trained three different machine learning models, namely random forest, gradient boost 

regression tree, and extreme gradient boosting, with 6,013 different metal-organic 

framework variants. With extreme gradient boosting they achieved the highest coeffi-

cient of determination (R² = 0.93) and the lowest mean absolute and square mean errors. 

The aforementioned authors typically are experts on pressure swing adsorption pro-

cesses and their objective was mostly to save computational time of processes they 

already modelled in detail or investigated experimentally. 

In this work, the approach is different. The objective is to model the hydrogen purity 

and hydrogen recovery of pressure swing adsorption processes as a function of im-

portant input parameters and to implement this correlation as a surrogate model in our 

polygeneration process model, as a mean to separate hydrogen from the exhaust gas 

containing a mixture of CO2/CO/H2/H2O/N2. Therefore, machine learning methods are 

helpful as well: data can be extracted from the literature and used for training and test-

ing of the model. The performance is expected to be poorer due to the greater diver-

gence between data sets of different works. Nevertheless, in this work the question shall 

be answered if machine learning based surrogate models are feasible for evaluating the 

suitability of PSA processes with acceptable accuracy and limited data from the 
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literature. Furthermore, it is discussed which approach and machine learning method 

seems to be reasonable. Eventually, the model with the best performance was chosen 

to perform a global sensitivity analysis to identify the sensitivity of the input values on 

the output values. 

2 Methods 

In pressure swing adsorption a gas mixture flows through a tube filled with adsorbent 

of a certain length at a given pressure and temperature. Due to differences in their ad-

sorption behavior, the outlet partial pressures change with time and differ from their 

inlet values; this can be used for separation. The purity of the exiting gases depends on 

different parameters like adsorbent, time, flow velocity, pressure, tube length and di-

ameter, initial composition, and temperature. After a certain period, the adsorbent is 

saturated and the outlet partial pressures are the same as the inlet partial pressures, 

without a separation. Before this happens, generally a second adsorbent tube is used for 

separation. The adsorbent can be refreshed by reducing the pressure and purging with 

an inert gas. Generally, several adsorbent tubes are used to ensure a steady state opera-

tion and often combinations of two to three different adsorbents in a layered bed are 

applied to achieve a certain separation goal, but also up to six adsorbents are discussed 

[16]. This leads to the variables which must be modeled either as input or as output to 

the machine learning algorithm. 

The machine learning algorithms in this work were trained and tested in a python frame-

work using the scikit-learn module sklearn [17]. In this section, the workflow of the 

python program is presented, the investigated machine learning methods are briefly 

explained and compared, and the defined input and output variables of the machine 

learning model are given. Fig. 1 shows the workflow which illustrates the approach in 

this work. 
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Fig. 1. Schematic of the workflow. 

The first step is to compose a structured table containing the data from the literature 

according to some criteria: the adsorbents should be active carbon and/or zeolite and 

the separation product must be hydrogen, separated from a gaseous mixture. Addition-

ally, the following parameters should be given:  

─ adsorption pressure (pads) 

─ desorption pressure (pdes) 

─ hydrogen recovery (RH2) 

─ hydrogen purity (PH2) 

─ feed temperature (TF) 

─ number of adsorption columns (Nc) 

─ mole fraction of hydrogen in the feed (xH2) 

─ purge to feed ratio (P/F) 
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─ active carbon to zeolite ratio (AC/Z) 

─ adsorption time (tads) 

 

Eventually, 90 suitable data sets from the literature were found [8,18–23], 52 of them 

were determined experimentally and 38 of them were simulated. The data can be found 

in Table A1. These data sets were used to build a surrogate model. The objective of this 

model was to find a correlation between the input variables 𝑥𝑖 and the output variables 

𝑦𝑖 , that predicts the behavior of the experiments or detailed models with an acceptable 

accuracy. Therefore, the input variables and output variables have to be defined. The 

input variables can also be called predictors, features, or independent variables, whereas 

synonyms for the output variables are target variables, responses, or dependent varia-

bles [24] p. 15. Most of the input variables have different units and thus different orders 

of magnitude, e.g. adsorption time is given in s and adsorption pressure in bar. As a 

consequence, some algorithms require the data of the input variables to be normalized, 

which was done according to eq. (1) [11]. 

�̅� =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (1) 

The normalized data was subsequently imported to python using the module pandas 

[25]. The imported data was then split either into a training and a test sample, defined 

by the train size which gives the amount of data sets used for training, or by using a 

five-fold cross validation method. Schenker and Agarwal [26] pointed out that splitting 

is a crucial step for training machine learning algorithms, especially when only small 

data sets are available. They also showed that cross-validation for splitting the data sets 

can increase the accuracy of artificial neural network models. The idea of cross-valida-

tion is that the data sets are randomly split into train and test set multiple times to assure 

that each data set was once used for testing. A similar approach is described by Kramer 

[27] p.18.: a train, test, and validation set are defined. The purpose of the validation set 

is to be left out by the cross-validation and eventually test the resulting model.  

In this work, we evaluated the machine learning models by training them 20 times 

and by performing a five-fold cross-validation, implemented in sklearn. 

The models were evaluated by calculating the coefficient of determination 𝑅² [28], 

the root mean square error 𝑅𝑀𝑆𝐸 [29,30], and the mean absolute error 𝑀𝐴𝐸 [29] of 

the predicted target values, according to eq. (2), (3), and (4). 

𝑅2 =
∑(�̂�𝑖 − �̅�)²

∑(𝑦𝑖 − �̅�)²
 (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)²

𝑁

𝑖=1

 (3) 

𝑀𝐴𝐸 = 
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (4) 
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The coefficient of determination 𝑅² compares the variance of the predicted output var-

iable �̂�𝑖 with the variance of the true output value 𝑦𝑖  [28], hence a value of 𝑅2 = 1 

expresses that the scatter of the predicted data is exactly the same as the scatter of the 

true data. According to Jiang [31] p. 98, 𝑅² values below 0.5 signify a weak correlation 

between predicted and true output. An 𝑅² value between 0.5 and 0.8 indicates an inac-

curate model, possibly due to large measurement spreads of the true data used for train-

ing. Jiang also points out that a 𝑅² value higher than 0.8 must not necessarily mean that 

the model is more accurate, since if irrelevant data was used for training as well, 𝑅² 
might increase without increasing the models predictive performance. 𝑅² can therefore 

not be the only metric to evaluate machine learning models. 

The second metric is the root mean square error, which describes the quadratic mean 

deviation of the predicted output �̂�𝑖 from the true output 𝑦𝑖 . The mean absolute error is 

a similar measure but here, for the deviation of �̂�𝑖 and 𝑦𝑖 , the absolute value is calcu-

lated. In 2005, Willmot et al. [29] strongly advocated the use of MAE instead of RMSE 

, since they found that the RMSE values are ambiguous, have thus no clear interpreta-

tion, and are typically higher than the MAE values. However, since RMSE is still an 

often-used metric, we also used it here – together with R² and MAE – to obtain compa-

rability with other works. 

2.1 Description of the investigated machine learning algorithms 

Machine learning methods can be distinguished between parametric and non-paramet-

ric methods [24] pp. 21. A parametric model assumes a function relating output to input 

variables and subsequentially fits the function and trains its parameters. The advantages 

are a simplified problem and easy, time-saving fitting. However, this is only applicable 

if the form of the function is known. Here, for pressure swing adsorption processes, this 

is not the case and thus all methods utilized in this study are non-parametric methods. 

It must be mentioned that the disadvantage of non-parametric methods is the require-

ment of more data points compared to parametric-methods and the tendency to overfit-

ting. In this section, the investigated algorithms are shown in Table 1 and subsequently, 

they are briefly described. 

Table 1. Investigated machine learning algorithms and their most important parameters (default 

values of sklearn are shown and also used in this work, if not stated otherwise). 

Abbr. Algorithm name Hyperparameters (excerpt) References 

SVR Epsilon-Support Vector Regres-

sion 

epsilon 

C 

kernel 

γ 

r 

d 

0.1 

1.0 

‘rbf’ 

‘scale’ 

0 

3 

[32] 

DTR Decision Tree Regressor max_depth 

min_samples_split 

min_samples_leaf 

criterion 

∞ 

2 

1 

‘squared’ 

[33] 

RFR Random Forest Regressor max_depth 

min_samples_split 

∞ 

2 

[34] 
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min_samples_leaf 

criterion 

n_estimators 

1 

‘squared’

100 

MLPR Multi-layer Perceptron Regressor hidden_layer_sizes 

activation 

learning_rate 

max_iter 

100 

‘logistic’ 

0.001 

1500 

[35] 

KNR K-Nearest Neighbors Regression k 

weights 

algorithm 

5 

‘uniform’ 

‘auto’ 

[36] 

 

There are many non-parametric methods, e.g. MARS1, PRIM2, and variations of the 

investigated methods, described comprehensively by  Hastie et al. [30]. To reduce the 

number of models, only methods that are often used in the literature were chosen for 

this study. Linear regression and gaussian process regression, which are parametric 

methods, were also tested but since they led to near-zero and negative coefficients of 

determination, they are not discussed further here. 

Changing the hyperparameters changes the structure of the model. Therefore, for im-

proving the model accuracy, optimization of these parameters is crucial. However, op-

timization is not within the scope of this work and random changes to the most im-

portant hyperparameters showed no significant improvements. Consequently, the de-

fault parameters implemented in sklearn are assumed to be reasonable enough for 

checking the performance of the different algorithms. 

Epsilon-Support Vector Regression (SVR). The main idea of ε-support vector ma-

chines is that a regression is performed with an acceptable error margin of ±ε that the 

predicted target values may deviate from the targets [37]. Additionally, the hyperpa-

rameter C defines the tolerance of target values lying outside of the error margins, see 

Christianini and Shaw-Taylor [38] (pp. 114). Therefore, with a high C the algorithm 

aims for predicting a large amount of the targets, whereas a small C denotes for a small 

tolerance of exceeding or falling below the boundaries of the target value plus/minus ε. 

In support vector machines, kernel functions are used to perform a non-linear calcu-

lation without increasing the number of hyperparameters [38] (pp. 26). In sklearn, the 

following kernels can be chosen: linear, polynomial (‘poly’), gaussian radial basis func-

tion (‘rbf’), sigmoid, or precomputed and should be chosen according to the data. Here, 

the (default) radial basis function is used because it yielded the highest R² values at a 

random test with a train size of 0.5. Equations (5) to (8) show the kernel functions 

included in sklearn [39]. 

linear: 〈𝑥, 𝑥′〉 (5) 

polynomial: (𝛾〈𝑥, 𝑥′〉 + 𝑟)𝑑 (6) 

 
1  Multivariate Adaptive Regression Splines 
2  Patient Rule Induction Method 
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radial basis function: exp (−𝛾||𝑥 − 𝑥′||
2
) (7) 

sigmoid: tanh(𝛾〈𝑥, 𝑥′〉 + 𝑟) (8) 

The hyperparameter 𝛾 defines the influence of a single data set on the training. With 

high 𝛾 single data sets effect the training strongly and vice versa. The parameters 𝑟 and 

𝑑 denote for a scalar coefficient and the degree of the polynomial, respectively. A data 

normalization is required in advance and the SVR is only single-output capable. There-

fore, the MultiOutputRegressor class from sklearn is used [40], which fits one regres-

sion per output value and thus makes single-output regression methods multi-output 

capable. 

Decision Tree and Random Forest Regressor (DTR/RFR). A Decision Tree is a ma-

chine learning algorithm which consists of nodes and branches. The input variables are 

split according to specific criteria until all leaf nodes (which are the last ones of a 

branch) are “pure” [41]. A pure leaf node means that it yields exactly the target value. 

In the sklearn algorithm, the input variables are split until the maximum depth is 

reached, all leaves are pure, or all leaves contain a defined number of samples [33]. 

Some of the advantages of decision trees are their capability of handling data with miss-

ing values [41], they are multi-output capable, and no data preparation, e.g. normaliza-

tion, is required. On the contrary, they tend to overfitting if the settings (minimum num-

ber of samples, maximum depth of the tree) are not tuned accordingly. It must also be 

mentioned that they are poor at extrapolations. 

To overcome the issue of overfitting and increasing the accuracy, random forest 

methods have been developed. These are so called “ensemble methods” that use multi-

ple algorithms to improve the prediction performance. Here, the random forest regres-

sor utilizes multiple decision tree regressions and averages the outcomes [30] pp. 587. 

Multi-layer Perceptron Regressor (MLPR/NN). A multi-layer perceptron is a spe-

cific type of artificial neural networks. A neural network is two step regression or clas-

sification model [30] p. 392. It consists of an input layer containing the input variables, 

a single or multiple hidden layers, and the output layers with the model responses. Each 

layer contains nodes which transform the data they receive. The nodes in the hidden 

layers (between input layer and output layer) must be activated to pass a transformed 

value. Several activation functions can be chosen in sklearn: ‘identity’, ‘logistic’, ‘tanh’ 

and ‘relu’. Typically, a sigmoid or S-shape function, e.g. f(x) = 1 / (1 + exp(-x)) is 

utilized according to Hastie et al. [30] p. 392. This corresponds to the ‘logistic’ function 

in sklearn and is thus chosen for this work. 

To fit the neural network, unknown parameters, called weights, must be calculated. 

This can be achieved by minimizing the sum-of-square errors 𝑅 between target value   

𝑦𝑖𝑘 and model response 𝑓𝑘(𝑥𝑖) according to Eq. (9) [30] p. 395. 

𝑅(𝜃) = ∑∑(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))
2

𝑁

𝑖=1

𝐾

𝑘=1

 (9) 
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Since this would probably lead to overfitting, the back-propagation method is often 

used and also used in this work by choosing the solver ‘adam’ in sklearn. The idea of 

back propagation is to compare the output values of the neural network with the correct 

value and adjusting the weights iteratively, so that the error function (9) is step-wise 

reduced until the calculation converges. To achieve this, the gradient descent method 

is applied which includes, additionally to eq. (9), the derivatives of eq. (9) by the 

weights. These derivatives contain the learning rate γ, a hyperparameter for tuning the 

training of the neural network. 

Regression based on k-nearest neighbors (KNR). James et al. state that k-nearest 

neighbor regression is one of the simplest non-parametric methods and often one of the 

most accurate methods [24] p. 104. The approach is to average the k-nearest neighbors 

in the training data set, with 𝑘 being a user-defined integer hyperparameter called 

“neighborhood size”. Values of 𝑘 can be positive integers of 1 to 𝑁, whereas 𝑁 denotes 

for the number of data points. For small 𝑘 the model tends to overfitting, whereas for 

high 𝑘 the averaging is smoothed [27] pp. 15. 

2.2 Brief comparison of the utilized algorithms 

Table 1 compares the algorithms for some characteristics, as discussed in [30] by 

Hastie et al. Additionally, the authors emphasize that even with that characterization 

the suitability of the algorithms for the specific task cannot be known in advance. 

 Table 2. Machine learning algorithm characteristics compared. The data is taken from [30] p. 

351. Key: ▲ = good, ⯁ = fair, ▼ = poor. 

Characteristic MLPR/ 

NN 

SVR DTR/ 

RFR 

KNR 

Natural handling of data of ‘mixed’ type ▼ ▼ ▲ ▼ 

Handling of missing values 

 

▼ ▼ ▲ ▲ 

Robustness to outliers in input space ▼ ▼ ▲ ▲ 

Insensitive to monotone transformations of in-

puts 

▼ ▼ ▼ ▼ 

Computational scalability ▼ ▼ ▲ ▼ 

Ability to deal with irrelevant inputs ▼ ▼ ▲ ▼ 

Ability to extract linear combinations of fea-

tures 

▲ ▲ ▼ ⯁ 

Interpretability ▼ ▼ ⯁ ▼ 

Predictive power ▲ ▲ ▼ ▲ 

 

The robustness to outliers in input space is assumed to be of high importance due to the 

different origins of input data, which increases the probability of outliers. Therefore, 

decision tree, random forest, and k-near neighbor regressions perform well according 

to Hasti et al, whereas neural networks and support vector regressions have poor char-

acteristics. Furthermore, the ability to deal with irrelevant inputs may be important, 
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because the interdependencies of the variety of PSA parameters is unknown in advance. 

For this purpose, decision tree and random forest regression are the only algorithms 

with good performance. In contrast, the interpretability is fair or poor for all methods, 

which is typical for non-parametric methods, because the relationship between 𝑥𝑖 and 

𝑦𝑖  cannot be observed [24] p. 25. Furthermore, the predictive power of all methods is 

good, except decision tree and random forest regressions. Therefore, the latter do not 

predict output values well if the predicted data lies outside the trained data sets. 

2.3 Studied parameters 

Before training the models, the input and output values must be defined. Here, we in-

vestigated three different cases (called runs in the following), with different input and 

output values. Table 3 illustrates the input and output values chosen for the different 

runs. 

Table 3. Studied parameters for pressure swing adsorption data. X denotes input and O denotes 

output values of the machine learning model. 

Run 𝑝𝑎𝑑𝑠 𝑅𝐻2 𝑃𝐻2 𝑇𝐹  𝑁𝑐  𝑥𝐻2 𝐴𝐶

𝑍
 

𝑃

𝐹
 

𝑡𝑎𝑑𝑠 Train size1 Iterations 

1 x o o - x x x x x 0.1 – 0.095  20 

2 x o x - x x x x x 0.1 – 0.095 20 

3 x o x - x x x o o 0.1 – 0.095 20 

 

For all runs the intake temperature is not considered as variable, since in the data 

sets it only varies slightly between 25 and 35 °C.  

Run 1 is motivated by the choice of  Xiao et al. [8], who defined adsorption pressure 

𝑝𝑎𝑑𝑠, adsorption time 𝑡𝑎𝑑𝑠, and active carbon to zeolite ratio (𝐴𝐶/𝑍) as input values 

and hydrogen purity 𝑃𝐻2 and hydrogen recovery 𝑅𝐻2 as output values.  

In this work, additional parameters must be used as well, as they vary in the different 

publications on which the data sets in this paper are based:  

− number of adsorption columns (Nc) 

− mole fraction of hydrogen in the feed (xH2) 

− purge to feed ratio (P/F) 

This leads to a total of six input values and two output values for run 1. The only dif-

ference between run 1 and 2 is that purity is an additional input value instead of an 

output value. The idea is that in this case it is possible to specify the required purity to 

be attained with the surrogate model. Moreover, there is always a trade-off between 

purity and recovery – which is why surrogate models for PSA process are often used 

for optimizing a weighted sum of purity and recovery, as discussed in the introduction. 

Therefore, it is assumed that the machine learning models’ accuracies in this work gain 

from decreased complexity. Since suitable P/F ratios and adsorption times are often 

unknown before detailed modelling, it may also be interesting to get these values as 

responses of the surrogate model. Therefore, in contrast to run 2, run 3 contains those 

values as output values. 
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2.4 Sensitivity analysis 

The trained models were finally tested by conducting global sensitivity analyses to in-

vestigate the influence of the input parameters on the output parameters and to assess 

the meaningfulness of the choice of input and output values. 

A sensitivity range of ±50 % for each mean input value was chosen to consider the 

entire parameter space and 210 samples were created for each analysis. The first order 

and total order sensitivity indices were calculated with the Sensitivity Analysis Library 

(SALib) [42] in Python. This method is based on the Sobol method described by Saltelli 

et al. in 2008 [43], which is a Monte Carlo method for generating several thousands of 

different, randomized values for each parameter within the chosen uncertainty or vari-

ation range. In a global sensitivity analysis, the dependence of the variance of the dis-

tribution of the output parameter is mainly decomposed with respect to the importance 

of the variance of the different input parameters, as explained in detail in [43].   In Fig. 

2 an example of the results of this method is shown for an HCCI engine polygeneration 

process concept that we investigated previously [44]. It illustrates the normalized hy-

drogen costs as a function of normalized operating hours. As the linear fit indicates, a 

sensitivity was found because the hydrogen costs depend on the operating hours. 
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Fig. 2. Example of a scatter plot showing the normalized hydrogen costs as a function of normal-

ized operating hours (black dots: hydrogen costs; red line: linear fit). Data is taken from our 

previous work on an HCCI engine polygeneration process concept [44]. 

Resulting scattered data is evaluated by calculating the first order sensitivity index 𝑆𝑖 
according to [43], which compares the variances of the inputs and outputs (10). 

𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋~𝑖(𝑌|𝑋𝑖))

𝑉(𝑌)
 (10) 
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𝑉𝑋𝑖 and 𝐸𝑋~𝑖 denote the variance and the expected value of the output value 𝑌 for a 

randomly changed input value 𝑋𝑖. The variance 𝑉𝑋𝑖 is compared to the general variance 

of the output 𝑉(𝑌). Therefore, if the resulting sensitivity index is near to one, the output 

is mainly dependent on this single input variable. Hence, a low sensitivity index indi-

cates a weak dependency. 

3 Comparison of machine learning algorithm 

performances 

In this chapter, the true and the predicted outputs for a fixed train size of 50 % are 

compared for each method and the parameter set of run 1. Subsequently, the train size 

was varied, and the training was performed 20 times to find the method with the best 

characteristic values. A five-fold cross-validation was also performed for all methods 

and the three different runs (see Table 3). Eventually, one model was chosen for a 

sensitivity analysis, which is discussed in chapter 4. 

 

3.1 General fitting for a fixed train size of 50 % (run 1) 

Firstly, the data sets were split into 50 % training data and 50 % test data. Afterwards 

the models were trained once. The predicted values �̂�𝑖, hydrogen recovery and purity, 

are plotted as a function of the literature values 𝑦𝑖  in Fig. 3. 
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Fig. 3. True values from the literature and predicted values of the different machine learning 

models at a constant train size of 50 %. Orange circles represent hydrogen recovery and blue 

squares represent hydrogen purity. 

On one hand, the recovery values (orange circles) are overall predicted much more ac-

curately than the purity values (blue squares). On the other hand, the absolute range of 

the recovery is much higher compared to the purity. Furthermore, high purities of 0.99 

and higher are reasonably predicted by all methods. 

The lowest accuracy is achieved with the neural network (MLPR) since there are areas 

with similar predicted values of recovery and purity. This results in the lowest 𝑅² (0.45) 

and highest 𝑀𝐴𝐸 (0.131) and 𝑅𝑀𝑆𝐸 (0.174) values in this comparison. It must be em-

phasized that the tuning of the hyperparameters of neural networks is crucial and one 

of the most complex ones in this comparison. Consequently, an optimization of the 

hyperparameters could improve the results, but this was not in the scope of this work. 

The K-nearest neighbors and SVR method perform significantly better, but the same 

tendencies in the deviations are obvious. The lower recovery and purity values do not 

follow the �̂�𝑖 = 𝑦𝑖 line accurately. This results in 𝑅² values of 0.717 and 0.688 (𝑀𝐴𝐸: 

0.077, 0.093 and 𝑅𝑀𝑆𝐸: 0.126, 0.132). 

The decision tree regression performs even better. Here, the lower recovery values of 

0.3 to 0.6 are accurately predicted. Since these predicted values are close to the true 

values, this could be a sign of overfitting. The purity accuracy is only slightly better 
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compared to the KNR and SVR method. The decision tree regressor yields the best 

accuracy in this comparison: 𝑅² = 0.81, 𝑀𝐴𝐸 = 0.043 and 𝑅𝑀𝑆𝐸 = 0.100. 

Since the random forest regression is based on decision trees, the results for this method 

are similar. The most significant difference is that the lower recovery values deviate 

slightly more from the true values, resulting in a smaller 𝑅² of 0.798 and higher 𝑀𝐴𝐸 

and 𝑅𝑀𝑆𝐸 of 0.052 and 0.105, respectively. However, this difference is assumed to be 

negligible. 

 

3.2 Performance comparison for different splitting of train and test 

data (run 1) 

In this section, the values for 𝑅², 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸 are compared for each method as it 

was done in the previous section, but the train sizes were varied from 0.1 to 0.95 with 

a step size of 0.05. Each training was performed 20 times. In Fig. 4 the mean coeffi-

cients of determination 𝑅² and their deviations are illustrated, and Fig. 5 shows the 

corresponding mean 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values. 
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Fig. 4. Mean coefficient of determination 𝑅² for the five machine learning methods as a function 

of train size. For each train size 20 training sessions are performed, and the error bands illustrate 

the maximum and minimum deviations from the mean values. 

Neural network, decision tree, and random forest regression show deviations from the 

mean values, which k-nearest neighbors and support vector regression do not. The high-

est deviations were found for the multi-layer perceptron regression for all train sizes. 

The highest mean score for MLPR is achieved at a train size of 0.925 with a poor value 

of 0.548; but at this point the test score is higher than the train score and the total score 

is still poor with a mean value of 0.454. Therefore, these results together with the huge 

deviations indicate that the chosen neural network is, at least without hyperparameter 

optimization, not suitable for training the data set in this work.  
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K-nearest neighbors and support vector regression perform significantly better with 

mean total scores of up to 0.83 and 0.798, respectively. However, the decision tree and 

the random forest regressor show slightly higher test scores in a huge train size area of 

0.3 to 0.95 and the train scores are much better and reach values close to one. 

Since the 𝑅² only characterize the spread of the data but gives no information about the 

actual deviation of the predicted values from the true values, the mean absolute errors 

und the root mean square errors were evaluated, illustrated in Fig. 5. 
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Fig. 5. Mean absolute error (𝑀𝐴𝐸) and root mean square error (𝑅𝑀𝑆𝐸) for the five machine 

learning methods as a function of train size. For each train size 20 training sessions are performed, 

and the error bands illustrate the maximum and minimum deviations from the mean values. It 

must be noted that the values correspond to the normalized hydrogen recovery and purity values, 

which thus vary between zero and one. 

As expected, the deviations of the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values from the mean values are 

comparable to the deviations discussed before for the mean 𝑅² values. From Fig. 5 it 

can also be concluded that lower 𝑅² values correspond to higher errors and thus higher 

𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values. The errors decrease with increasing train size for all methods, 

since the amount of train data increases, which achieves the highest 𝑅² scores and ac-

curacy, as discussed before. 

For a train size of 0.8 the random forest regression model shows high mean train, 

test, and total 𝑅² values of 0.965, 0.92 and 0.961, respectively. The mean 𝑀𝐴𝐸 and 

𝑅𝑀𝑆𝐸 values are 0.027 and 0.046, respectively. It must be noted that the errors refer to 

the normalized hydrogen recovery and purity values.  

3.3 Cross-validation for the three runs 

The coefficient of determinations 𝑅² of a five-fold cross-validation for the five machine 

learning methods are illustrated in Fig. 6. In general, the train scores are higher than the 

test scores, which is expected. The poorest score is achieved with the neural network 

model for each of the three investigated runs. The best scores are achieved with decision 

tree regressor and random forest regressor models for all cases with a maximum value 

of 0.999 (run 2, decision tree regressor). 
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Fig. 6. Coefficient of determination 𝑅² as a function of cross-validation 𝑘 for the training and 

test data. The methods are distinguished by differently colored bars. If no bar is shown, R² is zero 

or negative. 

For 𝑘 = 1 and 𝑘 = 5 none of the models achieve positive 𝑅² values and thus the 

deviation of the predicted values from the true values is expected to be very high. For 

𝑘 = 2, 3 and 4, the random forest regression model performs best with 𝑅² values from 

0.29 to 0.73; with one exception at run 3 and 𝑘 = 2 where no positive values were found. 

The overall low scores indicate that cross-validation is problematic when only a small 

amount of data is available for training because the data is divided into three data sets. 

In the following section, the data is therefore divided into two data sets only and the 

split size is defined by the train size value. Since the random forest regression achieved 

the best results in this comparison, as seen before, it was chosen for further analysis. 
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3.4 Random forest regressor performance with random data splitting 

(all runs) 

Fig. 7 illustrates the 𝑅², 𝑀𝐴𝑅, and 𝑅𝑀𝑆𝐸 values for the random forest regression model 

as a function of train size for the three investigated runs. A major difference to the 

findings of Fig. 4 and Fig. 5 are the increased deviations from the mean values. These 

result from the random choice of the splitting into train and test data for each of the 20 

iterations. 
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Fig. 7. Coefficient of determination 𝑅², mean absolute error 𝑀𝐴𝐸, and root mean square error 

(𝑅𝑀𝑆𝐸) as a function of train size for the three different runs and a single regression model 

(random forest). 

In general, the 𝑅² values degressively increase and the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values degres-

sively decrease with increasing train size – with one exception: for run 3 the mean 𝑅² 
values decrease at a train size of 0.7 and above and the deviations from the mean values 

increase significantly. This indicates that at very large train sizes the training data set is 

either too small or the target values cannot be accurately predicted with the chosen input 

and output values. For run 2 the best results were observed: the mean test 𝑅² was found 

between 0.85 and 0.868 at train sizes of 0.6 to 0.8. For run 1, the 𝑅² values are up to 
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0.093 or 10.9 % lower. The 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values for run 2 vary between 0.042-0.03 

and 0.063-0.046, respectively. For run 1 the root mean square errors are up to 0.017 

(+37 %) higher, but the mean absolute errors are comparable. A mean absolute error of 

0.03 to 0.042 is assumed to be low enough to utilize this surrogate model in a subordi-

nate process concept. A deviation of 0.042 from a true recovery of 0.7, for instance, 

would mean a deviation of the predicted value by 0.064 or 9.1 % (the normalized true 

recovery of 0.7 is 0.741; therefore, a normalized predicted accuracy of 0.783 corre-

sponds to a predicted recovery of 0.764). At a train size of 0.8 the MAE is 0.03 which 

is a deviation of 0.046 or 6.6 %. 

Since the deviations for run 3 are large, this run is not considered a viable option for 

modelling a PSA process with the given data. From the comparison of the three runs, it 

can be concluded that reducing the amount of output variables increases the accuracy 

of the trained model, if only small number of data points are available for training. 

4 Sensitivity analysis 

For all three runs the first order sensitivity indexes are evaluated for the random forest 

regressor model discussed before, with a constant train size of 0.8. The sensitivity on 

four different output variables were investigated: recovery, purity, adsorption time, and 

purge to feed ratio, which vary between the three different runs (see Table 3). The total 

order sensitivity indexes did not significantly vary from the first order sensitivity in-

dexes; thus, they are not discussed. 

4.1 Hydrogen recovery (all runs) 

According to Fig. 8, in each case the number of adsorption beds showed the highest 

sensitivity on the hydrogen recovery: 0.41, 0.32, and 0.76 for run 1, 2, and 3, respec-

tively. 
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Fig. 8. First order sensitivity index 𝑆𝑖 of hydrogen recovery for seven different input values and 

three different runs. 

With increasing bed number, the hydrogen recovery increases, as Fig. 9 illustrates. The 

highest increase of the recovery was observed at low bed numbers, e.g. from two to 

four beds, for all three cases. The sensitivity for run 3 is higher because the adsorption 

time is defined as an output value and thus cannot influence the recovery. For run 1 and 

2 the adsorption time shows the second highest sensitivity index of 0.46 and 0.52, re-

spectively. As it can be concluded from Fig. 9, a higher adsorption time leads to higher 

hydrogen recovery, but the influence is not as strong as the number of beds, as the 

sensitivity indexes already implied. 
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Fig. 9. Scattered hydrogen recovery values as a function of adsorption beds (𝑁𝑐) and absorption 

time (𝑡𝑎𝑑𝑠) for three runs. 

However, the five other input values have negligible to none influence on the hydrogen 

recovery. This was an unexpected result; the active carbon to zeolite ratio was expected 

to be of high importance to the hydrogen recovery because the type of adsorbent deter-

mines how strongly the different species are adsorbed. Only two of the seven scientific 

works that provided the data for this work included a systematical variation of the ad-

sorbent ratio: Ahn et al. [18] and Moon et al. [23]. In both works the hydrogen recovery 

did not change significantly (less than 1 %). Therefore, the model trained in this work 

predicts only a very small influence either. 
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4.2 Hydrogen purity (run 1) and absorption time and P/F ratio (run 3) 

The surrogate model predicts that the purity is mainly dependent on the hydrogen mole 

fraction in the feed, the purge to feed ratio, and the adsorption pressure, in descending 

order, see Fig. 10. 
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Fig. 10. First order sensitivity index 𝑆𝑖 of hydrogen purity, adsorption time, and purge to feed 

ratio for seven different input values and run 1 and 3. 

The corresponding S1 values are 0.75, 0.12, and 0.06, respectively. Since there is no 

systematic change of the hydrogen mole fraction in the data, only seven different values 

were obtained and used to train the model. Therefore, the high sensitivity of the mole 

fraction on the purity must be investigated in more detail. Fig. 11 illustrates the hydro-

gen purity, adsorption time, and purge to feed ratio as a function of the most important 

input parameters discussed before. 
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Fig. 11. Scattered hydrogen purity, adsorption time, and purge to feed ratio values as a function 

of adsorption pressure, number of adsorption beds, hydrogen mole fraction in the feed, and purge 

to feed flow ratio for run 1 and 3. 

Fig. 11c shows an increase of the hydrogen purity with increasing feed mole fraction, 

but this increase is likely a step function from a mole fraction of 0.47, which is exactly 

located between two data sets with mole fractions of 0.38 and 0.564. Consequently, it 

is rather unlikely that this behavior is a true dependency and should be investigated 

experimentally in the future by varying the hydrogen feed mole fraction systematically. 

The adsorption pressure and the purge to feed ratio show a more credible dependency: 

with increasing adsorption pressure and purge to feed ratio the hydrogen purity also 

increases. This is consistent with the experimental results from Ahn et al. [18], for in-

stance. 

In run 3, the adsorption time and the purge to feed ratio were considered as output 

values to investigate their dependency on the other input values. The model predicts a 

solely dependency of the adsorption time on the number of adsorption beds (S1 = 1.0). 

This is supported by the results of the sensitivity analysis shown in Fig. 11e-g. It 
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remains unclear, if the number of adsorption beds inherently increases the adsorption 

time, or if the trivial reason is that with smaller adsorption times, the recovery would 

decrease significantly, even with increasing bed numbers, and therefore it is always 

adjusted. 

Finally, the purge to feed ratio shows a dependency on number of adsorption beds 

(S1 = 0.73) and hydrogen mole fraction in the feed (S1 = 0.17). Again, it remains unclear 

if this is a true dependency. Fig. 11j shows the same step for the hydrogen mole fraction 

as discussed before for the dependency of the purity on this value (Fig. 11c). Further-

more, the number of beds shows a similar step from 4 to 5 beds. 

If the sensitivity analysis results and the training scores for run 3 are considered, it 

can be concluded that the combination of input and output values used for run 3 is no 

feasible choice to describe the investigated pressure swing adsorption process, at least 

with the data used in this study. On the contrary, for run 1 and run 2, the surrogate 

models predicted credible results. 

5 Conclusions 

A pressure swing adsorption surrogate model for hydrogen separation from nitrogen-

diluted, fuel-rich operated HCCI engine exhaust gas mixtures was developed. There-

fore, five different machine learning algorithms were used for training and testing 90 

data sets from seven works on hydrogen separating PSA processes. Furthermore, the 

choice of input and output values for this surrogate model was discussed. The evalua-

tion was performed by calculating the coefficient of determination R², mean absolute 

error MAE, and root mean squared error RMSE for a systematically, step-wise changed 

train size and for a five-fold cross-validation. Eventually, decision tree and random for-

est regression performed best in all cases and provided the highest R² and lowest MAE 

and RMSE values. A train size of 0.8 was found to be of a reasonable trade-off between 

test score and total score. At this point, the predicted hydrogen recovery for the random 

forest regression model showed a mean deviation of 6.6 % from the true value of the 

data sets. 

Eventually, the random forest regression model and a train size of 0.8 were chosen 

for a global sensitivity analysis. This analysis revealed that the hydrogen recovery de-

pends strongly on the number of adsorption beds and the adsorption time. The hydrogen 

purity depends on the adsorption pressure and the purge to feed ratio. 

This study demonstrated the feasibility of creating surrogate models for complex, 

dynamic processes with a small number of data sets for model training. The accuracy 

of the results predicted by the models should nevertheless be treated with caution and 

only used for a first check of the meaningfulness of the examined model in a superor-

dinate process concept. For increasing accuracy, a hyperparameter optimization could 

be performed in the future and/or more data sets should be used for training, as soon as 

more publications become available. 

Beyond the specific results for PSA, the procedure for the selection of machine learn-

ing algorithms, their evaluation and application, including the sensitivity analysis, 

seems transferable to other problems, where complex systems shall be pre-evaluated 

without getting too deeply involved in physico-chemical modeling. 
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7 Appendix 

Table A1. Data sets from the literature that were the basis for the machine learning model training 

in this work. The productivity 𝑃𝑟𝑜𝑑𝐻2 determines the amount of hydrogen in mol which is sep-

arated per kg adsorbent per day and was not used for model training. 

𝑝𝑎𝑑𝑠 𝑝𝑑𝑒𝑠 𝑅𝐻2 𝑃𝐻2 𝑇𝐹 𝑁𝑐  𝑥𝐻2 𝑃/𝐹 𝐴𝐶/𝑍 𝑡𝑎𝑑𝑠 𝑃𝑟𝑜𝑑𝐻2 Ref. 

bar bar - - °C - - - - s 
mol/kg/

day 
- 

6.5 1 0.8636 0.9663 25.00 4 0.38 0.1 2.33 180  [18] 

6.5 1 0.7931 0.9829 25.00 4 0.38 0.2 2.33 180   

6.5 1 0.7124 0.9943 25.00 4 0.38 0.3 2.33 180   

5 1 0.8121 0.9763 25.00 4 0.38 0.2 2.33 180   

6.5 1 0.7931 0.9829 25.00 4 0.38 0.2 2.33 180   

8 1 0.7738 0.9904 25.00 4 0.38 0.2 2.33 180   

8 1 0.7241 0.9881 25.00 4 0.38 0.2 2.33 160   

8 1 0.7931 0.9829 25.00 4 0.38 0.2 2.33 180   

8 1 0.8057 0.9789 25.00 4 0.38 0.2 2.33 200   

6.5 1 0.7982 0.9725 25.00 4 0.38 0.2 4.00 180   

6.5 1 0.7931 0.9829 25.00 4 0.38 0.2 2.33 180   

6.5 1 0.7909 0.9859 25.00 4 0.38 0.2 1.50 180   

34 1 0.7509 0.99976 30.00 4 0.8875 0.1 0.00 200 168.06 [19] 

34 1 0.7268 0.9995 30.00 4 0.8875 0.2 0.00 200 162.67  

34 1 0.7056 0.99999 30.00 4 0.8875 0.3 0.00 200 157.93  

34 1 0.7875 0.99999 30.00 6 0.8875 0.3 0.00 600 117.51  

34 1 0.8198 0.99996 30.00 6 0.8875 0.3 0.00 700 122.33  

34 1 0.8441 0.99994 30.00 6 0.8875 0.3 0.00 800 125.95  

34 1 0.8629 0.99975 30.00 6 0.8875 0.3 0.00 900 128.75  

34 1 0.7611 0.99999 30.00 6 0.8875 0.3 0.00 150 113.57  

34 1 0.8247 0.9997 30.00 6 0.8875 0.3 0.00 200 123.05  

34 1 0.8626 0.9994 30.00 6 0.8875 0.3 0.00 250 128.71  

34 1 0.8879 0.9969 30.00 6 0.8875 0.3 0.00 300 132.48  

34 1 0.8705 0.99998 30.00 9 0.8875 0.3 0.00 800 86.64  

34 1 0.8994 0.99996 30.00 9 0.8875 0.3 0.00 1000 89.51  

34 1 0.9185 0.99993 30.00 9 0.8875 0.3 0.00 1200 91.41  
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34 1 0.9258 0.99974 30.00 9 0.8875 0.3 0.00 1300 92.14  

34 1 0.8911 0.99999 30.00 12 0.8875 0.3 0.00 750 66.52  

34 1 0.9117 0.99996 30.00 12 0.8875 0.3 0.00 900 68.06  

34 1 0.9274 0.99993 30.00 12 0.8875 0.3 0.00 1050 69.15  

34 1 0.9383 0.99978 30.00 12 0.8875 0.3 0.00 1200 70.04  

5 1 0.6555 0.96355 25.00 2 0.38 0.2 2.33 200 75.23 [8] 

6.5 1 0.6079 0.97536 25.00 2 0.38 0.2 2.33 200 78.92  

8 1 0.5760 0.99135 25.00 2 0.38 0.2 2.33 200 81.29  

6.5 1 0.7282 0.95467 25.00 2 0.38 0.1 2.33 200 94.67  

6.5 1 0.6079 0.97536 25.00 2 0.38 0.2 2.33 200 78.92  

6.5 1 0.4659 0.98787 25.00 2 0.38 0.3 2.33 200 60.74  

6.5 1 0.6079 0.97536 25.00 2 0.38 0.2 2.33 200 78.92  

6.5 1 0.5974 0.97696 25.00 2 0.38 0.2 2.33 200 74.68  

6.5 1 0.5930 0.97835 25.00 2 0.38 0.2 2.33 200 70.31  

6.5 1 0.5821 0.97966 25.00 2 0.38 0.2 2.33 200 66.21  

6.5 1 0.5920 0.9752 25.00 2 0.38 0.2 2.33 200 63.44  

6.5 1 0.5504 0.9814 25.00 2 0.38 0.2 2.33 180 75.91  

6.5 1 0.6079 0.97536 25.00 2 0.38 0.2 2.33 200 78.92  

6.5 1 0.6354 0.96918 25.00 2 0.38 0.2 2.33 220 83.12  

7 1 0.7140 0.9951 25.00 4 0.58 0.11 0.00 90 391.60 [20] 

8 1 0.4330 0.9999 25.00 4 0.58 0.2 0.00 75 237.70  

8 1 0.4320 0.9998 25.00 4 0.58 0.21 0.00 75 237.10  

9 1 0.3720 0.9998 25.00 4 0.58 0.2 0.00 75 203.80  

8 1 0.2810 0.9998 25.00 4 0.58 0.23 0.00 60 154.20  

7 1 0.4940 0.9998 25.00 4 0.58 0.15 0.00 60 271.00  

8 1 0.5090 0.9998 25.00 4 0.58 0.14 0.00 75 279.20  

8 1 0.5030 0.9998 25.00 4 0.58 0.14 0.00 75 275.80  

8 1 0.6210 0.9984 25.00 4 0.58 0.09 0.00 75 340.70  

9 1 0.6160 0.9989 25.00 4 0.58 0.09 0.00 90 337.10  

9 1 0.6070 0.9988 25.00 4 0.58 0.1 0.00 90 333.40  

7 1 0.6060 0.9982 25.00 4 0.58 0.09 0.00 60 334.00  

8 1 0.5620 0.9992 25.00 4 0.58 0.18 0.00 90 308.10  

7 1 0.5490 0.9996 25.00 4 0.58 0.19 0.00 75 301.40  

9 1 0.3740 0.9998 25.00 4 0.58 0.13 0.00 60 205.30  

9 1 0.2970 0.9998 25.00 4 0.58 0.16 0.00 60 162.70  

9 1 0.4000 0.9997 25.00 4 0.58 0.16 0.00 90 219.60  

7 1 0.7540 0.9912 25.00 4 0.58 0.09 0.00 90 413.60  

9 1 0.5250 0.9999 25.00 4 0.58 0.1 0.00 75 283.10  

9 1 0.5590 0.9993 25.00 4 0.58 0.08 0.00 75 306.60  

8 1 0.7950 0.9827 25.00 4 0.58 0.04 0.00 90 436.00  
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8 1 0.6810 0.9949 25.00 4 0.58 0.06 0.00 75 373.50  

9 1 0.3090 0.9998 25.00 4 0.58 0.17 0.00 60 170.00  

9 1 0.5140 0.9998 25.00 4 0.58 0.16 0.00 90 282.00  

9 1 0.7600 0.9999 25.00 2 0.7 0.11 0.00 180  [21] 

11 1 0.7400 0.9999 25.00 2 0.7 0.11 0.00 180   

13 1 0.6800 0.9999 25.00 2 0.7 0.11 0.00 180   

16 1 0.6600 0.9999 25.00 2 0.7 0.11 0.00 180   

11 1 0.8200 0.96 25.00 2 0.7 0.05 0.00 180   

11 1 0.6600 0.9999 25.00 2 0.7 0.175 0.00 180   

10 1 0.5773 0.9996 25.00 2 0.564 0.11 0.65 168 152.16 [22] 

10 1 0.7921 0.9957 25.00 2 0.564 0.05 0.65 200 186.24  

10 1 0.7167 0.9952 25.00 2 0.564 0.05 0.65 180 199.20  

10 1 0.7254 0.9993 25.00 2 0.564 0.07 0.65 170 168.48  

10 1 0.7890 0.9954 25.00 2 0.564 0.05 0.65 200 191.52  

10 1 0.6627 0.9993 25.00 2 0.564 0.08 0.65 167 172.08  

10 1 0.7509 0.9985 25.00 2 0.564 0.06 0.65 175 179.04  

25 1.1 0.7699 0.9951 35.00 2 0.88 0.1 1.00 170 540.40 [23] 

30 1.1 0.7491 0.9972 35.00 2 0.88 0.1 1.00 170 535.80  

35 1.1 0.7304 0.9978 35.00 2 0.88 0.1 1.00 170 530.1  

25.00 1.1 0.7764 0.9977 35.00 2 0.88 0.1 4.00 170 545.4  

30.00 1.1 0.7505 0.9993 35.00 2 0.88 0.1 4.00 170 550  

35.00 1.1 0.7330 0.9995 35.00 2 0.88 0.1 4.00 170 555  

35 1.1 0.7736 0.9972 35.00 2 0.88 0.05 4.00 170 585.8  

35 1.1 0.6554 0.9996 35.00 2 0.88 0.2 4.00 170 496.4  
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