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Abstract 

Model dependency in the majority of control approaches makes them costly "if not infeasible" to get implemented for 

large-scale and cyclic gas network control. This work, hence, introduces a distributed, model-free, and game-theoretic 

approach comprising a simultaneous game followed by a sequential game. The two-stage cooperative approach is 

adopted in the control structure of gas transmission networks. The humans supervising the compressor stations in the 

network are considered as game players (agents), the rationality (utility function) of which is emulated via a designed 

fuzzy inference system such that decisions made by the agents closely match those made by the human operators. At 

the first stage of the game, players prevent the network from collapsing due to pressure drop in deliveries. In the 

subsequent stage, all players strive to enhance their utilities until the desired condition is met. Contrary to previous 

studies on gas network control, controllers learn appropriate action in the proposed strategy rather than calculating it 

using specific mathematical models. The performance and robustness of the proposed algorithm are assessed by its 

utilization to control a cyclic and interdependent gas transmission network. The results evidence that supervisory 

controllers operate the gas network in the permissible range in the presence of various loads; thus, such a 

comprehensive model-free control approach is a pragmatic solution in the systems whose models are not applicable 

for controller design purposes or exact utility evaluation in their game-based model is almost impossible. 
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1. Introduction  

Increasing gas consumption worldwide directs industries to utilize gas pipelines for transportation 

purposes; however, the operation and control of such complex networks are costly and challenging[1],[2]. 

Given the infeasibility of model-based control methods in interdependent complex systems such as gas 

networks due to considerable computational costs, developing a novel model-free and distributed solution 

strategy is inevitable. From the control structure point of view, as large-scale transmission networks are 

interdependent due to the cyclic topology1, a distributed control approach has to be applied to the gas 

network operation in which utilization of a decentralized or centralized control configuration is inefficient 

and unaffordable if not impractical[3],[4]. 

From a different perspective, the control approach should fulfill the requirements of gas network 

operation; firstly, a transmission network is an infinite-dimensional system whose manipulated variables 

(e.g., power of compressor stations) are widely distributed throughout the network, the model of which is 

infinite-dimensional state model (the system's states depend on both time and location) and its real-time 

simulation requires enormous computational demands[5]. Secondly, there are on-off valves changing their 

states in gas networks and transforming network topology and governing models[3]. Besides, uncertainties 

in various model parameters restrict the interval at which the model can effectively simulate the network 

operation. All of the above encourage the development of a new model-free control approach for gas 

transmission network operation. 

While prior investigations have implemented various methods to control the gas network operation 

in an optimum or near an optimal condition, most of them depend on a particular mathematical model. 

Ahmadian and Boozarjomehry used an unscented transform for optimizing the gas network[6]. Zlotnik and 

Chertkov outlined a control system for dynamic of distributed pipelines, which reduces the network PDE 

equation to a set of Ordinary Differential Equations (ODE)[7]. Mak, T.W. et al. applied a two-stage 

optimization method for compressors operations in a large-scale gas network, although its topology was 

not cyclic[8]. Aßmann, Liers, and Stingl developed a new single-stage robust approach reformulating a 

two-stage optimization problem in a gas network under both pipe physical parameters and demand 

uncertainty[9]. Notably, the model-dependency of nearly all previous studies restricts them to networks 

with low-scale or at least simple topology; applications of such methods are inevitably limited in practical 

cases. 

In the context of model-free and distributed control, game theory and learning-based control have 

gained widespread currency[10]. However, game-theoretic based algorithms have been rarely used for the 

operation of gas transmission networks. Tang, Lie, and Wang contrive a game-theoretic based decentralized 

strategy for operation and control of power demand management in Hong Kong University[11]. Mie et al. 

utilized the cooperative game theory concept to improve the efficiency of microgrids while each microgrid 

has its own preferences[12]. Marden et al. substantiated that there is no feasible model for controlling a 

network of wind turbines[13] and proposed two model-free methods[14], [15]to operate the wind farm in 

two different conditions. Marden and Arslan introduced a particular class of games called weakly acyclic 

games[16] and applied this class to dynamic sensor coverage and sensor deployment problem[16]. 

                                                           
1Generally speaking, gas transmission networks are classified in three types of topology: Cyclic, Tree and Linear networks. For many reasons 

including increasing short-term storage and lowering fuel consumption in Compressor stations, transmission networks are usually designed in a 

cyclic type. 
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Regardless, in all learning algorithms developed so far for model-free and distributed control in the game 

theory framework, it has been assumed that exact utility is accessible in every sample time. It implies that 

systems in which controlled by the algorithms have fast dynamics and their dynamics are negligible in 

operation. Accordingly, all system states observed by the algorithm, are in a steady-state condition. This 

presumption makes these algorithms infeasible on systems with slow dynamics or time delay in response, 

including gas transmission networks. 

Considering the above, the main contribution of this work is the promotion of gas transmission 

operation to a distributed model-free structure that is not dependent on any kind of model, including 

mechanistic, empirical, or intuitionistic. This approach outlines a learning-based algorithm considering the 

system as a black-box and deal with it based on random decision-making to observe the system response, 

which is appropriate for systems requirements without an appropriate controller design model. The 

assimilation of the proposed strategy into a game theory concept transforms the system model to a new 

domain called game space, which is not only free of the previous complexities such as time-demanding 

governing equations solving but also accommodates to gas network operation in real cases[17], [18]. 

The rest of this paper is organized as follows. Section 2 describes the control structure of a gas 

transmission network and its representation as a cooperative game. This section includes utility function 

design, which is a crucial part of game-based models. Section 3 presents the main limitation of distributed 

learning algorithms in cooperative games and removes it by proposing a new one. Section 4 contains 

simulation of a real gas transmission network for assessment of the proposed control strategy. Section 5 

concludes the paper and discusses it. 

 

 

Nomenclature   𝐏𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞,𝐢 effective pressure for player i 

𝐂𝐒 compressor station 𝐰𝐢,𝐣 impact factor of consumer j on player i 

𝐂𝐒𝐢 compressor station i 𝐐𝐍𝐨𝐫𝐦,𝐢 normalized power in station i 

𝐆𝐂𝐑 gas compression ratio  𝐐𝐌𝐚𝐱,𝐢 maximum power in station i 

𝐆𝐂𝐑𝐢 gas compression ratio CSi 𝐐𝐌𝐢𝐧,𝐢 minimum power in station i 

𝐄𝐂𝐢 energy consumption in station i 𝐒𝐢 decision space of player  i 

𝐍 players set (compressor stations) 𝐧𝐜 number of consensuses 

𝐌 consumers set 𝐧𝐫 number of required consensus 

𝐏 pressure 𝐤 or 𝐊 sample time index 

𝐏𝐣 pressure in consumer j  𝐋𝐒 lower bound of the safe horizon 

𝐏𝐌𝐀 minimum allowable pressure 𝐔𝐒 upper bound of the safe horizon 

𝐏𝐑𝐞𝐥 
Relief valve pressure in the regulatory 

valve 
𝐦𝐢(𝐤) mood of player i at t=k 

𝐏𝐍𝐨𝐫𝐦,𝐣 normalized pressure in consumer j 𝐮𝐢(𝐤) utility of player i at t=k 

𝐏𝐌𝐚𝐱 maximum pressure in the network 𝐓𝐬 settling time of system 

𝐏𝐌𝐢𝐧 minimum pressure in the network 𝛕 time constant of system 

𝐌𝐏𝐚 Megapascal     

MMCFD million cubic feet per day   
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2. Reformulation of gas network control structure as a game 

In a gas transmission network, each compressor station (CS) is often operated by a human observer 

(player), which determines an appropriate setpoint (Gas Compression Ratio or Power of Various 

Compression Stage) based on the network condition. This setpoint is eventually applied by a conventional 

controller such as PID or ratio controller to keep the station Gas Compression Ratio (GCR) in a desired 

amount. Fig. 1 represents a schematic of the aforementioned control structure in gas transmission 

networks[19].  

In the context of game-theoretic control, problem reformulation as a game includes three steps: 

players definition and their rationality during the game, determination of decision space for each player 

(this part is equivalent to defining manipulating variables in control theory), and finally assigning an 

algorithm in which all players adhere to it during the game[18]. In the formulated game of network 

operation, supervisors considered as players collaborating for a safe operation to assure that all consumers 

receive natural gas in a permissible range of pressure. The players who are responsible for the supervisory 

control layer in the network communicate with each other to decide that network operation is acceptable or 

not. The key factor for assessing operation quality in decision-making is the rationality of players emulated 

by a utility function. The utility function design is the most crucial part of the game theory engineering 

applications for distributed control since it has to be designed somehow that system's overall behavior 

becomes desirable while players access game information locally[20], [21]. 

2.1 Design of utility function  

Utility function design in the game theory has the same role as the control law has in the control 

theory[18]. After specification of the players, their preferences should be investigated based on the 

principles of real cases. In this context, a network operation's desirability depends on two main factors: 

energy consumption in compressor stations and delivery pressures. Higher pressure in delivery points 

enhances the network robustness and reliability in the presence of various loads and uncertainties even 

though it increases energy consumption in compressor stations. Accordingly, players have to compromise 

The human observer defines an appropriate setpoint (gas compression ratio or power of the compressors) 

for compressor station based on the network condition.Eventually, the setpoint is taken by a conventional 

controller (such as PID) for keeping GCR in the desired amount. This control structure is based on the 

Skogestad declaration about the designing controller for plants. Fig. 1 represents a schematic control 

structure in the gas network. In this structure, each game player roles the supervisor controller that should 

specify a setpoint for controllers. In the formulation of this problem, we assume that supervisors have 

limited communication with each other, and they do not access all the  

Fig. 1. A schematic scheme of control structure in the gas transmission network. 
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between these two factors, which have an inverse effect on network operation efficiency. A player operating 

a compressor station tries to minimize its energy consumption and at the same time maintain the delivery 

pressures in an acceptable range. Eq. 1. Represents the mathematical formulation of the problem that player 

i tries to solve based on his/her decision-making scenario: 

{
minimize            ECi     

subject to Pj >  PMA    ∀ j ∈ M                                                                                                                  (1)  

Where ECi is the energy consumption of i’th compressor station (which is operated by player i), and M is a 

set of consumers in the network. PMA refers to minimum allowable pressure in the city gates or industrial 

consumers, which is composed of a relief threshold in the regulatory valves with their corresponding safe 

margin: 

PMA = PRel + Safe Margin                                                                                                                             (2) 

In industrial consumers or city gates in transmission networks, regulatory valves have a role in cutting off 

the gas flow if delivery pressure falls below the specific amount (PRel). Considering a network never should 

be allowed to operate near the PRel in the delivery points, supervisors consider a safe margin which 

guarantees gas network operation far enough from PRel. PMA is usually set to 4.82 MPa (~700 psia) due to 

the fact that such a value fulfills almost all practical considerations in the operation of a gas transmission 

network. 

Eq. 1. can be interpreted as players’ rationality in the game of network operation. As previously 

explained, the gas network operation desirability depends on two general criteria, including energy 

consumption and pressure of delivery points, which are qualitative expressions of Eq. 1. Utility function 

(rationality) design in the game theory accompanies by the mathematical formalism complexity. 

Meanwhile, the gas network operation encompasses the qualitative expressions. In this regard, using a rule-

based structure such as a Fuzzy Inference System (FIS) incorporating qualitative principles in the gas 

transmission network can be appropriate in utility function design[21],[22]. Considering a FIS as a utility 

function for a player eliminates the necessity to develop a mathematical utility function satisfying Eq. 1.and 

also its complexity. 

In fuzzy utility function design, it is assumed that three main factors affect utility function; the 

pressure of delivery points, station’s instant power, and history of station’s power representing average 

power of compressor station since the start of the game (Eq. 3.). With these three factors, a player weighs 

his/her options during the game. Fig. 2. illustrates the FIS designed to get used as a utility function.  

Qaverage =  
∫ Q dt

t
tref

t−tref
                                                            (3) 

The Fuzzy system comprises 5, 5, and 3 linguistic values for pressure, instant power, and average 

power, respectively, as inputs, and includes seven linguistic values representing the utility desirability as 

the output. As the whole possible condition has to be covered in the FIS, mathematical permutation 

represents seventy-five rules constituting the fuzzy system (Table 1). The designed FIS is a Mamdani Fuzzy 

Inference System that is more discussed in Appendix A. 
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In order to simplify fuzzy system implementation, inputs variables are normalized according to the 

maximum and minimum quantities as formulated in Eq. 4. and Eq. 5.: 

PNorm,j =
Pj−PMin

PMax−PMin
       j ∈ M                                                                                                                                     (4) 

QNorm,i =
Qi−QMin,i

QMax,i−QMin,i
   i ∈ N                                                                                                                                        (5) 

At Minimum power condition, all of the station's compressors1 operate in the free by-pass mode, which 

means Q = 0 and GCR = 1. PMax and PMin  represent the maximum and minimum pressure in the network 

and generally change by type of the networks but in a transmission network PMax may reach up to 9.65 MPa 

(~1400 psia). PMin is also considered relief pressure in regulatory valves, which is assumed 3.47 MPa (~500 

psia) in the current work (section 4). 

 

                                                           
1 In gas transmission network, compressor stations are often composed of three or four centrifugal compressors and each compressor can operate 
in three modes, including free by-pass, half load operation, and full load operation. 

Table 1 

Rules governing fuzzy utility function 

Effective-Pressure 

Critical Dangerous Normal Safe Absolutely Reliable 
Instant Power 

Very Low Low Normal Very high Very Very High Very Very High 

Low Low Normal Very high Very Very High Very Very High 

Normal Very Low Low High Very High Very Very High 

High Very Low Low High Very High Very High 

Very High Very Low Very Low Normal High High 

Average power is Low 

Very Low Low Normal High Very High Very Very High 

Low  Very Low Low High Very High Very High 

Normal Very Very Low Very Low Normal Very High Very High 

High Very Very Low Very Low Normal High Very High 

Very High Very Very Low Very Low Normal Normal High 

Average power is Normal 

Very Low Very Low Low High Very High Very High 

Low  Very Low Very Low High Very High Very High 

Normal Very Very Low Very Very Low Low High High 

High Very Very Low Very Very Low Low High High 

Very High Very Very Low Very Very Low Low Normal Normal 

Average power is High 
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Fig.2. Schematic Scheme of Fuzzy Utility Function. 
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2.2 Effective-pressure  

Given the interdependency of a cyclic and complex gas transmission network, each compressor 

station affects all consumers. In this regard, all pressures of delivery points must be considered in utility 

function design. With the intention of simplification, we use one factor, called effective-pressure, to 

represent the desirability of end-points pressures in the fuzzy inference system. Using effective-pressure 

prevents the input increment in FIS and further simplification. This factor entails all delivery pressures 

multiplied by different weight coefficients for each player. These weight coefficients indicate how much a 

compressor station affects consumers: 

Peffective,i = ∑ wi,j ∗ Pj j       ∀ i ∈ N , j ∈ M                                                                                          (6) 

In real cases, each player considers gas network topology and network characteristics and estimates wi,js 

based on hydraulic resistance between Compressor Station (CS) and consumers. In Section 4, we 

investigate wi,js by sensitivity analysis of the designed network. It should be noted that in transmission 

networks existing in practice, there might be more than dozens of consumers in the network, while a few 

CSs perform to deliver natural gas to the consumers. Therefore, using the effective-pressure concept is 

inevitable since it is impossible to pair each CS to a special delivery point. 

2.3 Decision Space 

Another stage of the game formulation is determining players' decision space, which strictly 

depends on the nature of the system operation. Knowingly that all stations in the gas network comprise four 

centrifugal compressors, and each compressor has three modes of operation, the decision space is: 

Si = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} ×
QMax,i

12
           i ∈ N                                                       (7) 

Si indicates the decision space in which players can choose one of the 13 choices and evaluate outcomes. 

Option {0} means all of the compressors in the stations are in the free by-pass mode, while {12} represents 

that all compressors operate in full load operation. 

3. Two-stage cooperative algorithm in the game of gas network operation  

 Previous studies proposed numerous algorithms for players’ decision strategy in the cooperative 

game context; nevertheless, none can be applied to systems with a slow dynamic (high settling time) or 

delay in response. The key assumption in most game theory algorithms is that all players access the exact 

utility value at each sampling time and evaluate it. Although this supposition simplifies algorithm 

implementation and is mandatory to guarantee game convergence to a particular point, such as Nash 

equilibrium1 or Pareto optimality, it restricts algorithm applications in the study of systems described above. 

We can exemplify this challenge with the cooperative game simulating transmission network operation. In 

a gas transmission network, supervisors in compressor stations decide upon appropriate setpoints and apply 

them to the network. We suppose that at the sample time k, a consumption load is imposed on a delivery 

point in the network, and at sample time k + 1, players revise decisions based on their utility. The utility 

function is highly dependent on effective-pressure, and each fluctuation in network consumption changes 

the player's effective-pressure; consequently, the player's utilities. Since the interval between two sample 

                                                           
1 Nash Equilibrium is a solution in non-cooperative games in which no player can improve its utility with changing strategy. 
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times is much less than the network settling time ( i. e., TS ≫ ∆T or τ ≫ ∆T), the instant pressures observed 

by supervisors are far from the steady-state pressures in which the network is going to settle. In this regard, 

supervisors cannot access steady-state pressures at each sample time (i.e., they observe transient utilities 

rather than the exact utilities value), and they have to either decide in a transitional state or somehow predict 

the eventual steady state of the system, which is impossible in a model-free approach. Besides, the 

supervisors should not wait for the network to settle since it might lead the network to a critical condition 

in which delivery pressures fall below the regulatory valves' relief pressures. Considering the above and the 

notion that prevalent algorithms are promoted in the context of complete information games, such methods 

are unimplementable in distributed control of slow dynamic systems since players have incomplete 

information and limited access to game data. 

The literature in algorithmic game theory evidence that most of the proposed learning algorithms 

lead the system to a particular point, such as Nash equilibrium, correlated equilibria, and Pareto optimality. 

However, in incomplete information games, such as network operation game, convergence investigation to 

a particular point is impossible[23], [24]. These games are more realistic than others because players' access 

to all data is an insubstantial assumption in real benchmarks.  

3.1 First stage; simultaneous consensus game  

In the first stage, players do not access their exact amount of utility, so they try to find the increasing 

direction of utility. If all players find the direction in which all utilities increase, the system will converge 

to an appropriate point. Fig. 3. stretches a flow diagram of the algorithm in the first stage of the game in 

which each player observes its own utility and recalls it in the next sample time. If any of the players notice 

a change in its utility, the first stage of the game starts. At each sample time, players declare their mode. 

While players are not aware of others' information, they have limited communication and announce their 

status to others (see section 2). Each player compares its utility with its last gained utility, and if the utility 

increases, the player is content with the game. If not, the player declares its status as discontent. All players 

start to search randomly in their decision space if any of the players’ statuses become discontent. If all 

players become content unanimously, players' consensus happens, and all players have to keep their 

decision for the next sample time. The first stage of the game ends if the number of consecutive consensuses 

(nc) becomes more than a specific value, which is regarded as a designed parameter (nr). 
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Fig. 3. Flow diagram of the first stage of the game. 
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3.2 Second stage; sequential amelioration game 

 Termination of the first stage of the game settles the transmission network in a reliable and 

appropriate condition; however, players may find some opportunity to enhance the network operation. The 

key factor in which players revise their decision in the second stage is effective-pressure. As the delivery 

point pressures (effective-pressure) increase, robustness and reliability in the network are improved though 

it incurs energy consumption costs in CSs. Therefore, every player considers a pressure span called safe 

area or safe horizon for its effective-pressure in which the network has an appropriate energy consumption 

and reliable endpoints pressure. This span (safe area or safe horizon) strictly depends on the design and 

class of networks (gathering, transmission, or distribution). Supervisors in compressor stations intuitively 

consider this safe area, and it is usually about 4.82 − 5.51  MPa ( ~ 700 - ~800 psia) in real 

cases(transmission networks). Therefore, the lower bound of the safe horizon (LS) is 4.82  MPa (~700 psia)  

and the upper bound of the safe horizon is 5.51 MPa (~800 psia). 

 When the first stage finishes, three different conditions, may occur, which eventually lead to 

different scenarios and actions in the game: 

I. If all effective-pressures are on the safe horizon; therefore, no one starts the second stage of the 

game, and the game is over! 

II. If at least one of the players’ effective-pressure is positioned lower than the LS, players start the 

second stage of the game. Each player who observes that its effective-pressure is lower than the 

safe area switches its power to the next level in the domain of the decision variable. For example, 

if for player i   (i ∈ N)  Peffective,i < LS  and Si = {4} player i changes its decision to Si = {5}. 

Since energy consumption has to be minimized, the player who has minimum capacity should start 

the game. This priority is rational because one stage increasing in CS with low capacity is lower 

than one stage increasing in CS with high capacity, and this ensures that for improvement of 

reliability in network operation (putting effective-pressures is the safe horizon), players increase 

energy consumption minimally.  

It is notable that just one player can play the game in each term (each sample time), and if one 

player did its action, no one could act until the next sample time. 

 

III. The third situation is when at least one of the effective-pressures is higher than the upper bound of 

the safe horizon (US). As higher effective-pressure for a player is equivalent to higher energy 

consumption, players should try to reduce it. In this situation player who has maximum capacity 

starts the game.  

The second stage of the game is not only to ensure that stations' energy has been almost minimized but also 

to assure the robustness of network operation in the presence of unpredictable loads. Fig. 4 shows the flow 

diagram for the second stage of the game. After the termination of the second stage, network monitoring 

continues to measure the states in order to start the first stage of the game if it is necessary (utility change 

for any of the players). 
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Fig. 4. Flow diagram of the second stage of the game. 
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4. Results and discussion 

In this section, we have used a benchmark that is almost similar to a part of the gas transmission 

network in the South Part of Iran simulated in order to evaluate the performance of the proposed algorithms 

to control a typical realistic gas transmission network with all its intricate behavior. Fig. 5 shows an 

overview of this gas network, which includes two gas suppliers (gas refinery), four consumers, and three 

compressor stations (3 players). The network has a cyclic topology since it includes at least one CS in the 

loop. Table 2 shows the network's physical characteristics, and Table 3 represents the network nominal 

conditions. The gas network has been simulated by a commercial software which supports Component 

Object Model (COM) technology. COM technology is one of the standard technologies for remote 

procedure call between two or more software application, enabling programming languages to use various 

software in Windows platform. We also implemented the cooperative game, including fuzzy utility, and 

the proposed learning algorithm in the Python programming language. In each time step of two-stage game, 

players receive data from the gas simulator (commercial software) and calculate their utilities to revise their 

decisions and then apply their decisions to their corresponding CS in the network (Fig. 6).  

 

 

Table 2 

Physical characteristic of the designed gas network 

Physical characteristic Value 

Network Pipelines length 6 ×  105 m     (600 km) 

Pipeline diameter 1.42 m     (56 in) 

Pipeline roughness 1.2 ×  10−5 m (0.012 mm) 

Maximum compressor station capacity 1 (player 1) 1.34 ×  108 Watt (~ 180000 hp) 

Maximum compressor station capacity 2 (player 2) 5.97 ×  107 Watt (~ 80000 hp) 

Maximum compressor station capacity 3 (player 3) 5.21 ×  107 Watt (~ 70000 hp) 

Table 3 

Nominal condition of the designed gas network 

Boundary node Pressure  in MPa (Psia) Volumetric flow rate in 𝐦𝟑/𝐬  ( Million cubic feet per day ) 

Supplier 1 8.82    (1266)   2.96     ( ~ 9.032) 

Supplier 2 8.82    (1266)   3.07     (~ 9.376) 

Consumer 1 5.52    (800)    0.92     (~ 2.802) 

Consumer 2 5.34    (775)     1.43     (~ 4.360) 

Consumer 3 5.17    (750)     2.86     (~ 8.744) 

Consumer 4 

(Load) 
5.77    (837) 0.82    (~ 2.5) 
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Fig. 5. Overview of the designed gas network. 
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Fig. 6. The connection between gas network simulator and learning algorithm. 

  

4.1 Effective-pressure of the gas transmission network and sensitivity analysis  

 Since each player requires its effective-pressure for utility evaluation, it needs to access wi,j (see 

section 2). We obtain wi,j for each player by sensitivity analysis in which random inputs (random GCRs or 

power consumption in CS) are imposed on the network in nominal condition, and the pressure changes in 

consumption points are investigated. Given the pressure changes, wi,j𝑠 (Table 4) are calculated according 

to equations 8-a - 8-c. Notably, the higher value of wi,j denotes that CSi exert more effect on consumer j:  

Peffective,i = ∑ wi,j ∗ Pj j       ∀ i ∈ N, j ∈ M                                                                                    (8-a) 

∆Pj = Max(Pj during random input) − Min(Pj during random input)                                    (8-b) 

wi,j =
∆Pj

∑ ∆Pjj
                                                                                                                                              (8-c) 

Fig. 7, Fig. 8, and Fig. 9 display CS random inputs and pressure change in consumers, which have been 

used to calculate the wi,j𝑠. These figures also demonstrate the effects of various compressor stations on all 

consumers, this in fact reflects the network interdependency. It is notable that in the investigation of wi,j𝑠 

and network analysis (investigating different scenarios) we only consider three consumers which are 

positioned after the CSs in the network since the pressure in consumer 4 is almost unaffected by the CSs. 

This pressure is almost influenced by refineries and this is out of the context in this work. 

Table 4  

Impact factors of effective-pressure for players  

 Consumer 1 Consumer 2 Consumer 3 

Compressor station 

(player) 1 
0.3 0.36 0.34 

Compressor station 

(player) 2 
0.47 0.23 0.3 

Compressor station 

(player) 3 
0.72 0.15 0.13 
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Fig. 7 evidences all end-points pressure in consumers are strictly dependent on the decisions made 

by player 1. This dependency is also comprehendible from network topology in which there is a path 

between CS1 and all consumers in the transmission network graph. This is also the case for other CSs. 

Fig. 7-a, Fig. 8-a, and Fig. 9-a show the inputs to the network which are imposed from CSs. The 

input variables displayed in these figures are gas compression ratio in compressor stations which is common 

to show manipulating variables in  CSs since they are often between 1 ~ 2. Therefore it is more convenient 

to show CSs’ inputs by GCR rather than compressor power. Fig. 7-b, Fig. 8-b, and Fig. 9-b also represent 

the pressure in the consumption points due to GCR change in CSs. 

 

 
Fig. 7-a. Random inputs imposed by player 1. 

 

Fig. 7-b. Pressure change in consumers due to random inputs imposed by player 1. 
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                       Fig. 8-a. Random inputs imposed by player 2. 

 

 

 

 

 

      Fig. 8-b. Pressure change in consumers due to random inputs imposed by player 2. 
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` Fig. 9-a. Random inputs imposed by player 3 

 

Fig. 9-b. Pressure change in consumers due to random inputs imposed by player 3. 
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4.2 Analysis of the proposed algorithm in different scenarios 

 To evaluate the performance of the proposed algorithm, we study two different scenarios in the 

operation of the gas transmission network. These scenarios correspond to consumption change, which is a 

typical load imposed on gas transmission networks. In the first scenario, the gas network is operating in its 

nominal condition, and the demand of delivery point having the largest gas consumption increases. 

At t=10 hr, the gas demand of consumer 3 increases from 2.86 m3/sec to 3.60 m3/sec (~8.74 to 

~11 MMCFD), which is about a 25% increase in its demand and is a high disturbance in nominal condition 

(Fig. 10). This event changes delivery pressure in consumer 3, and consequently effective-pressure and the 

utility for all players. Since players comprehend utility change in the game, they start the first stage for 

finding inputs (GCRs in their compressor stations) in which the network would settle in a safe condition. 

The first stage of the game begins at t ~ 10 hr and ends at t ~ 24 hr at which players find appropriate 

actions, the choosing of which lead the network to a safe operation. At t=18 hr, players find the direction 

in which all utilities increase. In this regard, they keep their decisions to achieve the consensus in the first 

stage. At t ~ 24 hr, the consensus in the game occurs, and the first stage of the game is over. Afterward, 

players start the second stage of the game in which player 3 considers its effective-pressure and detects that 

it is higher from the US of the safe horizon. Considering the principles in the second stage of the game, 

player 3 starts the second stage (although in this condition, priority is for player 1 and then player 2, none 

of them find effective-pressure deviation from the safe horizon ). At t ~ 40 hr, the network is almost settled; 

however, the second stage of the game is not over yet, and at t ~ 70 hr, player 2 performs its action in the 

second stage, and the game is over (Fig. 11). 

In the following, non of the players perform an action, and after about t ~ 100 hr, the gas network 

is at its new steady state. Fig. 12 and Fig. 13 display the delivery pressures in consumers and effective-

pressure for the players during the game. Even though there is a deviation from the nominal condition in 

the delivery-points pressure, players successfully put their effective-pressure in the safe horizon. 

Fig. 12 and Fig. 13 demonstrate that the proposed algorithm controls the transmission network in 

the presence of load and evidence in the condition that all supervisors of compressor stations adhere to the 

aforementioned collaboration, network is operated neither to need predictions obtained by any model nor 

does it require any centralized controller. 
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Fig. 10 natural gas consumption in deliveries in the first scenario 

 

 

Fig. 11 gas compression ratio in compressor stations (decisions of players) in the first scenario during the game 
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Fig. 12 delivery pressures in consumers in the first scenario during the game 

 

Fig. 13 effective-pressures for players in the first scenario during the game 
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The second scenario imposes more severe disturbance on the network. The network gas demand in two 

consumption points increases at t = 18 hr and t = 110 hr. The total increase in gas demand is about 14% 

which is an intense load in the transmission networks. The events that occur sequentially in the second 

scenario are as follows. 

1. At t= 10 hr the gas demand in consumer 3 increases from 2.86 m3/sec to 3.27 m3/sec ( ~8.74 to 

~10 MMCFD), which is about a 15% increase in its demand. 

2. The consumption change in consumer 3 results in effective-pressure change and consequently 

utility, so the first stage of the game starts. 

3. Players start to find the appropriate decisions in which unanimously all utilities increase during the 

Time. At t ~28 hr, this takes place and the network is in a safe and reliable steady-state condition.  

4. Regarding there is no condition to galvanize the second stage of the game, all players adhere to 

their decisions and the game is over until other events stimulate players. 

5. At t = 110 hr, consumer 1 increases its gas demand from 0.92 m3/sec to 1.31 m3/sec ( ~2.80 to ~ 

4 MMCFD), which is about a 42% increase in gas consumption. 

6. Considering players feel a change in their utilities, they start the first stage of the game and at t 

~120 hr they find appropriate decisions in which all utilities increase. 

7. This time also corresponds with a condition in which all effective-pressure are on the safe horizon, 

the game is over. 

Fig. 14, Fig. 15, Fig. 16, and Fig. 17 display the gas consumption of consumers, players' decisions, delivery 

pressures in consumers, and effective-pressures for players respectively, in the second scenario, during the 

time and represent that all players strive to operate the gas network in a reliable condition despite the various 

load imposed on the network. 

It is notable that due to the stochastic nature of the proposed algorithm, players do not necessarily 

behave in the same way for two identical perturbations. However, these behaviors lead the network to the 

almost same final condition that in addition to pressure delivery in consumers are reliable, the power of the 

compressor stations are almost minimized. This is interpretable from the rules governing the utility function 

in the first stage and the principles of the second stage. 
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Fig. 14 natural gas consumption in deliveries in the second scenario 

 

 

Fig. 15 gas compression ratio in compressor stations (decisions of players) in the second scenario during the game 
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Fig. 16 delivery pressures in consumers in the second scenario during the game 

 

  

Fig. 17 effective-pressures for players in the second scenario during the game 
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5. Conclusion 

 In this work, we contextualize a novel two-stage cooperative algorithm in the area of game theory, 

which is a solution strategy for model-free and distributed control of systems whose main characteristics 

are their high settling time and/or time delay in their response (e.g., gas transmission networks). This 

paradigm utilizes the incomplete information game concept for collaborative learning in the operation of 

the transmission network whose control structure is reformulated as a cooperative game. In this research, a 

Fuzzy Inference System has been designed and implemented to emulate players' rationality, which is 

consistent with the nature of qualitative thinking of human supervisors in compressor stations of gas 

transmission networks. The implementation of the new approach on a cyclic and large-scale gas 

transmission network manifests that in the presence of an intense change in network demand or under 

uncertain loads, supervisors find appropriate setpoints in which the network settles downs to a safe horizon, 

and all consumers receive natural gas in a permissible range of pressure. Reconsidering their decisions 

concerning effective-pressure, players also promote the efficiency of network operation. From the game 

theory perspective, this research contemplates games without exact utility evaluation which opens a new 

line of thinking versus conventional game-theoretic algorithms in which exact utility evaluation is a 

substantial assumption. The study also ushers in the utilization of game theory notion in the control of 

interconnected systems with slow dynamics whose exact model which can be used in controller design is 

unaffordable if not impossible to obtain. 

Future studies include the development of a utility function based on the combined FIS and data-

driven approaches (e.g., Adaptive Neuro-Fuzzy Inference System) to be more accommodated with the 

rationality in human supervisors. Addiotnaly other types of game theoretic-based algorithms such as the 

competitive approaches may be investigated to market gas demand analysis in transmission networks. 
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Appendix A. 

 

To design the utility function as a mathematical formalism, precise rules are required. However, 

there are many descriptions in the real world which are difficult to be defined clearly[25]. The preference 

of humans supervising CSs in the gas transmission network is a notable example of such descriptions. The 

vague human assessments can be represented by a Fuzzy Logic System. 

 Fuzzy Systems use Fuzzy set theory to process data. Fuzzy set theory is a mathematical expression 

in which everything is a matter of degree. A  Fuzzy Inference System includes Fuzzification, Implication, 

Aggregation, and Defuzzification. The t-norm and s-norm which are used in the designed Fuzzy utility 

function are Zadeh standard minimum and Zadeh standard maximum respectively. The method which is 

used for Defuzzification is based on calculating the centroid of the area[26],[27]. The membership functions 

in the fuzzy utility which are represented in Fig. 2. are Gaussian or Sigmoid. The Gaussian function is a 

function that is widely used in Fuzzy set theory to express a degree of membership of a value to a particular 

set: 

P(X) =  
1

σ√2π
e−  

1

2
(

X−μ

σ
)2

                                                    (9) 

P is a value that denotes the degree of membership to a particular set and X is an independent variable. 𝜎 

is the standard deviation and 𝜇 is the mean of the Gaussian function.     

The Sigmoid function is also generally used to indicate the degree of membership in the beginning and end 

of the variable span: 

P(X) =  
1

1+ e−a ∗ (X−C)                                                                                                                          (10) 

The 𝑎 and C are constant values in the Sigmoid function. 

 

Considering these two types of functions the Fuzzy utility is designed based on the parameters represented 

in tables 5, 6, 7, and 8.  

 

Table 5 

The function's parameters in Effective-Pressure for Observer (Input 1 to FIS) 

Name of Set Type of Membership Parameters 

Critical Sigmoid 𝑎 = -30 , C = 0.2 

Dangerous Gaussian 𝜎 = 0.08 , 𝜇 = 0.3 

Normal Gaussian 𝜎 = 0.085, 𝜇 = 0.5 

Safe Gaussian 𝜎 = 0.08 , 𝜇 = 0.7 

Absolutely Reliable Sigmoid 𝑎 = +30 , C =0.8 

Table 6 

The function's parameters in Instant Power (Input 2 to FIS) 

Name of Set Type of Membership Parameters 

Very Low Sigmoid 𝑎 = -30 , C = 0.2 

Low Gaussian 𝜎 = 0.08 , 𝜇 = 0.3 

Normal Gaussian 𝜎 = 0.085, 𝜇 = 0.5 

High Gaussian 𝜎 = 0.08 , 𝜇 = 0.7 

Very High Sigmoid 𝑎 = +30 , C =0.8 
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Table 7 

The function's parameters in Average Power (Input 3 to FIS) 

Name of Set Type of Membership Parameters 

Low Sigmoid 𝑎 = -16 , C = 0.35 

Normal Gaussian 𝜎 = 0.15, 𝜇 = 0.5 

High Sigmoid 𝑎 = 16 , C = 0.35 

Table 8 

The function's parameters in Calculated Utility for Players (Output from FIS) 

Name of Set Type of Membership Parameters 

Very Very Low Sigmoid 𝑎 = -50 , C = 0.13 

Very Low Gaussian 𝜎 = 0.065 , 𝜇 = 0.2 

Low Gaussian 𝜎 = 0.065 , 𝜇 = 0.35 

Normal Gaussian 𝜎 = 0.065, 𝜇 = 0.5 

High Gaussian 𝜎 = 0.065 , 𝜇 = 0.65 

Very High Gaussian 𝜎 = 0.065 , 𝜇 = 0.8 

Very Very High Sigmoid 𝑎 = 50 , C = 0.87 
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