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Vortex induced vibrations of bluff bodies occur when the vortex shedding frequency is
close to the natural frequency of the structure. Of interest is the prediction of the lift and
drag forces on the structure given some limited and scattered information on the velocity
field. This is an inverse problem that is not straightforward to solve using standard
computational fluid dynamics (CFD) methods, especially since no information is provided
for the pressure. An even greater challenge is to infer the lift and drag forces given some
dye or smoke visualizations of the flow field. Here we employ deep neural networks that
are extended to encode the incompressible Navier-Stokes equations coupled with the
structure’s dynamic motion equation. In the first case, given scattered data in space-
time on the the velocity field and the structure’s motion, we use four coupled deep neural
networks to infer very accurately the structural parameters, the entire time-dependent
pressure field (with no prior training data), and reconstruct the velocity vector field
and the structure’s dynamic motion. In the second case, given scattered data in space-
time on a concentration field only, we use five coupled deep neural networks to infer very
accurately the vector velocity field and all other quantities of interest as before. This new
paradigm of inference in fluid mechanics for coupled multi-physics problems is part of our
ongoing development of physics-informed learning machines, where the traditional CFD
methodology is abandoned in favor of deep neural networks inference, circumventing the
tyranny of elaborate mesh generation.

1. Introduction

Fluid-structure interactions (FSI) are omnipresent in engineering applications
(Paidoussis 1998, 2004), e.g. in long pipes carrying fluids, in heat exchangers, in
wind turbines, in gas turbines, in oil platforms and long risers for deep sea drilling.
Vortex induced vibrations (VIV), in particular, are a special class of fluid-structure
interactions (FSI), which involve a resonance condition. They are caused in external
flows past bluff bodies when the frequency of the shed vortices from the body is close to
the natural frequency of the structure (Williamson & Govardhan 2004). A prototypical
example is flow past a circular cylinder that involves the so-called von Kármán shedding
with a non-dimensional frequency (Strouhal number) of about 0.2. If the cylinder is
elastically mounted, its resulting motion is caused by the lift force and the drag force in
the crossflow and streamwise directions, respectively, and can reach about 1D and 0.1D
in amplitude, where D is the cylinder diameter. Clearly, for large structures like a long
riser in deep sea drilling, this is a very large periodic motion that will lead to fatigue
and hence a short life time for the structure.

Using traditional computational fluid dynamics (CFD) methods we can predict accu-
rately VIV (Evangelinos & Karniadakis (1999)), both the flow field and the structure’s
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motion. However, CFD simulations are limited to relatively low Reynolds numbers and
simple geometric configurations and involve the generation of elaborate and moving grids
that may need to be updated frequently. Moreover, some of the structural characteristics,
e.g. damping, are not readily available and hence separate experiments are required
to obtain such quantities involved in CFD modeling of FSI. Solving inverse coupled
CFD problems, however, is typically computationally prohibitive and often requires the
solution of ill-posed problems. For the vibrating cylinder problem, in particular, we may
have available data for the motion of the cylinder or some limited noisy measurements
of the velocity field in the wake or some flow visualizations obtained by injecting dye
upstream for liquid flows or smoke for air flows. Of interest is to determine the forces on
the body that will determine the dynamic motion and possibly deformation of the body,
and ultimately its fatigue life for safety evaluations.

In this work, we take a different approach building on our previous work on physics
informed deep learning (Raissi et al. 2017d ,c) and extending this concept to coupled
multi-physics problems. Instead of solving the fluid mechanics equations and the dynamic
equation for the motion of the structure using numerical discretization, we learn the
velocity and pressure fields and the structure’s motion using coupled deep neural networks
with scattered data in space-time as input. The governing equations are employed as part
of the loss function and play the role of regularization mechanisms. Hence, experimental
input that may be noisy and at scattered spatio-temporal locations can be readily utilized
in this new framework. Moreover, as we have shown in previous work, physics informed
neural networks are particularly effective in solving inverse problems and discovering the
hidden physics of coupled multi-physics problems (Raissi 2018a).

The paper is organized as follows. In the next section, we give an overview of the
proposed algorithm, set up the problem and describe the synthetic data that we generate
to test the performance of the method. In section §3 we present the results for three
cases. We start with a pedagogical example by assuming that we know the forces on
the body and we seek to obtain the structure’s motion without solving explicitly the
equation of motion. We then consider a case where we know the velocity field and the
motion at some scattered data in space-time and we infer the lift and drag forces while
at the same time we learn the pressure field and the entire velocity field and dynamic
motion. We then consider an even more interesting case where we only assume available
concentration data in space-time and from that information we obtain all the flow fields
and motion as well as the lift and drag forces. We conclude with a short summary.

2. Problem Setup and Solution Methodology

We begin by considering the prototype VIV problem of flow past a circular cylinder.
The fluid motion is governed by the incompressible Navier-Stokes equations while the
dynamics of the structure is described in a general form involving displacement, velocity,
and acceleration terms. In particular, let us consider the two-dimensional version of flow
over a flexible cable, i.e., an elastically mounted cylinder (Bourguet et al. 2011). The two-
dimensional problem contains most of the salient features of the three-dimensional case
and consequently it is relatively straightforward to generalize the proposed framework to
the flexible cylinder/cable problem. In two dimensions, the physical model of the cable
reduces to a mass-spring-damper system. There are two directions of motion for the
cylinder: the streamwise (i.e., x) direction and the crossflow (i.e., y) direction. In this
work, we assume that the cylinder can only move in the crossflow (i.e., y) direction; we
concentrate on crossflow vibrations since this is the primary VIV direction. However,
it is a simple extension to study cases where the cylinder is free to move in both
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streamwise and crossflow directions. The cylinder displacement is defined by the variable
η corresponding to the crossflow motion. The equation of motion for the cylinder is then
given by

ρηtt + bηt + kη = fL, (2.1)

where ρ, b, and k are the mass, damping, and stiffness parameters, respectively. The fluid
lift force on the structure is denoted by fL. The mass ρ of the cylinder is usually a known
quantity; however, the damping b and the stiffness k parameters are often unknown
in practice. In the current work, we put forth a deep learning approach for estimating
these parameters from measurements. We start by assuming that we have access to the
input-output data {tn, ηn}Nn=1 and {tn, fnL}Nn=1 on the displacement η(t) and the lift force
fL(t) functions, respectively. Having access to direct measurements of the forces exerted
by the fluid on the structure is obviously a strong assumption. However, we start with
this simpler but pedagogical case and we will relax this assumption later in this section.

Inspired by recent developments in physics informed deep learning (Raissi et al.
2017d ,c) and deep hidden physics models (Raissi 2018a), we propose to approximate
the unknown function η by a deep neural network. This choice is motivated by modern
techniques for solving forward and inverse problems involving partial differential equa-
tions, where the unknown solution is approximated either by a neural network (Raissi
et al. 2017d ,c; Raissi 2018a,b; Raissi et al. 2018a) or a Gaussian process (Raissi et al.
2018b; Raissi & Karniadakis 2018; Raissi et al. 2017a,b; Raissi 2017; Perdikaris et al.
2017; Raissi & Karniadakis 2016). Moreover, placing a prior on the solution is fully
justified by similar approaches pursued in the past centuries by classical methods of
solving partial differential equations such as finite elements, finite differences, or spectral
methods, where one would expand the unknown solution in terms of an appropriate set
of basis functions. Approximating the unknown function η by a deep neural network and
using equation (2.1) allow us to obtain the following physics-informed neural network

fL := ρηtt + bηt + kη. (2.2)

It worth noting that the damping b and the stiffness k parameters turn into parameters
of the resulting physics informed neural network fL. We obtain the required deriva-
tives to compute the residual network fL by applying the chain rule for differentiating
compositions of functions using automatic differentiation (Baydin et al. 2015). Automatic
differentiation is different from, and in several respects superior to, numerical or symbolic
differentiation – two commonly encountered techniques of computing derivatives. In its
most basic description (Baydin et al. 2015), automatic differentiation relies on the fact
that all numerical computations are ultimately compositions of a finite set of elementary
operations for which derivatives are known. Combining the derivatives of the constituent
operations through the chain rule gives the derivative of the overall composition. This
allows accurate evaluation of derivatives at machine precision with ideal asymptotic
efficiency and only a small constant factor of overhead. In particular, to compute the
required derivatives we rely on Tensorflow (Abadi et al. 2016), which is a popular and
relatively well documented open source software library for automatic differentiation and
deep learning computations.

The shared parameters of the neural networks η and fL, in addition to the damping
b and the stiffness k parameters, can be learned by minimizing the following sum of
squared errors loss function

N∑
n=1

|η(tn)− ηn|2 +

N∑
n=1

|fL(tn)− fnL |2. (2.3)
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The first summation in this loss function corresponds to the training data on the dis-
placement η(t) while the second summation enforces the dynamics imposed by equation
(2.1).

2.1. Inferring Lift and Drag Forces from Velocity Measurements

So far, we have been operating under the assumption that we have access to direct
measurements of the lift force fL. In the following, we are going to relax this assumption
by recalling that the fluid motion is governed by the incompressible Navier-Stokes
equations given explicitly by

ut + uux + vuy = −px + Re−1(uxx + uyy),
vt + uvx + vvy = −py + Re−1(vxx + vyy)− ηtt,
ux + vy = 0.

(2.4)

Here, u(t, x, y) and v(t, x, y) are the streamwise and crossflow components of the velocity
field, respectively, while p(t, x, y) denotes the pressure, and Re is the Reynolds number
based on the cylinder diameter and the free stream velocity. We consider the incompress-
ible Navier-Stokes equations in the coordinate system attached to the cylinder, so that
the cylinder appears stationary in time. This explains the appearance of the extra term
ηtt in the second momentum equation (2.4). The second VIV learning problem is defined
as follows: Given measurements {tn, xn, yn, un, vn}Nn=1 of the velocity field† in addition
to the data {tn, ηn}Nn=1 on the displacement and knowing the dynamics of the fluid (2.4),
we are interested in reconstructing the velocity field as well as the pressure.

We proceed by approximating u(t, x, y), v(t, x, y), p(t, x, y), and η(t) by four neural
networks. This prior assumption along with the incompressible Navier-Stokes equations
(2.4) result into the following physics-informed neural networks

e1 := ut + uux + vuy + px − Re−1(uxx + uyy),
e2 := vt + uvx + vvy + py − Re−1(vxx + vyy) + ηtt,
e3 := ux + vy.

(2.5)

We use automatic differentiation (Baydin et al. 2015) to obtain the required derivatives
to compute the residual networks e1, e2, and e3. The shared parameters of the neural
networks u, v, p, η, e1, e2, and e3 can be learned by minimizing the sum of squared errors
loss function ∑N

n=1

(
|u(tn, xn, yn)− un|2 + |v(tn, xn, yn)− vn|2

)
+
∑N

n=1 |η(tn)− ηn|2 +
∑3

i=1

∑N
n=1

(
|ei(tn, xn, yn)|2

)
.

(2.6)

Here, the first two summations correspond to the training data on the fluid velocity and
the structure displacement while the last summation enforces the dynamics imposed by
equation (2.4).

The fluid forces on the cylinder are functions of the pressure and the velocity gradients.
Consequently, having trained the neural networks, we can use

FD =

∮ [
−pnx + 2Re−1uxnx + Re−1 (uy + vx)ny

]
ds, (2.7)

FL =

∮ [
−pny + 2Re−1vyny + Re−1 (uy + vx)nx

]
ds, (2.8)

† Take for example the case of reconstructing a flow field from scattered measurements
obtained from Particle Image Velocimetry (PIV) or Particle Tracking Velocimetry (PTV).
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to obtain the lift and drag forces exerted by the fluid on the cylinder. Here, (nx, ny)
is the outward normal on the cylinder and ds is the arc length on the surface of the
cylinder. We use the trapezoidal rule to approximately compute these integrals, and we
use equation (2.8) to obtain the required data on the lift force. These data are then used
to estimate the structural parameters b and k by minimizing the loss function (2.3).

2.2. Inferring Lift and Drag Forces from Flow Visualizations

We now consider the second VIV learning problem by taking one step further and
circumvent the need for having access to measurements of the velocity field by leveraging
the following equation

ct + ucx + vcy = Pe−1(cxx + cyy), (2.9)

governing the evolution of the concentration c(t, x, y) of a passive scalar injected into the
fluid flow dynamics described by the incompressible Navier-Stokes equations (2.4). Here,
Pe denotes the Péclet number, defined based on the cylinder diameter, the free-stream
velocity and the diffusivity of the concentration species. The second VIV learning problem
is defined as follows: Given scattered and noisy measurements {tn, xn, yn, cn}Nn=1 of the
concentration c(t, x, y) of the passive scalar in space-time, we are interested in inferring
the latent (hidden) quantities u(t, x, y), v(t, x, y), and p(t, x, y). Consequently, equations
(2.7) and (2.8) enable us to compute the drag and lift forces, respectively, as functions
of the inferred pressure and velocity gradients.

In addition to approximating u(t, x, y), v(t, x, y), p(t, x, y), and η(t) by four deep neural
networks as before, we represent c(t, x, y) by yet another neural network. This prior
assumption along with equation (2.9) results in the following additional physics informed
neural network

e4 := ct + ucx + vcy − Pe−1(cxx + cyy). (2.10)

The residual networks e1, e2, and e3 are defined as before (see equation (2.5)). We
use automatic differentiation (Baydin et al. 2015) to obtain the required derivatives
to compute the additional residual network e4. The shared parameters of the neural
networks c, u, v, p, η, e1, e2, e3, e4 can be learned by minimizing the sum of squared
errors loss function∑N

n=1

(
|c(tn, xn, yn)− cn|2 + |η(tn)− ηn|2

)
+
∑M

m=1

(
|u(tm, xm, ym)− um|2 + |v(tm, xm, ym)− vm|2

)
+
∑4

i=1

∑N
n=1

(
|ei(tn, xn, yn)|2

)
.

(2.11)

Here, the first summation corresponds to the training data on the concentration of the
passive scalar and the structure’s displacement, the second summation corresponds to
the Dirichlet boundary data on the velocity field, and the last summation enforces the
dynamics imposed by equations (2.4) and (2.9). Upon training, we use equation (2.8)
to obtain the required data on the lift force. Such data are then used to estimate the
structural parameters b and k by minimizing the loss function (2.3).

3. Results†
To generate a high-resolution dataset for the VIV problem we have performed direct

numerical simulations (DNS) employing the high-order spectral-element method (Kar-

† All data and codes used in this manuscript will be publicly available on GitHub at
https://github.com/maziarraissi/DeepVIV.
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niadakis & Sherwin 2005), together with the coordinate transformation method to take
account of the boundary deformation (Newman & Karniadakis 1997). The computational
domain is [−6.5D, 23.5D]×[−10D, 10D], consisting of 1,872 quadrilateral elements. The
cylinder center was placed at (0, 0). On the inflow, located at x/D = −6.5, we prescribe
(u = U∞, v = 0). On the outflow, where x/D = 23.5, zero-pressure boundary condition
(p = 0) is imposed. On both top and bottom boundaries where y/D = ±10, a periodic
boundary condition is used. The Reynolds number is Re = 100, ρ = 2, b = 0.084 and
k = 2.2020. For the case with dye, we assumed the Péclet number Pe = 90. First, the
simulation is carried out until t = 1000 D

U∞
when the system is in steady periodic state.

Then, an additional simulation for ∆t = 14 D
U∞

is performed to collect the data that
are saved in 280 field snapshots. The time interval between two consecutive snapshots is
∆t = 0.05 D

U∞
. Note here D = 1 is the diameter of the cylinder and U∞ = 1 is the inflow

velocity. We use the DNS results to compute the lift and drag forces exerted by the fluid
on the cylinder.

To illustrate the effectiveness of our approach, let us start with two time series
consisting of N = 111 observations of the displacement and the lift force. These data
correspond to damping and stiffness parameters with exact values b = 0.084 and
k = 2.2020, respectively. Here, the cylinder is assumed to have a mass of ρ = 2.0.
This data-set is then used to train a 10-layer deep neural network with 32 neurons per
hidden layers by minimizing the sum of squared errors loss function (2.3) using the Adam
optimizer (Kingma & Ba 2014). Upon training, the network is used to predict the entire
solution functions η(t) and fL(t), as well as the unknown structural parameters b and
k. In addition to almost perfect reconstructions of the two time series for displacement
and lift force, the proposed framework is capable of identifying the correct values for
the structural parameters b and k with remarkable accuracy. The learned values for
the damping and stiffness parameters are b = 0.08438281 and k = 2.2015007. This
corresponds to around 0.45% and 0.02% relative errors in the estimated values for b and
k, respectively.

In general, the choice of a neural network’s architecture (e.g., number of layers and
neurons) is crucial and in many cases still remains an art that relies on one’s ability to
balance the trade off between expressivity and trainability of the neural network (Raghu
et al. 2016). Our empirical findings so far indicate that deeper and wider networks are
usually more expressive (i.e., they can capture a larger class of functions) but are often
more costly to train (i.e., a feed-forward evaluation of the neural network takes more time
and the optimizer requires more iterations to converge). However, these observations
should be interpreted as a conjecture rather as firm results†. In this work, we have
tried to choose the neural networks’ architectures in a consistent fashion throughout
the manuscript by setting the number of layers to 10 and the number of neurons to
32. Consequently, there might exist other architectures that improve some of the results
reported in the current work.

Let us now consider the case where we do not have access to direct measurements of
the lift force fL. In this case, we can use measurements of the velocity field, obtained for
instance via Particle Image Velocimetry (PIV) or Particle Tracking Velocimetry (PTV),
to reconstruct the velocity field, the pressure, and consequently the drag and lift forces. A
representative snapshot of the data on the velocity field is depicted in the top left and top
middle panels of figure 1. The neural network architectures used here consist of 10 layers

† We encourage the interested reader to check out the codes corresponding to this paper on
GitHub at https://github.com/maziarraissi/DeepVIV and experiment with different choices for
the neural networks’ architectures.
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Figure 1. Vortex Induced Vibrations (Velocity Measurements): A representative snapshot of
the data on the velocity field is depicted in the top left and top middle panels of this figure.
The algorithm is capable of accurately (of the order of 10−3) reconstructing the velocity field
and more importantly the pressure without having access to even a single observation on the
pressure itself.

with 32 neurons in each hidden layer. A summary of our results is presented in figure 1.
The proposed framework is capable of accurately (of the order of 10−3) reconstructing
the velocity field; however, a more intriguing result stems from the network’s ability to
provide an accurate prediction of the entire pressure field p(t, x, y) in the absence of any
training data on the pressure itself. A visual comparison against the exact pressure is
presented in figure 1 for a representative snapshot of the pressure. It is worth noticing
that the difference in magnitude between the exact and the predicted pressure is justified
by the very nature of incompressible Navier-Stokes equations, since the pressure field is
only identifiable up to a constant. This result of inferring a continuous quantity of interest
from auxiliary measurements by leveraging the underlying physics is a great example of
the enhanced capabilities that our approach has to offer, and highlights its potential in
solving high-dimensional inverse problems.

The trained neural networks representing the velocity field and the pressure can be used
to compute the drag and lift forces by employing equations (2.7) and (2.8), respectively.
The resulting drag and lift forces are compared to the exact ones in figure 2. In the
following, we are going to use the computed lift force to generate the required training
data on fL and estimate the structural parameters b and k by minimizing the loss function
(2.3). Upon training, the proposed framework is capable of identifying the correct values
for the structural parameters b and k with remarkable accuracy. The learned values
for the damping and stiffness parameters are b = 0.0844064 and k = 2.1938791. This
corresponds to around 0.48% and 0.37% relative errors in the estimated values for b and
k, respectively.

Let us continue with the case where we do not have access to direct observations of the
lift force fL. This time rather than using data on the velocity field, we use measurements
of the concentration of a passive scalar (e.g., dye or smoke) injected into the system.
In the following, we are going to employ such data to reconstruct the velocity field, the
pressure, and consequently the drag and lift forces. A representative snapshot of the data
on the concentration of the passive scalar is depicted in the top left panel of figure 3. The
neural networks’ architectures used here consist of 10 layers with 32 neurons per each
hidden layer. A summary of our results is presented in figure 3. The proposed framework is
capable of accurately (of the order of 10−3) reconstructing the concentration. However, a
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Figure 2. Vortex Induced Vibrations (Lift and Drag Forces): In this figure, the resulting lift
(left) and drag (right) forces are compared to the exact ones. The red solid lines correspond
to the exact lift and drag forces. The blue dashed lines represent the learned fluid forces using
the velocity measurements, while the black dotted lines correspond to the learned lift and drag
forces obtained by using the flow visualization data.

Figure 3. Vortex Induced Vibrations (Flow Visualizations Data): A representative snapshot of
the data on the concentration of the passive scalar is depicted in the top left panel of this figure.
The algorithm is capable of accurately (of the order of 10−3) reconstructing the concentration
of the passive scalar and more importantly the velocity field as well as the pressure without
having access to enough observations of these quantities themselves.

truly intriguing result stems from the network’s ability to provide an accurate prediction
of the entire velocity vector field as well as the pressure, in the absence of sufficient
training data on the pressure and the velocity field themselves. A visual comparison
against the exact quantities is presented in figure 3 for a representative snapshot of
the velocity field and the pressure. This result of inferring multiple hidden quantities
of interest from auxiliary measurements by leveraging the underlying physics is a great
example of the enhanced capabilities that physics-informed deep learning has to offer,
and highlights its potential in solving high-dimensional inverse problems.

Following the same procedure as in the previous example, the trained neural networks
representing the velocity field and the pressure can be used to compute the drag and
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lift forces by employing equations (2.7) and (2.8), respectively. The resulting drag and
lift forces are compared to the exact ones in figure 2. In the following, we are going to
use the computed lift force to generate the required training data on fL and estimate
the structural parameters b and k by minimizing the loss function (2.3). Upon training,
the proposed framework is capable of identifying the correct values for the structural
parameters b and k with surprising accuracy. The learned values for the damping and
stiffness parameters are b = 0.08600664 and k = 2.2395933. This corresponds to around
2.39% and 1.71% relative errors in the estimated values for b and k, respectively.

4. Summary

We have considered the classical coupled problem of a freely vibrating cylinder due to
lift forces and demonstrated how deep learning can be used to infer quantities of interest
from scattered data in space-time. In the first VIV learning problem, we inferred the
pressure field and structural parameters, and hence the lift and drag on the vibrating
cylinder using velocity and displacement data in time-space. In the second VIV learning
problem, we inferred the velocity and pressure fields as well as the structural parameters
given data on a passive scalar in space-time. The framework we propose here represents
a paradigm shift in fluid mechanics simulation as it uses the governing equations as
regularization mechanisms in the loss function of the corresponding minimization prob-
lem. It is particularly effective for multi-physics problems as the coupling between fields
can be readily accomplished by sharing parameters among the multiple neural networks
– here 4 neural networks the first problem and 5 for the second one – and for more
general coupled problems by also including coupled terms in the loss function. There are
many questions that this new type of modeling raises, both theoretical and practical, e.g.
efficiency, solution uniqueness, accuracy, etc. We have considered such questions here in
the present context as well as in our previous work in the context of physics-informed
learning machines but admittedly at the present time it is not possible to rigorously
answer such questions. We hope, however, that our present work will ignite interest in
physics-informed deep learning that can be used effectively for many different fields of
multi-physics fluid mechanics.
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