
Oscillating activation functions and other recent
progress in activation functions: A survey

Anuran Roy
anuran.roy2020@vitstudent.ac.in

Abstract
Neural networks are at the heart of many autonomous intelligent systems now. Originally
designed to mimic human neurons forming the brain, modern neural networks have their
fundamental component in the perceptron[1][2], an analog to a single neuron in the brain.
A perceptron boils down to a set of input, an equal number of weights, biases, and an
activation function that maps the inputs to a bounded output. A perceptron can represent
the basic logic gates, except the XOR gate, popularly referred to as the XOR problem[3].
Recent work [4] have proposed biologically inspired oscillatory functions that solve the XOR
problem with a single perceptron. We highlight the shortcomings of existing activation
functions with respect to the XOR problem and how oscillating functions can solve them in
this paper.

1 Introduction

Figure 1: Structure of a Multilayer Neural Network

At their core, neural networks are about fitting non-linear functions through maximum possible sample space,
which involves hyperplanes involved with linear separation.
At the core of neural networks is the concept of statistical learning, making use of a set of statistical
mechanisms, notable of which are:

• Cost Function: The cost function f is defined as the function that gives a measure of the accuracy
(or loss) of the predictions given by the neural network. It is the primary component for the Gradient
Descent Algorithm (discussed below), and is considered to be an ideal function if it is differentiable
everywhere and is computationally inexpensive.

• Forward Propagation[5]: For training neural networks with right parameters, intermediate states
are highly helpful as they help in breaking down the entire mechanism of gradient descent into



a number of small incremental steps, with intermediate variables that enable for more efficient
convergence of the loss values from the loss function. This is referred to as Forward Propagation (or
sometimes as Forward Pass).

• Backward Propagation (Backpropagation)[6]: Backpropagation is a standard approach used in
speeding up the process of training in most neural networks, to fit the neural network. It calculates
the derivative (also called gradient) of the loss function with respect to the weights for a single pair
of input-output. Using the concept of memoization in dynamic programming, it efficiently computes
the changes in the weights required to minimize loss. It works by using the chain rule, computing for
one layer at a time. It then iterates backwards in the chain rule, while keeping on updating weights.

• Gradient Descent: Gradient descent (also known as GD) is a class of iterative approaches to find
a local minimum of the cost function.
For every weight wij of a neural network, the gradient descent formula is given by:

wij = wij − α.
∂f(Sn

i=0xi)

∂wij

where:
α is a hyperparameter called the learning rate,
f is the cost function consisting of parameters.

The termination condition for the gradient descent is when the value of the derivative becomes zero.

2 Background

Every neuron in a neural network needs to map the weighted sum of its input to a single output. The
function that maps this is called the Activation Function.
Formally, we define an activation function A as:

A : Q → E, A(w0 +

n∑
i=1

wi × xi) ϵ E

where:
Q is the set of inputs,
E is the set of possible outputs,
n is the number of input parameters (or weights),
wi is a weight,
w0 is the bias, and
xi is a parameter.
Activation functions are of prime importance in neural networks, mapping a wide variety of inputs to a
bounded output by taking in weighted inputs.

3 Activation function properties

A good activation function must have the following properties:

• Non-linear: A good activation function must be non-linear. According to Hornik et. al, [7], non-
linear functions are universal approximators. Conversely, if an activation function is linear, using it
in multiple layers would be equivalent to a single layer model.

• Continuously differentiable: A good activation function must be continuously differentiable.
This enables a smooth learning process while training.

• Finite Range: An activation function should have a finite range to map input values into, as it
helps normalize data for better performance tuning.

• Monotonic: An activation function should be monotonic in nature for a given interval of input
values. This enables faster convergence during gradient descent, as it then becomes convex in
nature.

2



Figure 2: The Perceptron: Example

4 Challenges faced by activation functions

Being a hotly-researched topic, there have been a lot of advancements in the domain of finding activation
functions, as well as challenges: logical, mathematical and computational. A few such challenges are:

• Vanishing Gradient Problem

• Dead Neuron Problem

• Exploding Gradient Problem

• XOR problem.

4.1 Vanishing gradient problem

The Vanishing Gradient is an implementation-based problem in practical scenarios. It occurs during the
learning process of neural networks when the product of the parameters and their weights become so low
that the system loses track of accuracy, and rounds off the gradient to zero, hence halting the gradient
descent, and reaching what is often called a gradient plateau.
sigmoid, tanh are some functions that are prone this problem.

4.2 Dead neuron problem

The dead neuron problem occurs when the derivative of the last layer is unable to propagate back to the
first layer during backpropagation. This is caused due to the same accuracy implementation issues that lead
to the Vanishing Gradient problem.
As mentioned above, Sigmoid and tanh are prone to this problem too.

4.3 Exploding gradient problem

The Exploding gradient is another implementation-based problem in practical scenarios. It occurs during
the learning process of neural networks when the product of a set of weights and inputs becomes so high that
it results in an extremely large weight update, often missing the optimal value. We use various mechanisms
like dropout to avoid this.
The Binary Step function is prone to this error, as it suddenly jumps from 0 (or -1) to 1 in the neighbourhood
of 0.

3



4.4 XOR Problem

Pointed out by Newell[3] in 1969, a classic shortcoming of the perceptron has been the XOR problem, one
which oscillating activation functions are poised to provide a solution for. The truth table for the XOR
function looks like:

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

When a single perceptron is paired with one of the popular activation functions, it is unable to find a
hyperplane to separate the observations. For example, using the Sigmoid function, we have:

W =

2∑
n=0

wi.xi → (1)

σ(W ) =
1

1 + e−W
→ (2)

Here, w1 and w2 are to be learnt and adjusted. We can infer the following from (1):

σ(x) ≥ 0.5

if
W ≥ 0 =⇒ w1.x1 + w2.x2 ≥ 0

Also, when inputs are (1,1), (1, 0) and (0,1), the output should be 0, 1 and 1 respectively.
Therefore,

1.w1 + 1.w2 < 0 → (4.4a)

1.w1 + 0.w2 > 0 → (4.4b)

0.w1 + 1.w2 > 0 → (4.4c)

0.w1 + 0.w2 < 0 → (4.4d)

which is impossible. Hence, the popular activation functions cannot solve the XOR problem; we commonly
use Multilayer Perceptrons (abbreviated as MLPs) to address it. Until recently, almost all activation func-
tions suffered from this problem.

5 Different types of activation functions

Activation functions can be broadly divided into the following categories:

• Linear Activation Function: As their name suggests, the output from these functions is dependent
on a linear power of the input. These functions include:

– Binary Step Function
– ReLU function (which is a piecewise linear function), and some of its derivatives (LReLU, etc)

• Non-linear Activation Functions: The output of these functions are not confined to a linear power
of the inputs. As such, these functions cannot be represented as a straight line. Most activation
functions are non-linear in nature. Examples are:

– Sigmoid
– Softmax
– Softplus
– Hyperbolic tangent
– ELu

4



– Swish
– Mish
– GCU

We discuss some of the notable functions below.

5.1 Sigmoid

The Binary function proposed above has a lot of flaws that were becoming evident as research in artificial
neural networks progressed- it was discreet and not differentiable, resulting in neural networks being limited,
and rendering them unable to take advantage of the backpropagation[6] mechanism. Hinton, Rumelheart et
al. proposed the Sigmoid Function

σ(x) : R → (0, 1)

The Sigmoid Function is mathematically defined as:

σ(x) =
1

1 + e−k.x

, where k is an arbitrary constant, usually assumed to be 1. It offers a number of advantages over the Binary
function:

• It is differentiable.
• The output range E of the function ϵ [0, 1], which is a continuous range.
• It saturates over a continuous range, making it suitable for backpropagation, for faster and better

convergence.
• Calculation of derivative is easy for a sigmoid function. f ′(x) = f(x)(1− f(x)), so caching can be

implemented easily and efficiently in real-life applications.

5.2 Tanh

Introduced by LeCun, Bengio, Hinton, et al.,[8], the hyperbolic tangent function, represented as tanh(x)
mathematically, is a better alternative to the sigmoid function. Tt speeds up the process of convergence by
expanding the output range E from [0, 1] to [−1, 1], thus increasing the gradient for the objective function.
Also, the average of all the values is 0 (unlike 0.5 in case of sigmoid), which leads to better convergence. The
Hyperbolic tangent function is defined as:

tanh(x) =
ex − e−x

ex + e−x

This function is more resistant towards the problem of Vanishing Gradient, compared to its predecessor
Sigmoid.

5.3 ReLU

Proposed in 2018 by Agarap et al.,[9], the Rectified Linear Unit (ReLU) function is defined as:

ReLU(x) =

{
0 if x < 0
1 if x ≥ 0

The ReLU makes it for faster convergence in gradient descent, given the nature of the function (i.e., degree
of the polynomial), avoiding saturation and Vanishing Gradient at extreme values (ie., values much greater
than 1). ReLU, being a simple max(0, x) function, is also highly efficient computationally, resulting in it
being the go-to activation function for many purposes.

5



5.4 LReLU

Leaky ReLU is another function that also takes care of the other extreme values, preventing the Vanishing
Gradient Problem at extreme negative values. Leaky ReLU is mathematically defined as:

LReLU(x) =

{
x
α if x < 0
x if 0 ≤ x

where:
α is a constant, and α >> x.

5.5 PReLU

He, Zhang et al.,[10] proposed the Parametric ReLU (abbreviated as PReLU) activation function in their
paper on ImageNet Classification. Unlike ReLU that zeroes negative inputs, or Leaky ReLU that sets a
specific constant α to divide (or conversely multiply) the negative inputs with, PReLU uses a learnable
parameter β, leading to adaptive constants that increase accuracy.
Mathematically, the PReLU activation function is defined as:

PReLU(xi) =

{
βi if xi < 0
xi if 0 ≤ xi

where β is a learnable parameter.

6 Alternative solutions for challenges faced by activation functions

In recent times, self-gated, non-monotonic activation functions are a hot take among researchers. This
is because their non-monotonicity ensures atleast one minimum, thus ensuring a guaratee that a gradient
descent will converge. Also, being self-gated means that they can regulate their own values and thresholds
(derived from the working mechanism of LSTMs). Some notable new activation functions are:

• Swish
• Mish
• GCU and other oscillating functions

In the forthcoming sections, we discuss these alternative solutions in detail.

6.1 Swish

Proposed by Ramachandran et al.[11], Swish is one of the latest activation functions. It makes for efficient
prevention of both the Exploding and Vanishing Gradient Problems. The Swish activation function is
mathematically defined as:

Swish(x) = x.σ(β.x)

where σ(x) is the Sigmoid function, and β is a trainable parameter.
The advantage of the Swish function is that when applied on large datasets and architectures that have very
sensitive parameters, it outperforms the other activation functions in most (if not all cases) for deep neural
networks, albeit at a price of higher computing power.

6.2 Mish

Proposed by Mishra et al.,[12], Mish is another one of the latest activation functions out there. It handles

Mish(x) = x.tanh(ζ(x))

6



where ζ(x) is the Softplus function, defined as:

ζ(x) = ln(1 + ex)

The Mish function outperforms even the Swish function on almost all occassions. This can be intuitively
deduced from the fact that the Hyperbolic Tangent function tanh(x) function used by Mish function is
inherently better than the Sigmoid function σ(x) used by the Swish function. The tradeoff is an even higher
computing power than Swish function.

6.3 GCU

Noel, Trivedi, Dutta,. et al.[13] described the Growing Cosine Unit activation function in their paper. The
Growing Cosine Unit (abbreviated as GCU) is a simple oscillating activation function whose amplitude
increases with increasing values. Mathematically, the Growing Cosine Unit is defined as:

GCU(x) = x.cos(x)

6.3.1 GCU for the XOR Problem

Given the mathematical definition of GCU, we consider 0 as -1 for the sake of simplicity. Therefore, the
triads are:

(

[
−1
−1

]
,−1), (

[
−1
1

]
, 1), (

[
1
−1

]
, 1), (

[
1
1

]
,−1)

Let X = w1.x1 + w2.x2

x1 x1 X GCU(X)

-1 -1 −w1 − w2 -1
-1 1 w2 − w1 1
1 -1 w1 − w2 1
1 1 w1 + w2 -1

Now, using the definition of the activation function GCU(X) = X.cos(X), we have:

GCU(−w1 − w2) = −1 → (1)

GCU(w2 − w1) = 1 → (2)

GCU(w1 − w2) = 1 → (3)

GCU(w1 + w2) = −1 → (4)

On solving, we have:

(w1 + w2).cos(w1 + w2) + (w1 − w2).cos(w1 − w2) = 0

The above equation has multiple solutions in the range [0, 2π], of which (0, 0) is a trivial solution.
Thus, the oscillating function is successfully circumventing the limitations on activation functions imposed
by the XOR Problem.

7 Biologically inspired oscillating activation functions

Other than GCU, there are other biologically inspired functions that Noel, M. M., Bharadwaj, S., et al.[4]
have introduced in their paper. Some of them are:

• Non-Monotonic Cubic Unit (NCU): f(z) = z − z3

• Shifted Quadratic Unit (SQU): f(z) = z2 + z

7



• Decaying Sine Unit (DSU): f(z) = π
2 (sinc (z − π)− sinc (z + π))

• Shifted Sinc Unit (SSU): f(z) = π sinc(z − π)

where
sinc(x) =

{
1 if x = 0
sin(x)

x if x ̸= 0

8 Conclusion

Through this paper, the popular and emerging activation functions have been summarized and compared.
We have also taken a look at the problems faced by current activation functions (most notably the XOR
Problem) and how oscillating activation functions help to overcome them. In a nutshell, this paper showcases
how useful oscillating functions can be in a variety of use-cases and scenarios.

References

[1] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

[2] Jan Mycielski. Marvin minsky and seymour papert, perceptrons, an introduction to computational
geometry. Bulletin of the American Mathematical Society, 78(1):12–15, 1972.

[3] Allen Newell. A step toward the understanding of information processes: Perceptrons. an introduction
to computational geometry. marvin minsky and seymour papert. mit press, cambridge, mass., 1969. vi+
258 pp., illus. cloth, 12;paper, 4.95. Science, 165(3895):780–782, 1969.

[4] Matthew Mithra Noel, Shubham Bharadwaj, Venkataraman Muthiah-Nakarajan, Praneet Dutta, and
Geraldine Bessie Amali. Biologically inspired oscillating activation functions can bridge the performance
gap between biological and artificial neurons. arXiv preprint arXiv:2111.04020, 2021.

[5] Kotaro Hirasawa, Masanao Ohbayashi, and Masaru Koga. Forward propagation universal learning
network. 九州大學工學部紀要, 55(3):225–234, 1995.

[6] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

[7] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[9] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[11] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[12] Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

[13] Mathew Mithra Noel, Advait Trivedi, Praneet Dutta, et al. Growing cosine unit: A novel oscillatory
activation function that can speedup training and reduce parameters in convolutional neural networks.
arXiv preprint arXiv:2108.12943, 2021.

8


	Introduction
	Background
	Activation function properties
	Challenges faced by activation functions
	Vanishing gradient problem
	Dead neuron problem
	Exploding gradient problem
	XOR Problem

	Different types of activation functions
	Sigmoid
	Tanh
	ReLU
	LReLU
	PReLU

	Alternative solutions for challenges faced by activation functions
	Swish
	Mish
	GCU
	GCU for the XOR Problem


	Biologically inspired oscillating activation functions
	Conclusion

