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Abstract

Traditional aircraft conceptual design primarily involves determination of top-

level sizing parameters, resulting in an initial design which satisfies specified

point-performance constraints while flying the so-called design mission. In prac-

tical scenarios, commercial aircraft are also expected to operate optimally in the

actual missions they fly which may drastically differ from the design mission.

To improve performance and reduce operating costs, optimization shall be per-

formed using specific objectives from the on-design mission and from one or more

representative off-design reference mission(s). Such multi-mission optimizations

may result in different designs for the same performance constraints. Moreover,

the size of aircraft and choice of reference mission(s) may also have an effect in

the difference resulting from such multi-mission optimizations. This paper solves

a series of multi-objective on-design and multi-mission optimization problems

in the conceptual design phase on aircraft spanning a range of size-classes, us-

ing the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Results shed

light on the design differences between formulations that exclusively consider

design mission metrics of interest from the ones that consider metrics of inter-

est from disparate, as-flown, i.e., off-design missions. In addition, results also

reveal the impact of off-design mission weightings on the designs obtained from

the optimization problems.
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1. Introduction1

The primary goal of aircraft sizing in conceptual design phase is to use point2

performance and mission performance requirements to obtain an initial esti-3

mate of the geometric scale, the propulsion characteristics, and the design gross4

weight, which are typically represented by the wing planform area, the rated5

sea-level static thrust, and the maximum takeoff weight, (MTOW), respectively.6

Traditionally, this process yields a solution which satisfies the performance re-7

quirements for the so-called design mission. Due to airlines’ concerns with8

regard to operating and maintenance costs and environmental factors such as9

noise and emissions, the design is optimized for objectives such as MTOW, op-10

erating empty weight (OEW), takeoff field length (TOFL), noise, and/or fuel11

consumption of the mission for which the aircraft is sized, i.e., the design mis-12

sion.13

While commercial aircraft are sized to fly the design mission, in real-world14

operations, the aircraft operate a variety of off-design missions with diverse pay-15

load and range combinations. In some cases, airlines sacrifice payload capacity16

in order to fly certain ultra-long-range missions. For example, Singapore Air-17

lines used to operate non-stop flights between Singapore and New York at a18

great circle distance of 8300 nmi using the Airbus A340-500 aircraft in a spe-19

cial configuration carrying only 100 passengers instead of the typical 293-seat20

configuration [1]. In other cases, many airlines operate long-range aircraft on21

much shorter routes due to airport slot constraints, capacity demand, and/or22

fleet utility, etc. For example, the long-range Airbus A350, A380, Boeing 787,23

and 777 are frequently used on short-haul high-capacity flights within Asia.24

From the airlines’ perspective, design optimization considering off-design25

performance offers the prospect of high mission flexibility along with the promise26

of operating the actual missions as efficiently as possible. This can be achieved27

by choosing off-design metrics such as specific air range (SAR) instead of the28

design mission performance such as the block fuel (BF). However, one, such29

formulations may not shed light on whether and if so, how the choice of ob-30
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jective mission performance metric impacts the payload-range capability and31

performance of other off-design missions under identical point performance and32

design mission requirements; two, the distribution of off-design missions relative33

to the design mission in the payload-range space may also affect the trade-off34

(if present) mentioned above.35

The primary goal of this work is to investigate the aforementioned issues36

through several multi-mission multi-objective sizing and optimization studies37

to assess the differences in top-level aircraft design parameters and off-design38

mission performance metrics among the Pareto optimal designs across a few size-39

classes, specifically, a Regional Jet (RJ), a Small Single-aisle Aircraft (SSA), and40

a Large Twin-aisle Aircraft (LTA).41

Researchers have attempted off-design optimization using a single-objective42

or “a-priori” multi-objective optimization problem formulations [2, 3, 4, 5, 6],43

where multiple objectives were aggregated into a single objective function by44

defining a “utility function” or “value function” instead of investigating a set45

of Pareto optimal solutions. A-posteriori multi-objective optimization problem46

formulations have also been leveraged [7, 8, 9, 10] to obtain Pareto frontiers47

to investigate the trade-off between aircraft gross weight, design mission fuel48

burn, noise, and emissions, etc., but these studies do not explicitly factor-in49

off-design considerations. This work, on the other hand, highlights the insights50

gained from a multi-mission a-posteriori multi-objective optimization performed51

on both on-design and off-design mission performance metrics.52

The appropriate size of an aircraft’s design parametrization is a largely ne-53

glected issue in aircraft conceptual design and optimization studies. Typically,54

the extent of parametrization is constrained by both the lack of information55

and the semi-empirical nature of the component weight build-up, aerodynam-56

ics, and propulsion models. Notable studies [3, 4, 5, 6, 8, 9, 10] on aircraft57

sizing and optimization decide the number of parameters describing an aircraft58

based on either a widely accepted set of significant inputs and subject matter59

expertise, or by considering all the variables availed by their respective analysis60

tools. It is a well-recognized and widely accepted fact that a majority of the61
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metrics of interest in conceptual design are largely affected by a few key scaling62

factors such as the geometric and the propulsive scale, i.e., the wing loading63

and thrust loading respectively. However, other geometric aircraft parameters64

cannot simply be neglected because they may have significant secondary effects65

on the metrics of interest through their appearance in equations for compo-66

nent weight build-ups which affect the weight, and therefore, the aerodynamics67

and propulsion characteristics. On the other hand, considering all the possible68

parameters exposed by respective analyses may introduce variables that affect69

the outputs insignificantly. Consequently, including such variables leads to rela-70

tively complex and hard-to-solve optimization problem formulations while only71

adding marginal value. Moreover, the effect of input variables on the metrics of72

interest also depends on the fidelity of the underlying analysis. To address the73

aforementioned issues, this work proposes beginning with the full set of relevant74

inputs and down-selecting the most important ones for the specific metrics of75

interest by rank-ordering them based on the significance of their effect on the76

outputs. Such a screening procedure ensures a parsimonious optimization prob-77

lem while ensuring that a majority of the variation in the outputs is retained.78

The primary goal of this work is accomplished by proposing and leveraging79

a methodology that: one, formulates and compares the insights from on-design80

and off-design optimization problems. A practically meaningful off-design opti-81

mization problem is constructed by performing a thorough assessment of several82

off-design objective functions and identifying conflicting ones; two, provides a83

principled method to construct a parsimonious optimization problem by down-84

selecting the most significant inputs via sensitivity analysis, considering an ex-85

haustive set of conceptual phase aircraft design parameters. The developed86

methodology is design tool agnostic and is easily extensible to a wide range of87

aircraft concepts and mission types. The salient novel features of the study88

are: 1) both on-design and off-design quantities of interest are considered in the89

a-posteriori multi-objective optimization setting, 2) a thorough study, with a90

large set of design variables, is performed across major aircraft size classes to91

give an insight into the trade-offs involved within them with regard to on-design92
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and off-design considerations.93

The remainder of this paper is organized as follows: Sec. 2 presents the94

formulation of both the on-design and off-design optimization problems; Sec. 395

discusses the methods used in major disciplinary analyses performed in concep-96

tual aircraft design; Sec. 4 describes the mission profile and the tool to perform97

off-design mission performance evaluation; Sec. 5 briefly describes the char-98

acteristics of NSGA-II, the optimization algorithm used in this paper; Sec. 699

presents the optimization results along with discussions; finally, Sec. 7 draws100

the conclusion.101

2. Problem Formulation102

This section describes the objectives considered for the on-design (single-103

mission) optimization and the off-design (multi-mission) optimization in Sec. 2.1,104

the constraints considered for both optimization problems in Sec. 2.2, the set105

of aircraft-level design variables in Sec. 2.3, the necessity for down-selecting the106

design variables through screening in Sec. 2.4, the complete problem statement107

in Sec. 2.5, and finally, the reference vehicles’ data and the corresponding design108

variable ranges in Sec. 2.6.109

2.1. Objective Functions110

The problem of optimizing the performance of an aircraft for multiple mis-111

sions simultaneously while sizing the aircraft for a single design mission is nat-112

urally posed as a multi-objective optimization problem. In the literature con-113

cerning aircraft design optimization at the conceptual stage, researchers have114

considered a number of objective functions motivated mainly by the intended115

objectives of the specific study [8, 11]. Because the goal of this work is to116

compare differences in designs when on-design and off-design metrics are taken117

into account together, formulations with a mix of mission-invariant and mission-118

dependent metrics are considered. The mission-invariant metrics imply the ca-119

pability of a sized aircraft, regardless of the actual mission being operated,120
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whereas the mission-dependent metrics measure the performance of a sized air-121

craft which depends on the actual mission being flown.122

For the on-design optimization, two mission-invariant objectives are consid-123

ered: 1) the maximum ramp weight, MRW, and 2) the nominal takeoff field124

length, TOFL, computed at standard sea level conditions and at maximum125

takeoff weight. A third objective for the on-design optimization is the block126

fuel of the design mission, WBF,des, which is a good measurement of the direct127

operating cost when the aircraft flies the design mission.128

For the off-design optimization, the on-design objectives to minimize MRW129

and TOFL remain. A third objective to be minimized is selected among the130

following three candidate functions involving mission-dependent variables, i.e.131

functions of payload (WP ) and range (R):132

O1 =

∫∫
M

f(WP , R) WBF (WP , R) dWP dR (1)

O2 = −
∫∫

M

f(WP , R)
R

WBF (WP , R)
dWP dR (2)

O3 = −
∫∫

M

f(WP , R)
WPR

WBF (WP , R)
dWP dR (3)

where M represents the feasible mission space as dictated by a domain bounded133

by the maximum takeoff weight, maximum fuel capacity, and maximum pay-134

load weight constraints in mission range and payload space for a sized vehicle;135

f(WP , R) is a weighting function for the off-design missions, and to serve its136

purpose, this work chooses the mission frequency distribution function, i.e. nor-137

malized frequency or expected probability density that an aircraft of a single138

type will operate the mission specified by a given payload and range combi-139

nation; finally, WBF is the mission-dependent block fuel which is assumed to140

depend solely on payload and still-air range for a sized aircraft. Before pro-141

ceeding, listed below are some noteworthy points regarding the three candidate142

off-design objectives mentioned above:143

• In O1, the mission block fuel WBF directly relates to fuel cost, which is144

the most significant contributor to the operating cost145
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• In O2, the term R/WBF is the mission-averaged specific air range, an146

indicator of fuel efficiency for a given mission147

• In O3, the term WPR is a good representative for airline revenue when148

carrying the payload of WP over a distance of R; the fraction WPR/WBF149

measures the flight productivity for a given mission150

From the operators’ perspective, the flight productivity is of most interest151

among the three discussed, simply because it meaningfully combines payload,152

range, and fuel consumption simultaneously. Similar to O3, Hileman et al. [12]153

proposed a metric named payload fuel energy efficiency (PFEE) as a measure154

of flight productivity. For a single mission, PFEE is defined as [12]155

PFEE =
Total payload carried×Great-circle distance

Fuel energy consumed
(4)

This work adopts the original definition of PFEE and modifies it based on the156

goal of the optimization problem in question. For the on-design optimization,157

minimizing the block fuel of the design mission is equivalent to minimizing the158

negative on-design PFEE, defined as159

−PFEE0 = − WP,desRdes

WBF,desqfuel/g
(5)

where g is the gravitational acceleration and qfuel = 42.80 MJ/kg is the specific160

energy of Jet-A fuel [13], which essentially serves as a normalization factor161

to non-dimensionalize the metric. For the off-design optimization, the third162

objective to minimize is the negative average off-design PFEE, defined as163

−PFEE1 = −
∫∫

M

f(WP , R)
WPR

WBF (WP , R)qfuel/g
dWP dR (6)

Besides the flight productivity implied by PFEE1, another metric to consider164

in the off-design scenario is the mission coverage index (MCI), defined as the165

cumulative mission frequency or mission probability density within the payload-166

range envelope of a sized vehicle. MCI must be regarded as an important metric167
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since potential aircraft customers may have specific requirements on the pay-168

load and range capability of the aircraft. Note that large MCI values imply that169

the aircraft can optimally operate for larger number of payload-range combina-170

tions within the envelope for a prescribed mission frequency distribution. In171

certain cases, a higher MCI can only be achievable by up-sizing the aircraft, i.e.172

increasing the MRW and/or design fuel capacity, which is accompanied by an173

increase in the operating empty weight, an overall increase in fuel consumption174

within the payload-range envelope, and a decrease in PFEE1. Therefore, MCI175

and PFEE1 are conflicting in nature, implying the existence of a Pareto frontier176

when optimized simultaneously. In this work, the negative MCI is included as177

the fourth and last objective to be minimized for the off-design optimization, as178

shown in Eq. (7):179

−MCI = −
∫∫

M

f(WP , R) dWP dR (7)

2.2. Constraint Functions180

The optimization problem statement is subject to performance, regulatory,181

and operational constraints, each of which is cast as a nonlinear inequality182

constraint. A total of five constraints are considered in this work: the positive183

second segment climb thrust (SSFOR) and positive missed approach gradient184

thrust (AMFOR) constraints [14] place lower bounds on permissible thrust-to-185

weight ratio; the upper-bound on permissible landing approach speed (VAPP)186

constrains the maximum feasible wing loading; the upper-bound on wingspan187

(SPAN) constrains the feasible wing aspect ratio given a wing area; and the188

upper-bound on vertical tail height (VTH) constrains the feasible vertical tail189

aspect ratio for a given vertical tail area, which is governed by the wing geometry190

through constant vertical tail volume coefficient. Finally, the bounds for VAPP,191

SPAN, and VTH are determined based on the specifications of FAA Aircraft192

Design Category [15].193
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2.3. Design Variables and Bounds194

As mentioned in Sec. 1, any trade-off in terms of optimality is expected to195

be revealed by using a combination of both on-design and off-design metrics.196

Accessibility to designers and an ability to significantly impact the aerodynam-197

ics, propulsion, and weights disciplines motivate the choice of design variables198

in the conceptual phase.199

The thrust-to-weight ratio (TWR) and the wing loading (WSR) are scal-200

ing parameters that affect top-level aircraft point performance such as takeoff201

field length, approach speed, rate of climb, etc. [16] The wing and tailplane202

geometries are expected to have significant impact on component weights and203

aerodynamic characteristics, therefore affecting the vehicle gross weight, per-204

formance, and fuel consumption. Consequently, this work considers the aspect205

ratio, taper ratio, average thickness-to-chord ratio, and quarter-chord sweep an-206

gle of the wing, the horizontal tail, and the vertical tail as the geometric design207

variables. To maintain invariant stability and control characteristics when siz-208

ing the vehicle for different design variables, the tail volume coefficients are held209

constant.210

TWR, WSR, and the geometric design variables are continuous variables,211

which may take any value within defined upper and lower bounds. Typical212

ranges for the design variables are chosen such that the resulting aircraft remains213

within its size-class. Given a baseline vehicle in a certain size-class, this work214

uses a ±10% variation about the baseline values for TWR, WSR, aspect ratios,215

taper ratios, and thickness-to-chord ratios, a ±5 deg variation for wing sweep216

angle, and a ±10 deg variation for tail sweep angles.217

In traditional on-design aircraft sizing methods, the design mission is of-218

ten regarded as an equality constraint, i.e. the aircraft is sized to have a range219

capability of exactly the design range when carrying the design payload. How-220

ever, in the case of off-design optimization, depending on the distribution of221

mission weighting function f(WP , R) and the relative location of design mis-222

sion (WP,des, Rdes) in the mission space, it may be necessary to up-size the223

vehicle such that its feasible mission space M covers a larger region where224
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f(WP , R) > 0, thus potentially increasing PFEE1 and/or MC. In this study,225

an increase in the aircraft’s range capability when carrying the design payload226

is chosen to represent the up-sizing. Therefore, the design range capability227

(DESRNG) is included as the final design variable with only a lower bound228

constraint equal to the required design range (Rdes).229

A summary of the design variables and their bounds relative to the reference230

vehicles (to be discussed in Sec. 2.6) is presented in Table 1.231

Table 1: Design Variables and Bounds Relative to Baseline Values

Group Design Variable Min Max

Vehicle-level

parameters

Design range capability, DESRNG +0% ∞

Thrust-to-weight ratio, TWR −10% +10%

Wing loading, WSR −10% +10%

Wing

geometry

Aspect ratio, AR −10% +10%

Taper ratio, TR −10% +10%

Thickness-to-chord ratio, TCA −10% +10%

Quarter-chord sweep angle, SWEEP −5◦ +5◦

Horizontal tail

geometry

Aspect ratio, ARHT −10% +10%

Taper ratio, TRHT −10% +10%

Thickness-to-chord ratio, TCHT −10% +10%

Quarter-chord sweep angle, SWPHT −10◦ +10◦

Vertical tail

geometry

Aspect ratio, ARVT −10% +10%

Taper ratio, TRVT −10% +10%

Thickness-to-chord ratio, TCVT −10% +10%

Quarter-chord sweep angle, SWPVT −10◦ +10◦

2.4. Design Space Reduction via Sensitivity Analysis232

Several challenges need to be tackled especially when performing many-233

query exercises with computationally expensive, black-box functions in high-234

dimensional parameter spaces. Wang et al. [17, 18] classify techniques to re-235
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duce the input space dimensionality in the context of surrogate modeling into236

decomposition-, mapping-, screening-, and visualization-based approaches.237

Decomposition-based techniques partition the original problem into smaller,238

more manageable sub-problems; the choice of decomposition is often subjective,239

when and if a given problem is decomposable. The goal of mapping-based240

approaches is to find a transformation that maps a set of correlated variables241

into a new, smaller set of uncorrelated variables that retain most of the original242

information. While mapping aids both optimization and modeling by alleviating243

the curse of dimensionality, the optimization must occur in the low dimensional244

space. Moreover, it must be assumed that a mapping from the low dimensional245

space to the original high dimensional space exists and lies within the feasible246

design space. While these challenges can be tackled, this work relies on a simpler247

screening-based approach to manage the size of the input space.248

Screening methods reduce dimensionality by exploiting sampled points to249

recognize and retain the most important inputs and their interactions while re-250

moving noise and other insignificant contributors to variability in the outputs.251

Analysis of variance [19], weighted average of local sensitivity, partial rank cor-252

relation coefficient, multi-parametric sensitivity analysis, and Fourier amplitude253

sensitivity analysis and Sobol’s [20] method are common techniques to perform254

screening. Once the significant variables and interactions are identified, the255

other variables are either simply dropped from consideration (for instance, in256

the case of surrogate modeling), or held constant at some nominal baseline257

value (for instance, in the case of optimization). In multi-objective optimiza-258

tion, fixing the insignificant contributors to nominal baseline values allows for an259

easier-to-solve optimization problem at the cost of convergence to a marginally260

different Pareto optimal set.261

In this work, the most important set of inputs for formulating the optimiza-262

tion problem is chosen using Sobol’s [20] method; a global sensitivity analysis263

approach which decomposes a model output’s variance into summands of vari-264

ances of the input parameters to determine the contribution of each input and265

their interactions. The set of objectives and constraints is first evaluated for266
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the set of optimal experiments generated using Saltelli’s sampling scheme [21]267

using the aircraft sizing and mission analysis code (described in Sec. 4) Then,268

the Sobol’s method is applied to each objective and constraint function indepen-269

dently to determine the effective set of input variables to capture a prescribed270

normalized output variance threshold. Finally, the optimization problem is for-271

mulated by considering the inputs obtained by taking a superset of significant272

contributors to each objective and constraint function.273

2.5. Formal Optimization Problem274

Considering the objective functions, constraints, and design variables de-275

scribed earlier, the on-design and off-design optimization problems may now be276

formally stated as277

minimize
x

f(x) =


MRW(x)

TOFL(x)

−PFEE0(x)

 or g(x) =


MRW(x)

TOFL(x)

−PFEE1(x)

−MCI(x)


subject to SPAN(x)− SPANmax ≤ 0,

VTH(x)−VTHmax ≤ 0,

VAPP(x)−VAPPmax ≤ 0,

−AMFOR(x) ≤ 0,

− SSFOR(x) ≤ 0,

x : [Effective Design Variables] ∈ [Table 1 intervals]

where f(x) and g(x) are the on-design and off-design objectives, respectively,278

and the set of effective design variables is determined with the following steps:279

1. Perform screening tests on each objective and constraint considered;280

2. Given a threshold between 0 and 100%, for each response, identify the281

minimal set of design variables which captures a cumulative percentage282

total variation greater than the threshold;283
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3. The final set of effective design variables is chosen as the superset of all284

sets identified in step 2.285

2.6. Aircraft Size-Classes Considered and Reference Vehicles286

This work considers the assessment of three aircraft size-classes, each repre-287

sented by a Regional Jet (RJ), a Small Single-aisle Aircraft (SSA), and a Large288

Twin-aisle Aircraft (LTA), respectively. The RJ has a T-tail and tail-mounted289

nacelle configuration, whereas the SSA and LTA have a conventional tail and290

under-wing nacelle configuration. The baseline aircraft specifications are shown291

in Table 2 and the constraints for each size-class are presented in Table 3. The292

mission frequency distribution function f(WP , R) is obtained by collecting data293

from the U.S. Department of Transportation Bureau of Transportation Statis-294

tics Form 41 Schedule T-2 database [22]. Data on passenger-carrying flights295

between January 2014 and September 2018 for the Bombardier CRJ900, Boe-296

ing 737-800, and Boeing 777-200 (all variants) are used to represent the mission297

frequency distribution of the RJ, SSA, and LTA size-classes, respectively. Before298

proceeding, the readers must be cautioned about the following caveats:299

• The historical data only include flights departing from and/or arriving in300

the United States, thus merely serving as examples of potential represen-301

tative mission distributions for this work. By no means are they intended302

to represent actual worldwide operations.303

• The reported flight distance in the database is the great circle distance304

between the origin and the destination airports. The actual still-air flight305

distance depends on routing and en-route wind considerations, which is306

unique to each flight. In this work, the reported flight distance is divided307

by an average horizontal flight efficiency of 0.93 [23] in order to obtain an308

estimate of still air distance to be used in off-design mission analysis.309
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Table 2: Baseline aircraft specifications

Parameter RJ SSA LTA

Thrust-to-weight ratio 0.338 0.312 0.296

Wing loading, lb/ft2 113 124.1 133.3

Passenger capacity 86 160 305

Design payload weight, lb 17 200 33 600 64 050

Design range, nmi 1900 2900 7500

Cruise Mach number 0.780 0.785 0.840

Maximum cruise altitude, ft 41 000 41 000 43 000

Maximum payload weight, lb 22 750 47 000 125 500

Wing quarter-chord sweep, deg 27.0 25.7 30.9

Wing aspect ratio 8.29 9.74 8.81

Wing taper ratio 0.281 0.312 0.176

Wing thickness-to-chord ratio 0.109 0.109 0.109

Horizontal tail quarter-chord sweep, deg 29.5 29.9 34.8

Horizontal tail aspect ratio 4.59 6.27 4.62

Horizontal tail taper ratio 0.461 0.203 0.330

Horizontal tail thickness-to-chord ratio 0.094 0.109 0.088

Vertical tail quarter-chord sweep, deg 43.2 35.0 40.0

Vertical tail aspect ratio 1.11 1.92 1.84

Vertical tail taper ratio 0.644 0.276 0.299

Vertical tail thickness-to-chord ratio 0.110 0.115 0.093
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Table 3: Size-dependent constraints for the RJ, SSA, and LTA

size-classes

Constraint RJ SSA LTA

FAA Design Category C-II C-III D-V

SPANmax (ft) 79 118 214

VTHmax (ft) 30 45 66

VAPPmax (kts) 140 140 165

3. Major Disciplinary Analyses in Conceptual Aircraft Design310

The aircraft design process is multidisciplinary in nature due to the inherent311

complexity of an aircraft as a system. Figure 1 lists a few major disciplines that312

play a significant role at various different stages in the aircraft design process.313

Due to the uneven distribution of knowledge throughout the aircraft design314

process [24], emphases are primarily placed on aerodynamic analysis, weight315

estimation, and preliminary propulsion system sizing in conceptual design stage.316

Figure 1: Uneven distribution of knowledge in the aircraft design process [24]
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3.1. Aerodynamics Analysis317

The aerodynamic characteristics are estimated using the semi-empirical drag318

build-up method used by NASA software Flight Optimization System (FLOPS) [25].319

FLOPS internally computes the drag of wing, empennage, fuselage, nacelles, and320

other miscellaneous elements dynamically as the size of the components changes321

during sizing iterations. The aircraft drag coefficient is assumed to be a function322

of flight altitude, Mach number, and aircraft lift coefficient.323

3.2. Weights Estimation324

In conceptual design, aircraft empty weight estimation typically employs325

semi-empirical regression-based methods rather than fully physics-based meth-326

ods due to the need for rapid design space exploration, which requires evaluation327

of a large amount of design candidates with limited computational resources and328

time [26]. Existing regression-based methods include the Raymer method [27],329

the Roskam method [28], and the FLOPS method [29], all of which compute330

the weight of each component and take their sum to obtain the aircraft empty331

weight. In this paper, the FLOPS method is used for weight estimation, where332

the component weights are dynamically computed based primarily on geomet-333

ric parameters, rated thrust, and extreme flight conditions with the assumption334

that a conventional subsystem architecture is installed in the aircraft.335

3.3. Propulsion System Scaling336

The engine model of each baseline aircraft is sized using Numerical Propul-337

sion System Simulation (NPSS) [30] such that the rated thrust matches the sea338

level static thrust based on the baseline design gross weight and thrust-to-weight339

ratio. NPSS also generates an engine deck containing the variation of thrust and340

fuel flow as functions of Mach number, altitude, and power code (a surrogate for341

the throttle setting). The baseline engine weight and dimensions are computed342

using the Object-Oriented Weight Analysis of Turbine Engines computer code343

(WATE++) [31]. For a design candidate, if the desired rated thrust is different344

from that of the baseline engine, the engine weight and dimensions are scaled345
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using the FLOPS method [29]. The thrust specific fuel consumption as a func-346

tion of power code, altitude, and Mach number of the scaled engine is assumed347

to be identical to that of the baseline engine. The drag of the scaled engine348

nacelles is recalculated in FLOPS based on the actual dimensions.349

4. Mission Analysis350

4.1. Mission Profile and Fuel Requirements351

A generic commercial transport mission profile, as shown in Fig. 2, is as-352

sumed for all missions studied in this work. This work assumes a generic com-353

mercial transport mission profile, as shown in Fig. 2, for all the missions con-354

sidered. All climb segments use a minimum fuel-to-climb profile and the cruise355

segments of the regular mission are flown at a constant design Mach number as356

specified in Table 2. Actual missions operated by commercial aircraft are simu-357

lated by assuming that a step cruise is performed at the design Mach number at358

altitudes between 29 000 ft and the service ceiling with an increment of 2000 ft,359

based on the rules of Reduced Vertical Separation Minimum (RVSM) [32]. Be-360

tween the altitudes mentioned above, the specific air range (SAR) is maximized361

to obtain the initial cruise altitude, i.e., the altitude at which the aircraft begins362

its cruise segment. The aircraft climbs to the next available higher altitude if363

the SAR at the new altitude is larger (due to a decrease in the gross weight)364

than the current SAR. As an additional requirement, the aircraft is constrained365

to perform a step climb in the last step cruise segment before descending only if366

a minimum remaining cruise distance of 300 nmi is available. The descent seg-367

ment is flown at the optimum lift-to-drag ratio. The reserve mission consists of368

a missed approach, followed by a climb to the reserve altitude, a cruise segment369

at the optimum Mach number for SAR, a descent to 1500 ft, and a hold (loiter)370

for 30 min at the optimum Mach number for endurance.371

As shown in Fig. 2, the mission fuel is defined as the required amount of372

fuel on-board at the start of the mission, including both the block fuel and the373

reserve fuel. The block fuel is the amount of fuel consumed between engine start374
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Figure 2: Generic mission profile for commercial aircraft

and engine shutdown for a regular mission. The reserve fuel includes the fuel375

required to fly the reserve mission, plus an additional 5 % on top of the regular376

and the reserve mission fuel.377

For the vehicles considered in this work, fuel is assumed to be stored entirely378

in wing fuel tanks, including wing center fuel tanks, without fuselage tanks.379

The wing fuel tank volume is estimated and scaled based on wing geometric380

parameters in the FLOPS method [29], as shown in Eq. (8):381

Vwt = kwtzt
S2
w

b

(
1− λ

(1 + λ)2

)
(8)

where kwt is a non-dimensional tank volume coefficient, Sw is the wing planform382

area, zt is the wing average thickness-to-chord ratio (equivalent to TCA), b is the383

wingspan (equivalent to SPAN), and λ is the wing taper ratio (equivalent TR).384

The value of kwt for each size-class is calibrated based on the corresponding385

baseline aircraft in Table 2, and is held invariant during sizing for all design386

candidates of that size-class.387
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4.2. Mission Performance Evaluation with Gross Weight and Fuel Capacity388

Constraints389

The mission performance is evaluated in FLOPS, which accepts climb, cruise,390

and descent schedule definitions as inputs, and performs internal optimization391

to find the optimum vertical trajectory satisfying the mission profile described392

in Sec. 4.1, subject to the constraints of gross weight, zero fuel weight, and393

mission range [25].394

Traditionally, when a design candidate is being sized and the design mission395

is being evaluated, the mission analysis assumes that the aircraft departs at the396

same gross weight used to scale the geometry and the engines and to perform397

weight estimation [27, 16], which is typically referred to as the maximum ramp398

weight (MRW). This approach implicitly assumes that the difference between399

the MRW and the zero fuel weight (sum of operating empty weight and payload400

weight) is the weight of available fuel which can be achieved by filling the fuel401

tanks; the resulting payload-range envelope is expected to be similar to Fig. 3(a).402

However, such an assumption does not always hold true. When a vehicle403

is to be sized for a relatively high design wing loading (WSR), it is likely that404

the fuel tanks in the small wing would fail to contain the fuel required for405

the design mission, thus invalidating the resulting design even if the vehicle406

sizing converges, as shown in Fig. 3(b). In this case, the design mission is407

fuel-constrained instead of being weight-constrained.408

To address this gap, in this work, a local optimizer is added to the existing409

mission analysis. The vehicle size is iteratively adjusted, meaning that a new410

value of MRW is assigned, followed by re-evaluation of geometry (including fuel411

tank capacity), aerodynamic characteristics, component weights, and engine412

scaling, while TWR and WSR are held constant. The mission analysis is then413

repeated to obtain the updated fuel requirement for the design mission. The414

optimization converges when the fuel capacity matches the fuel required for the415

design mission within a specified tolerance. The payload-range envelope of the416

resulting vehicle notionally resembles the envelope shown in Fig. 3(c). In this417

work, a combination of the secant method and the bi-section method is used to418
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Figure 3: Notional payload-range diagrams for weight-constrained and fuel-constrained sizing
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find the minimum feasible MRW in the case of fuel-constrained sizing.419

4.3. Off-Design Mission Evaluation Scheme420

The off-design mission evaluation involves determination of the payload-421

range envelope and the performance of off-design missions. Aircraft Sizing and422

Off-Design Mission Analyzer (SODA), a MATLAB program developed by the423

authors, automatically generates additional input data specifying the range,424

payload, and/or fuel available of each off-design mission, based on the output425

of the vehicle sizing module. In this work, a FLOPS interface is implemented426

in SODA, which translates the inputs to each off-design mission into relevant427

FLOPS namelists. SODA can be configured in six modes which evaluate three428

types of off-design missions, in addition to the design mission, as shown in429

Table 4 and Fig. 4. What follows is a concise description of the off-design430

evaluation modes.431

Table 4: Mission evaluation modes in SODA

Mission Type
Mode

A B C D E F

Design mission

Payload-range envelope

Sample payload-range grid

Specified off-design mission(s)

4.3.1. Payload-Range Envelope432

The payload-range envelope defines the boundary of the feasible mission433

space within which the aircraft is capable of flying for a given combination of434

payload and range. The envelope consists of three segments corresponding to435

three constraints:436

1. Maximum structural payload constraint. The maximum structural437
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Figure 4: Notional payload-range diagram showing all mission types evaluated

payload weight (MPW) is the difference between the operating empty438

weight (OEW) and the maximum zero fuel weight (MZFW). MZFW and439

MPW are commonly used in detailed structural analysis, but not explicitly440

used for conceptual design in this work. Instead, MPW is estimated based441

on data for existing aircraft in the same size-class, and is assumed to442

remain constant for all design candidates in each size-class.443

2. Maximum ramp weight constraint. The maximum ramp weight444

(MRW) is the maximum gross weight the aircraft can achieve when parked445

on the ground. In early design, the MRW is an important parameter used446

in sizing of major aircraft components, and specifically, in many compo-447

nent weight estimation equations in regression-based methods. The inter-448

section of MRW and MPW constraints indicates the harmonic range, i.e.449

the maximum range the aircraft can reach when carrying full payload. It450

is assumed that MRW is the upper limit for gross weight when the aircraft451

starts a mission.452

3. Maximum fuel weight constraint. The maximum fuel weight (MFW)453
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is the maximum amount of fuel which can be carried on-board. MFW454

is determined based on wing and fuselage geometry, and is used in fuel455

system sizing. The intersection of MRW and MFW constraints indicates456

the mission on which the aircraft departs at both MRW and MFW. It457

is assumed in this paper that MFW depends solely on the fuel capacity,458

while in reality, there may be weight and balance considerations which459

impose a more restrictive constraint on fuel allowed on-board based on460

allocation of payload even when the gross weight is smaller than MRW.461

Since each candidate is constrained by the same design mission, the payload-462

range envelope always encloses the point representing the design mission in463

mission space. However, different design variables may result in different aero-464

dynamic and propulsion characteristics and OEW, which affect the trade-off465

between payload and range, implied by different slopes of the MRW and MFW466

constraints. When assessing the impact on mission performance metrics of two467

candidates such as takeoff gross weight, block fuel, and PFEE, etc., comparison468

is valid only in the intersection of the two feasible mission spaces, i.e. the mis-469

sion space containing missions that are common to both the candidates being470

compared.471

4.3.2. Sample Grid472

For a given aircraft, any mission performance metric strongly related to

range and payload can be represented using a surrogate model [33, 34, 35] as

shown in Eq. (9):

Q = h(Wp, R) (9)

Examples of metric Q include takeoff gross weight, block fuel, and PFEE473

(Eq. (4)), etc. Once the mission space is sampled at multiple points, such474

surrogate modeling methods allow for fast evaluation of any off-design mission475

without actually running the physics-based mission analysis code. In addition,476

the surrogate models are also useful for creating contour plots and performing477

other assessments involving a large number of off-design mission evaluations.478
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To balance accuracy and execution time, the sample grid typically covers the479

interior of the envelope and extends beyond the envelope by a certain margin480

(as shown in Fig. 4), but can be user-defined for special cases.481

4.3.3. Specified Missions482

In order to eliminate model representation errors, off-design missions may483

be evaluated directly using true models (e.g. FLOPS) instead of using surrogate484

model(s). These missions are meant to represent payload-range combinations485

which are most commonly or typically flown by the aircraft. Without evaluating486

the envelope, the feasibility of each mission can be determined by comparing487

the payload weight, ramp weight, and mission fuel weight against MPW, MRW,488

and MFW from the sizing results.489

4.4. Verification of the Analysis Environment490

To verify the capability of SODA, a notional SSA is sized using the geome-491

try and performance data as published in the Boeing 737-800 Airport Planning492

Document [36]. The resulting payload-range characteristics are compared in493

Fig. 5 and Table 5. It can be observed that, the payload-range envelope gener-494

ated by SODA closely matches the reference envelope, and the off-design mission495

gross weights are within small errors from the reference values. Additionally,496

Fig. 5 also demonstrates SODA’s capability to perform aircraft sizing using the497

fuel-constrained sizing algorithm as described in Sec. 4.3.498

5. Optimization Algorithm499

Most approaches that deal with multiple objectives solve a set of single-500

objective problems to compute the Pareto frontier [37, 38, 39]. Typically, in such501

approaches, a weighted aggregation of the objectives defines a single-objective502

problem. Multiple such instances with different weights are solved to obtain the503

complete Pareto frontier. Success of such methods relies on strong assumptions504

such as convexity of the frontier, among others. Moreover, the distribution of505

points obtained on the frontier heavily relies on the series of single-objective506
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Figure 5: Comparison of payload-range characteristics between SODA outputs and Airport

Planning data for a notional SSA resembling the Boeing 737-800

Table 5: Comparison of off-design mission gross weight computed by SODA and as published

in the Airport Planning data for a notional SSA resembling the Boeing 737-800

Payload (lb) Range (lb) Gross Weight (lb) Error

SODA Reference

0 1500 113.8× 103 112.7× 103 +0.98 %

10 000 3000 142.6× 103 142.0× 103 +0.42 %

20 000 1000 130.8× 103 129.2× 103 +1.20 %

30 000 2500 161.0× 103 160.5× 103 +0.29 %

40 000 2000 166.1× 103 165.7× 103 +0.24 %
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optimization problems solved. Therefore, in general, these methods are inap-507

propriate candidates when an even distribution of points on the Pareto frontier508

is desired.509

On the other hand, the NSGA-II [40, 41] operates on a population of de-510

signs (much like genetic algorithms) and successively refines it through meta-511

heuristic operators like crossover, mutation, and selection until the members in512

the so-called evolved populations stop improving. The notion of improvement is513

handled through the concept of non-domination level. A member is said to be514

non-dominated when it is better than all the other members in the population515

in at least one objective. The NSGA-II converges by retaining the most non-516

dominated members which by definition lie on the Pareto frontier. In addition,517

the concept of non-domination level lends itself naturally to penalize members518

that violate constraints. In this paper, constraints are handled by artificially pe-519

nalizing the non-domination level adversely to ensure that constraint violating520

designs get discarded as the algorithm progresses. It is known that in compari-521

son to other algorithms that use gradient information, NSGA-II usually requires522

a higher number of function calls. However, a favorable feature of NSGA-II is523

that multiple designs can be evaluated simultaneously in parallel to alleviate524

the relatively higher computational costs it demands.525

6. Results and Discussions526

6.1. Sensitivity Analysis527

A total of 12 000 samples are generated using the SALib [42] in Python and528

evaluated in SODA in MATLAB. The objective and constraint responses are529

extracted and analyzed via SALib’s implementation of Sobol’s method, which530

reports the individual effects of each design variable on each response. To con-531

clude the sensitivity analysis, the design variables are ranked by their individual532

effects and then filtered by their cumulative effects on each objective and con-533

straint response for each aircraft. The filtered effective design variables and534

their effects are summarized in Fig. 6. In this work, the threshold for normal-535
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ized cumulative effects to determine the set of effective design variables is set to536

95 %. Listed below in no particular order is the superset of all effective design537

variables for each response, members of which are used as the design variables538

for the optimization environment:539

• TWR: sea-level static thrust-to-weight ratio540

• WSR: design wing loading541

• DESRNG: design range capability542

• AR: wing aspect ratio543

• TCA: wing average thickness-to-chord ratio544

• SWEEP: wing quarter-chord sweep angle545

• ARVT: vertical tail aspect ratio546

As expected, observe that given the range of the design variables, the set547

of most effective design variables primarily include the vehicle-level parame-548

ters (TWR, WSR, and DESRNG) and wing geometry parameters (AR, TCA,549

and SWEEP). While ARVT does not have significant impact on any objective550

function, it has the most impact on the vertical tail height (VTH) which, as a551

constraint function, determines the design feasibility. Also note that the sensi-552

tivity depends on the range of the design variables and the design requirements553

which affect the function for each response. Therefore, the set of effective de-554

sign variables may change based on the range of the design variables, the design555

requirements, and the selected threshold.556

6.2. Summary of Optimization557

The optimization environment is set up in MATLAB, with a wrapper trans-558

ferring design variables and vehicle information to and from FLOPS. The MAT-559

LAB function gamultiobj is used to configure the NSGA-II algorithm. The560

population size is set to 150 for both on-design and off-design optimizations561

for each size-class. Some preliminary experiments indicate that these settings562
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generate a sufficiently dense Pareto frontier while keeping the computational563

cost manageable. A scattered crossover function is used to form children arising564

from the crossover operator. The scattered crossover function selects members565

from the mating pool and randomly exchanges design variables between them to566

create off-springs for future generations. An adaptive feasible mutation function567

is used to randomly mutate selected individuals in directions and steps that are568

adapted based on the results in the past generations. As formulated in Sec. 2, a569

total of six optimization runs are performed, which are summarized in Table 6.570

Table 6: Summary of the optimization runs for each aircraft

Case
Population

Size
Generations Spread

RJ, on-design 150 165 7.605× 10−2

RJ, off-design 150 102 6.283× 10−2

SSA, on-design 150 110 8.022× 10−2

SSA, off-design 150 119 8.061× 10−2

LTA, on-design 150 205 9.283× 10−2

LTA, off-design 150 150 6.925× 10−2

6.3. Comparison of Payload-Range Characteristics571

Figure 7 presents a parallel coordinate plot for each size-class, showing the572

distribution of each design variable and objective of the final generation in573

both the on-design optimization and the off-design optimization, while high-574

lighting the characteristics of the single-objective optimal designs. The bounds575

of each design variable (based on Table 1) are also marked in the plot, where for576

DESRNG, an artificial upper bound is placed at 110 % of the lower bound value577

for consistent axis scaling between the vehicles. Figure 8 presents the payload-578

range envelopes of the single-objective optimal designs overlaid on the off-design579

mission weighting function for each aircraft size-class. Since the mission weight-580

ing function is discrete and bounded on the payload-range plane, there exists581
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no unique design that maximizes MCI; among all designs which maximize MCI,582

the one with the highest PFEE1 is highlighted in Figs. 7 and 8.583

6.3.1. Observations from On-Design Optimization584

For all size-classes, in the on-design optimization, the mission weighting585

has no effect on the Pareto optimality. In this case, sizing for a higher range586

capability (DESRNG) than the required design range will cause an increase in587

the MRW. Therefore, the lower bound constraint on DESRNG is active for the588

entire population as seen in Fig. 7. In other words, the payload-range envelopes589

of all on-design optima pass through the design mission in each chart of Fig. 8.590

For all on-design Pareto optima, the design mission is also always constrained591

by MRW for the entire population. As implied in Sec. 4.2, the fuel-constrained592

sizing algorithm requires upsizing the aircraft from the initial weight-constrained593

sizing output with all design variables held constant, which leads to an increase594

in MRW and fuel burn for all feasible missions, while not benefiting TOFL.595

According to Fig. 7, the single-objective optimal designs for MRW and596

PFEE0 have very similar performance, implying little trade-off between MRW597

and PFEE0. It is also observed that, for these two designs, the design mission598

is both weight- and fuel-constrained as shown in Fig. 8, resulting in the worst599

mission capability (i.e. lowest MCI) among all Pareto optimal designs, as shown600

in Fig. 7.601

6.3.2. Observations from Off-Design Optimization602

In the off-design optimization, the mission weighting has an impact on the603

shape of payload-range envelope of Pareto-optimal designs: the shape of feasible604

mission space enclosed by the envelope affects both PFEE1 and MCI by their605

definitions in Eqs. (6) and (7).606

For the RJ, based on Fig. 8(a), a majority of the missions are within 1000 nmi607

while longer missions come with reduced payload. Therefore, weight-constrained608

designs with DESRNG at its lower bound, such as the optimal designs for MRW609

and PFEE0 are already able to achieve high values for PFEE1 and MCI, as610
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shown in Fig. 7(a). While it slightly improves MCI to further upsize the vehicle611

by increasing DESRNG and/or switching to fuel-constrained designs as indi-612

cated in Fig. 7(a), the marginal benefit of a higher mission coverage is negated613

by an overall increase in fuel consumption within the feasible mission space,614

thus worsening PFEE1. Therefore, in the example of RJ, designs optimized615

for PFEE0 and PFEE1, respectively, have similar values for all performance616

metrics.617

As the weighting function covers more missions in the long-and-heavy region618

on the payload-range plane, it may be necessary to upsize the vehicle to improve619

the flight productivity (PFEE1) and mission capability (MCI).620

In the examples of SSA and LTA, Figs. 7 and 8 show that the MCIs of621

the on-design Pareto optima are farther from 1 compared to that for the RJ,622

which makes PFEE1 of the on-design optima sub-optimal. To achieve optimal623

PFEE1, the off-design optimization attempts different values of the design vari-624

ables. An increase in the design wing loading (WSR) as shown in Fig. 7(b)(c)625

reduces the wing area and the fuel capacity for a given MRW, thus triggering626

the fuel-constrained sizing algorithm to increase MRW to satisfy the fuel capac-627

ity constraint, as indicated by a rightward movement of the weight-constrained628

segment of the payload-range envelope in Fig. 8(b)(c). An increase in DESRNG629

may also be necessary to achieve optimal PFEE1 by balancing the mission capa-630

bility and fuel consumption. In the extreme case where MCI is maximized, the631

vehicle may be oversized for a noticeably longer range than the design range:632

according to Fig. 7(b) and (c), when optimized for MCI, both SSA and LTA are633

sized for a range of approximately 4 % longer than the required design range,634

at the cost of significantly larger MRW and smaller PFEE1.635

6.4. Comparison of Objectives and Pareto Frontiers636

The scatterplot matrices in Figs. 9 through 11 plot the MRW, TOFL, PFEE0,637

PFEE1, and MCI of the final population in both on-design and off-design opti-638

mization for each aircraft size-class, where the arrow in each cell indicates the639

direction of improvement on each projection plane.640
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Figure 9: Projected Pareto frontiers for RJ

6.4.1. Observations from On-Design Optimization641

For each size-class, in the on-design optimization, the Pareto frontier appears642

to be a curve in the three-dimensional space formed by MRW, TOFL, and643

PFEE0. When considering only two objectives at a time, the projected on-644

design 3-D Pareto frontier in subplots (7) and (8) form 2-D Pareto frontiers for645

MRW vs TOFL and PFEE0 vs TOFL, while in subplot (1), MRW and PFEE0646

simultaneously reach their optimal values. Note that, based on the definition in647

Eq. (5), PFEE0 is only related to the design mission block fuel. The results are648

therefore consistent with the positive correlation between gross weight and fuel649

consumption for a given mission. This also explains why the design mission,650

the only mission that concerns the on-design optimization, is always weight-651
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Figure 10: Projected Pareto frontiers for SSA

constrained for the entire Pareto optimal population.652

On the other hand, the goal to minimize TOFL conflicts with minimizing653

MRW and maximizing PFEE0 (i.e. minimizing design mission block fuel), since a654

shorter TOFL requires more powerful engines for the same take-off gross weight,655

which translates to a higher TWR (as shown in Fig. 7) and in turn increases656

the size of engines and fuel flow at cruise, resulting in higher fuel consumption657

and MRW.658

6.4.2. Observations from Off-Design Optimization659

For the RJ, given the mission weighting function focusing on short missions,660

the off-design Pareto frontier is generally aligned with the on-design Pareto fron-661
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Figure 11: Projected Pareto frontiers for LTA

tier. As discussed in Sec. 6.3, there is no motivation to trade MRW for PFEE1,662

therefore MRW and PFEE1 can reach their optimal values simultaneously as663

shown in Fig. 9 subplot (2). When comparing on-design and off-design optimiza-664

tion, the patterns of the projected PFEE0 vs PFEE1 values in subplot (3) clearly665

align with each other, indicating that the Pareto optimal designs have similar666

values for the pair PFEE0 and PFEE1 regardless of the goal of optimization.667

For the SSA, Fig. 10 subplot (2) implies a trade-off between MRW and668

PFEE1 when considering these two objectives only, as discussed in Sec. 6.3.2.669

Note that the Pareto frontier of MRW vs PFEE1 in subplot (2) only spans over670

a smaller interval of MRW compared to the Pareto frontier of MRW vs TOFL671

in subplot (7). The reason is that, as MRW increases beyond a certain thresh-672
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old (approximately 167× 103 lbm in this case), the disadvantage of higher fuel673

consumption offsets the benefit gained by covering more missions, resulting in a674

decrease in PFEE1 from the single-objective maximum; this is consistent with675

the discussions made in Sec. 6.3.2. In subplot (3), towards higher PFEE0 val-676

ues, a few designs optimized for off-design missions interestingly appear superior677

than the on-design candidates optimized for the same PFEE0 value, indicating a678

marked benefit in productivity over a purely on-design performance centric de-679

sign optimization. This observation clearly highlights the benefit in optimizing680

for off-design performance (or productivity as indicated by PFEE1).681

For the LTA, as shown in Fig. 11, the trade-off between MRW and PFEE1 is682

even more significant in subplot (2), where the single-objective maximum value683

of PFEE1 is approximately 11 % greater than the PFEE1 value for the minimum-684

MRW design. The wide-spread pattern of the off-design Pareto optima above685

the on-design Pareto optima in subplot (3) implies that designs optimized merely686

for the design mission may be suboptimal in actual airline operations than the687

designs optimized for the given off-design missions. Also note that the PFEE0688

value of the single-objective optimum design for PFEE1 is approximately 2.1 %689

lower than the maximum value of PFEE0, indicating a trade-off between PFEE0690

and PFEE1.691

7. Conclusion692

This paper presents a multi-objective constrained optimization approach693

for aircraft sizing, taking into account both on-design and off-design mission694

performance metrics. Parsimonious optimization problems are formulated by695

down-selecting inputs from a large set of design variables that captured most696

of the variance in the objective and constraint functions. An off-design mission697

weighting function is used to transform mission-dependent variables such as698

payload, range, fuel consumption into a scalar through an integration on the699

feasible mission space identified by the payload-range envelope of a sized vehicle.700

In this work, historical mission data are used to obtain the mission weighting701
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function for each vehicle size-class being studied, which simulates the market in702

which a new design of the same size-class is expected to operate. Results show703

that the mission weighting function has a strong impact on the Pareto optimal704

designs when off-design mission performance metrics such as the payload fuel705

energy efficiency and the mission coverage index are explicitly considered as706

objectives along with mission-invariant characteristics such as the maximum707

ramp weight and maximum takeoff field length at standard sea-level condition.708

When the long-and-heavy missions are given higher weighting, increasing the709

design range capability and/or switching to fuel-constrained sizing modifies the710

shape of payload-range envelope and may increase the flight productivity with711

a penalty on the maximum ramp weight, as shown in the examples of the Small712

Single-aisle Aircraft and the Large Twin-aisle Aircraft.713

Some avenues for future work include: 1) employ more accurate aerodynam-714

ics, weights, and propulsion system analysis, which still exploit high-level vehicle715

design parameters to obtain better estimation of vehicle performance metrics;716

2) consider the impact of subsystem architectures which may impact vehicle717

empty weight, fuel burn, and drag characteristics in different manners; 3) con-718

sider and quantify the impact of different choices of mission weighting function719

and mission-dependent metrics on the Pareto optimal solutions; 4) establish a720

process which facilitates making decisions regarding whether a family of aircraft721

(instead of a single type) should be designed to split the market share in order722

to improve flight productivity given the set of Pareto optimal designs based on723

the selected metrics and mission weighting function.724
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