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ABSTRACT

In the mining industry, current grade control practices lack a standardised framework that can assess
the reliability of average grade estimates computed for selective mining units (otherwise known as
grade-blocks) within a mining bench. This article describes two measures that can quantify sampling
fairness and geochemical consensus. Concretely, sampling fairness considers spatial factors such as
sampling density and bias in the spatial distribution of blastholes whereas geochemical consensus
considers the agreement between the assay samples within a grade-block. Geochemical disparity
is measured using a robust distance estimator and a masking formula that takes into account the
proportion of outliers and magnitude of differences observed above a threshold. The efficacy of the
consensus measure is demonstrated through validation experiments. The results confirm the MCD
robust estimator can breakdown when the fraction of outliers exceeds (n−k−1)/(2n). For k ≥ 2
variables and a sample size n≥10, this typically leads to an underestimation of the true extent and
impact of outliers when they exceed 40%. An extension based on split-sequence analysis is proposed
to overcome this limitation. The method is evaluated using production data from an open-pit iron
ore deposit. An open-source implementation of the proposed algorithms will be available on github.

Keywords Selective mining units · grade-blocks · sampling fairness · geochemical consensus · robust estimator ·
high-breakdown

1 Introduction

In open-pit iron ore mining, a bench is partitioned into selective mining units (SMU) to facilitate grade control and
targeted excavation [1]. The SMU concept originates in geostatistical estimation and is often understood as the smallest
volume of material on which ore and waste classification is determined. In the context of banded iron-ore formation
(BIF) hosted iron ore deposits [2] in the Hamersley Province of Western Australia, it is a common practice to divide
a bench into SMUs known as grade-blocks. These polygons vary in shape and size from 100 m2 to >10,000 m2.
The intent is to decompose a region in such a way that each grade-block maps to one destination. This generally
ensures the material excavated from a grade-block will be transported to a stockpile or waste dump as appropriate.
Ideally, the composition of each grade-block is homogeneous, so the average grade computed from blasthole assays
collected from the grade-block would produce a representative value. In practice, this average grade may not be
representative if (i) the blasthole sampling is sparse or highly irregular; (ii) significant variability or even incongruous
measurements in the assay samples are ignored. In essence, the reliability of the average grade-block value depends
on two things: fairness in the spatial sampling process, and the geochemical consensus among the assays within a
grade-block. Within the mining industry, there is currently no standard framework for expressing these ideas. This
article describes two objective measures that allow sampling fairness and geochemical consensus to be quantified.
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It allows the appropriateness of a particular grade-block configuration in a pit to be evaluated to indicate whether
further refinement (e.g. reshaping or splitting certain grade-blocks) would improve ore-waste delineation. It is also
worth noting that grade prediction block models are often evaluated against grade-block values which serve as the
ground-truth. An example of this is shown in [3]. Thus, incorporating a reliability measure for individual grade-
blocks—for instance, discounting or putting less emphasis on grade-blocks where data is lacking or incongruous—
would enable one to draw strength from more confident data and provide a more informed comparison during R2
model reconciliation [4]. Our motivation is to develop a capability where unrepresentative assay mean estimates can
be highlighted in the affected grade-blocks within a mining bench.

The concepts of sampling fairness and geochemical consensus are further explained with pictures in Fig. 1. Fig. 1a
shows an example where dense, uniform blasthole spacing yields high spatial confidence. In contrast, the distribution
of the blastholes is sparse and irregular in Fig. 1b, this yields lower spatial confidence. In terms of geochemistry,
Fig. 1c shows an example where consistent composition would produce a high consensus score. For simplicity,
only one chemical component is shown. Fig. 1d depicts a situation where the assay samples within the block are
incongruous. In this case, the proposed method would produce a low consensus score. With the foundation now firmly
established, the methodology will be described in the next section.

780 800 820 840 860

560

580

600

620

640

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

ce
ll 

ar
ea

(a) Dense, regular spacing
→ High spatial confidence
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(b) Sparse, irregular spacing
→ Low spatial confidence
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(c) Consistent composition
→ High geochemical consensus
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(d) Incongruous samples
→ Low geochemical consensus

Figure 1: Portraying sampling fairness and geochemical consensus

2 Formulation: measures for sampling fairness and geochemical consensus

Two measures are formulated to characterise the spatial distribution and geochemical consensus among blasthole assay
samples within a grade-block. The approach targets the following observations which help explain the main factors
that erode confidence in the grade estimates.

• Low sampling density — few blastholes are drilled in some grade-blocks.

• Non-uniform sample distribution — blasthole spacing is highly irregular.

• Inadequate grade-block coverage — sampling is biased or sparse, often there is no information (holes not
drilled) for a large portion of the grade-block.
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These spatial factors (limited knowledge or confidence in the reference values themselves) can sometimes explain
poor predictive performance of a grade model. Apart from undersampling, chemical factors also influence the relia-
bility of grade estimates:

• Fraction of outliers — grade-block may contain unrepresentative samples that deviate from the mean. For
instance, most of the samples might be classified as mineralised (high grade), except a few might be classified
as unmineralised (low grade). This may result from inaccurate localisation of the mineralisation boundary.

• Magnitude of difference — the extent to which the assays disagree within the samples also matters. Of special
interest are any exceptional fluctuations within the data beyond what is considered normal.

2.1 Spatial factors

The spatial factors considered are concerned with fairness in the grade-block blasthole sampling pattern.

2.1.1 Sampling entropy

Fig. 2 shows the blasthole distribution of several grade-blocks with varying degree of bias and sparsity. To measure
how uniformly distributed the samples are within each grade-block Gi, a kD-tree is built using the Ni blasthole coor-
dinates, {hi,j}1≤j≤Ni . Separately, Ki i.i.d. particles are synthesized from a uniform distribution to cover the entire
grade-block. The scope of each sample may be described by Voronoi cells. This is equivalent to finding the closest
blasthole sample associated with each of the random particles in a nearest neighbour search. Using pi,j to denote the
fraction of particles associated with blasthole j in grade-block i, the entropy is given by

fentropy(i) = −
∑Ni

j=1 pi,j log2 pi,j

max{log2 Ni, 1}
∈ [0, 1] (1)

The entropy approaches 1 when all pj ≡ pi,j are equally probable. This happens when samples are evenly spread,
roughly speaking, when holes are drilled on a regular (rectangular or hexagonal) grid. The entropy, fentropy(i), is
reduced progressively as blasthole samples become more non-uniformly spaced. The sampling entropy may be inter-
preted as a measure of fairness or regularity in the sampling pattern.
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Figure 2: Spatial factors relating to the distribution of blasthole samples within grade-blocks. Top: blastholes shown
as red dots, i.i.d. particles rendered in distinct colours in each Voronoi cell. Bottom: sensitivity of the fcoverage metric
to grade-blocks with varying degree of coverage.

2.1.2 Grade-block coverage

Querying the kD-tree also returns {dmin
k }1≤k≤Ki

, the distance between the kth particle, pk, and its closest hole. The
inverse cumulative distribution functions (icdf) of dmin

k are shown in Fig. 2(bottom). The range of influence is defined
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as the average blasthole spacing observed in a grade-block. This is represented by R(influence)
i = medianλj where

λj = mink{∥hi,j−hi,k∥}j ̸=k is the minimum separation for sample j from another blasthole. The proposed measure
for grade-block coverage is then given by

fcoverage = 1−

∣∣∣{pk | dmin
k > R(influence)

i }
∣∣∣

Ki
(2)

where the fraction in expression (2) represents the proportion of points outside the range of influence of the assayed
blastholes [see blue shaded area in Fig. 2].

2.1.3 Sample density

The inverse of density is sparsity. Sparsity may be defined as the number of holes drilled within a grade-block divided
by its area. In the context of open-pit mining at Pilbara iron ore deposits, it is more convenient to measure density
in units of 100m2 instead of 1m2. With λdensity

def
= 100 × (number of samples within)/(grade-block area [m2]), the

proposed measure for sampling density is given by

fsample-density = 1− β · αλdensity with β = 0.3, α = 0.1 (3)

where the penalty term αλdensity is restricted to [0, 1] (the smaller the sampling density exponent, the higher the penalty)
and the baseline β is set at 0.3 (i.e. the minimum value of fsample-density is ≥ 0.7) to ensure the strength of all spatial
factors (fentropy, fcoverage and fsample-density) are comparable.

2.1.4 Spatial confidence

The proposed spatial confidence measure is computed as

fspatial-confidence = (fcoverage)
1/2 · fentropy · fsample-density (4)

The spatial confidence map for a single bench in a Pilbara iron ore mine is shown in Fig. 3. The grade-blocks with the
lowest value generally correspond to waste or low-grade blocks since there is little incentive to sample an area well if
the material is destined for a waste dump.
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Figure 3: Map of spatial confidence for grade-blocks in a single bench, f̂spatial-confidence
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2.2 Chemical factors

Factors that contribute to grade-block reliability are often multi-factorial. Suboptimal sampling does not necessarily
mean the assay measurements will be problematic. Conversely, fair sampling also does not guarantee no conflict
between the assay samples. Therefore, the assessment is incomplete without examining variability within the grade-
block assay samples. Robust statistical estimators provide a useful starting point in identifying a subset of trustworthy
samples within a grade-block. Measuring deviation using Mahalanobis distance, MVE (minimum volume ellipsoid),
MCD (minimum covariance determinant) and pruning MST (minimum spanning tree) are some of the candidates for
finding supportive samples that minimise data dispersion.

The MCD technique [5] possesses several desirable attributes, such as affine equivariance1, high break-down point and
the existence of fast algorithms. It is therefore used in the current formulation. MCD provides a robust estimation of
the location and scatter of the data by minimising the determinant of the covariance matrix. This procedure excludes
outliers that unduly influence the raw estimates. Its goal is equivalent to minimising the differential entropy for
Gaussian distributed data. However, this interpretation is not valid for compositional data such as assay measurements.
In bivariate analysis, when the coordinates corresponding to a pair of chemical components are plotted, the points
are not Gaussian or even symmetrically distributed [6]. Instead, the data lies in a simplex governed by Aitchison
geometry [6]. In order to work with Euclidean distances, MCD is applied to isometric log-ratio (ILR) transformed
data {ilr(zi,j)}1≤j≤Ni , where zi,j denotes the %wt concentration of chemical components in an assay sample j within
grade-block Gi.
Geochemical assays often include a full array of elements. In the case of iron ore, these elements may comprise [Fe,
SiO2, Al2O3, P, LOI, Mn, MgO, S, CaO, TiO2]. Usually, only a subset of these are considered important for analysis.
Given a particular subcomposition, say z = [Fe,SiO2,Al2O3], ci,j = C[z] ∈ Rm (here, m = 3) simply represents
the subcomposition vector subject to closure. If we drop the subscripts i and j which index the jth assay sample in
grade-block Gi,

c = C[z] = z∑m
k=1 zk

(5)

The ILR is subsequently computed using the centred log-ratio (CLR) transformation and the Helmert sub-matrix
described by Tsagris et al. [7]. Concretely, the CLR transformation is defined as

clr(c) = y = [y1, ..., ym] ∈ Rm, where yi = log
ci

m
√∏m

k=1 ck
= log ci −

1

m

m∑
k=1

log ck (6)

The ILR transformation may be calculated as

ilr(c) = Hy (7)

where H ∈ R(m−1)×m corresponds to a row-normalised version of M—the Helmert matrix [8]

M =


1 −1 0 0 . . . 0
1 1 −2 0 . . . 0
...

. . .
...

1 1 . . . 1 −(m− 2) 0
1 1 . . . 1 1 −(m− 1)

 . (8)

Row k in the orthonormal matrix H is given by

H[k, :] =

 1√
k2 + k

, . . . ,
1√

k2 + k︸ ︷︷ ︸
k terms

,
−k√
k2 + k

 for 1 ≤ k < m. (9)

These operations achieve scale invariance and subcompositional coherence [6] which address the issue of spurious cor-
relation when analysis is performed on raw data. It also means interpretations based on this and other subcompositions
should yield similar results that are consistent with results obtained using the whole composition.

1It is scale and rotation invariant. The latter means the analysis is insensitive to the orientation of the correlation structure.
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2.2.1 Fraction of outliers

The first factor considered is the proportion of unrepresentative samples present within a grade-block. This is es-
timated via MCD which computes the robust distance of each ilr-transformed assay sample from the centre of
the cluster. Writing xi,j = ilr(ci,j) ∈ Rm−1, the robust distance of sample j in grade-block i is given by

di,j =
√

(xi,j − µi)
TΣ−1

i (xi,j − µi).
2 The main point to note is that d2i,j is χ2 distributed. Hence, samples with

di,j >
√

χ2
p,ν are identified as non-representative samples. For p = 0.975 and ν = 2,

√
χ2
p,ν ≈ 2.716203. Accord-

ingly, the fraction of outliers, ηoutliers ≥ 0, is estimated as

ηoutliers =

∣∣∣{j | di,j > √
χ2
p,ν

}∣∣∣
Ni

(10)

2.2.2 Magnitude of difference

To evaluate the extent of disagreement among the assay samples in a grade-block, we first compute the geometric
mean of the robust distance for the outliers:

d gmean
outliers = exp

 1

|Si,outliers|
∑

j∈Si,outliers

ln di,j

 (11)

Next,
√
χ2
p,ν is used to measure how far the distortion is above the threshold. The masking function is given by

d unmasked
outliers = min

max

log10
 d gmean

outliers√
χ2
p,ν

 , 0

 , 1

 (12)

which limits the range to [0, 1]. Values close to 0 (respectively, 1) are interpreted as trivial (respectively, significant)
differences.

2.2.3 Geochemical consensus

The overall consensus among samples within a grade-block is given by

fconsensus = (1− ηoutliers)
d unmasked

outliers (13)
This power-law expression is simple yet elegant. It describes a decaying curve that decreases from 1 to 1− ηoutliers as
the unmasked distortion, dunmasked

outliers , increases. It represents a family of curves each parameterised by ηoutliers. Within
a grade-block, for a given proportion of outliers (say ηoutliers = 0.3), the level of consensus is lower-bounded by
1 − ηoutliers(= 0.7). This occurs in the worst-case scenario where the disagreement between the assay samples is
extreme. On the other hand, if the samples barely disagree, i.e., only slightly above the threshold, sqrt(χ2

p,ν), then the
consensus will be pushed back toward 1. This adaptive behaviour gives due regard to the level of conflict between the
grade-block samples. Beyond ηoutiers, the deciding factor is the unmasked distortion, d unmasked

outliers .

2.2.4 Small sample size adjustment

The MCD method may not work effectively when the sample size (n) is small. According to Hubert and Debruyne
[5], it requires at least n ≥ 2m samples, where m denotes the number of features (variables). To avoid the curse of
dimensionality, a heuristic is used to estimate consensus when there are no more than six samples (using n > 3m as a
rule of thumb). The median mi, median absolute deviation σi, standard scores zi,j and coefficient of variation ri are
computed for assay measurements, ci,j ∈ Rm, taken from grade-block Gi as follows:

σi = median (|ci,j −mi|) , zi,j =
ci,j −mi

σi
, ri =

σi

mi
∈ Rm (14)

The fraction of outliers, η̂outliers, and conflict scores, d̂conflict, are computed as

η̂outliers =

∣∣{j | wT |zi,j | > λi}
∣∣+ 1

Ni + 1
(15)

d̂conflict = min
{
ln(1 + λiw

T ri), 1
}
∈ [0, 1] (16)

2µi ∈ Rm−1 and Σi ∈ Rm−1×m−1 represent robust mean and covariance estimates obtained from h ≤ J supporting samples.
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where the weight vector wT = [0.5, 0.325, 0.175] corresponds to [Fe, SiO2, Al2O3] and the function λi = 3 ×(
2
π tan−1

√
Ni

)4
.3 Geochemical consensus is estimated as

f̂consensus = (1− η̂outliers)
d̂conflict when Ni ≤ 6 (17)

2.2.5 Example

Table 1(left) shows the composition of assay samples within two grade-blocks: HGB6 and WH7 before ilr-
transformation. Looking at the Fe column, the geochemical variation is relatively small for the HGB6 grade-block.
In contrast, there is significant variation in Fe (likewise for SiO2 and Al2O3) for the WH7 grade-block which contains
a mixture of shale and low-grade mineralised samples. Using MCD, the robust distances computed for each sample
are sorted and displayed on the right-hand side of Table 1. In particular, distances that exceed the χ2

p,ν critical value
of 2.7162 are printed in bold. As intuition would suggest, there is a higher proportion of outliers in WH7 than HGB6.
Furthermore, the magnitude of the outliers relative to

√
χ2
p,ν are also much higher. The quantities of interest from (10),

(11), (12) and (13) are computed and shown in Table 2. The values agree with intuition: a low consensus score for
WH7 reflects the significant disparity between the assay measurements. Fig. 4a shows a map of geochemical consensus
for the same bench used in Fig. 3. Grade-block samples that lack consensus are coloured in lighter shades. To verify
some of the results, Fig. 4b highlights three grade-blocks (VHA37, VHA38 and W44) with particularly low f̂consensus val-
ues of 0.718, 0.756 and 0.733, respectively. Fig. 5 uses voronoi tessellation to show the geochemical variation of Fe,
SiO2 and Al2O3 within these grade-blocks. Each voronoi cell is centered at the blastholes where assay samples were
taken. The colour intensity of each cell is proportional to the concentration of the respective chemical components.
Significant variation can be seen in all three grade-blocks. It is clear that their compositions are not homogeneous;
thus a mean estimate based on the sample average (in Fe, say) will not be representive of the entire grade-block. The
f̂consensus score allows these instances to be automatically detected. A grade-block with low geochemical consensus
may be split if its samples can be clustered. In the case of VHA37 (see Fig. 5a–5c), the horizontal band running through
the middle of the grade-block may be segmented to form a new grade-block to reduce the grade sample variance.

Table 1: MCD robust distance shows the level of disparity among samples in two grade-blocks

composition of assay samples within grade-block sorted sample robust distance
HGB6 (N = 15) WH7 (N = 25) HGB6 WH7

Fe SiO2 Al2O3 Fe SiO2 Al2O3 dHGB6,j dWH7,j
61.516 3.2701 4.1705 43.044 14.4198 13.4280 0.4346 0.5609
61.667 4.5334 3.6154 47.794 12.61 10.1063 0.6883 0.5620
61.947 3.7471 3.4418 28.535 23.8188 20.7988 0.7163 0.5825
61.968 2.5144 2.2479 44.452 11.2035 12.1828 0.8486 0.6590
62.364 4.3374 3.6550 39.832 40.0663 1.8570 0.9689 0.6960
62.390 3.7766 3.0398 37.105 43.296 1.0949 1.0969 0.7854
62.433 4.2752 3.4948 48.456 12.3453 10.3742 1.3537 0.8309
63.046 3.2867 2.9829 48.019 11.6673 10.6452 1.5195 1.0866
64.003 3.1212 2.6463 54.677 6.2498 7.8491 1.7372 1.2544
64.879 1.9877 1.6556 41.319 15.9348 14.7593 2.1607 1.2547
64.966 2.8495 2.0632 62.100 2.9384 2.9736 2.4765 1.4712
56.955 8.2475 6.4583 61.059 3.3467 3.2409 4.0303 1.5934
57.052 4.4025 4.7908 39.752 40.0334 1.2384 4.0819 1.6942
58.023 3.6744 5.0130 61.538 7.9433 1.5573 4.2308 2.2061
59.882 4.1615 5.3099 36.024 42.8717 1.1932 4.7751 2.4218

45.053 30.9200 1.7437 2.4836
56.202 14.6952 1.8480 5.3103
38.866 40.9796 1.1927 10.8539
36.003 44.8525 0.9443 15.7432
36.653 44.0994 0.9393 15.8015
39.105 40.4532 1.2416 16.0474
50.281 24.9943 1.5467 18.0692
58.421 10.2444 3.0714 19.7316
36.193 45.7901 1.0260 21.2168
36.228 43.8815 1.1215

√
χ2
p,ν ≈ 2.7162 29.1046

3For Ni in [2,3,4,5,6], it generates λi of 0.4104, 0.5926, 0.7404, 0.8626, 0.9658, respectively.
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Table 2: Geochemical analysis: statistics computed for the same two grade-blocks
HGB6 WH7

fraction of outliers ηoutliers
4
15 = 0.2666 9

25 = 0.36

robust distance geometric mean d gmean
outliers 4.2697 15.4670

robust distance unmasked distortion d unmasked
outliers 0.196442 0.755444

geochemistry consensus among samples fconsensus 0.9408 0.7138
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Figure 4: Map of geochemical consensus for grade-blocks in a single bench, f̂consensus

2.3 Overall reliability

Finally, an overall measure for the reliability of the grade-block estimates may be computed from f̂spatial-confidence and
f̂consensus. This is simply given by

f̂reliability = f̂spatial-confidence · f̂consensus (18)

A map of f̂reliability for the same bench is shown in Fig. 6.
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Figure 5: Assay sample disparity within grade-blocks with low geochemical consensus scores
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Figure 6: Map of overall reliability for grade-blocks in a single bench, f̂reliability

3 Validation

This section examines the efficacy of the proposed measure for geochemical consensus. The objective is to show
f̂consensus scales proportionally with the fraction and magnitude of outliers contained in the assay samples; that it
generally behaves as a decreasing function of ηoutliers and d unmasked

outliers . Since these parameters are unknown, test data
is synthesized so that these attributes can be tightly controlled. This process is informed by trends observed in the
blasthole assay data endemic to a Pilbara iron ore mine. Fig. 7a shows the data points (c ∈ R3) in a ternary diagram.
Using vector quantisation, point density is more clearly depicted in Fig. 7b using a heat map. The contour plot in
Fig. 7c shows the data is concentrated along two axes angled at θ0 = 304.7◦ and θ1 = 273.9◦ from the apex.
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Figure 7: Trends observed in the compositional data endemic to a Pilbara iron ore mine site
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Figure 8: Synthesis of validation data: parameters governing the sampling procedure

Parameters that govern data synthesis are shown in Fig. 8. After selecting the anchor points (pstart
0 ,pend

0 ,pstart
1 and

pend
1 ), the principal components that correspond to the dotted lines are given by φ0 and φ1 where φm = pend

m − pstart
m .

The main variables are η, δ and ν, where η ∈ [0, 1] denotes the fraction of points drawn from the lower ellipse,
δ ∈ [0, 1] adjusts the distance between two given ellipses, and the noise parameter ν controls the semi-major length
of the sampling ellipse. In the experiments, η varies from 0 to 1 in increments of 0.0625, δ varies from 0.05 to 0.95
in increments of 0.05, and ν is fixed at 0.025. For each configuration (m, δ, η), θm controls the orientation of the
sampling ellipses, (1− η)N random points are selected inside the upper ellipse at pstart

m , the remaining ηN points are
selected from the lower ellipse at pstart

m + δφm. Each sample contains N =32 points and K=12 random samples are
generated with the same parameters.

3.1 Discussion

Geochemical consensus scores were computed for the validation data using the algorithm described in Sec. 2.2.3.
In Fig. 9, f̂consensus is plotted as a function of η (the fraction of lower cluster points in each sample) and each curve
is parameterized by δ (the magnitude of the outliers which is proportional to the distance between the sampling
ellipses). These results are reassuring as the curves generally exhibit monotonic decreasing behaviour with respect to
the distortion δ and amount of outliers as η (or 1− η) increases. This is encouraging since neither δ nor η is known in
practice. However, this trend is disrupted in the region η ∈ [0.4, 0.6] due to a breakdown in the MCD robust estimator
[9]. It becomes ineffective when η exceeds 0.4 and produces unreliable (ultra-conservative) estimates of f̂outliers and
dgmean

outliers.
4 This in turn means the geochemical consensus score, as it is currently formulated, underestimates the impact

of outliers in situations where there is a roughly even mix of inliers and outliers. A remedy is proposed in Sec. 4 to
4The 0.4 figure is dependent on the sample size N . The MCD robust estimator can handle at most (N − (nvariables + 1))/2

outliers before breakdown occurs. When N=32 and nvariables =2, this evaluates to ⌊14.5⌋ which translates to 0.4375 of N .
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Figure 9: Validation shows monotonic behaviour over the range η ∈ [0, 0.4) ∪ (0.6, 1]

overcome this limitation. This essentially involves applying the MCD estimator to split-sequences and diminishing
sets. With this modification, the results in Fig. 10 show the geochemical consensus measure responds appropriately in
the η ∈ [0.4, 0.6] range. This allows the impact of outliers to be quantified when the data contains an unknown and
possibly a high level of contamination, especially when outliers account for more than 40% of a sample.
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Figure 10: With modification, validation shows reasonable behaviour when contamination-level η ≥ 0.4
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4 Extension: split-sequence analysis to address estimator breakdown

When the configuration option handle_breakdown is enabled, the following procedure is performed after ηoutliers,
d gmean

outliers, d
unmasked
outliers and f existing

consensus are computed in equations (10)–(13). The main ideas behind this algorithm are ex-
plained in Section 4.1, then an example is provided in Section 4.2 to illustrate how this works.

Algorithm Split-sequence analysis

Require: Sample where points can be sorted according to a dominant trend
Assume: Indices start from 1 (not 0).
Input: Chemical composition c ∈ RN×m

+ , ILR-transformed values ilr(c) ∈ RN×(m−1).
Existing estimates: d̂ gmean

outliers, d̂
unmasked
outliers , η̂outliers, f̂

existing
consensus

Tolerance: τ (Default: 0.5)
Greedy search: terminate_early (Default: True)

1: Sort c by dominant element in ascending order π (Default: use c[:, 1] for sorting, PCA projection is also viable)
2: Reorder rows: x← π(c), y← π(ilr(c))

3: Compute µ = median(x[:, 1]) and dref = max{d̂ gmean
outliers,

√
χ2
p,ν}

4: Set offset α = 0 and split_outliers_assimilate_well = False
5: while α ≤ 1 and split_outliers_assimilate_well is False do
6: Compute split-point: s = (N ≫ 1) + α
7: Form split-sets: s0x = x[1 :s, :], s1x = x[s+ 1:N, :]. Similarly, s0y = y[1 :s, :], s1y = y[s+ 1:N, :].
8: for Split-sequence s in {0, 1} do
9: Apply MCD to ssy ∈ RL to obtain robust distance vector d ∈ RL, outlier index vector ioutliers ∈ Znoutliers

10: if noutliers = 0 then
11: continue
12: end if
13: dmax = max(d[ioutliers]), iinliers = [i /∈ ioutliers |1 ≤ i ≤ noutliers]

T

14: if dmax ≥ (2− τ)dref then
15: d0 = |w_average(ssx[ioutliers, 1],d[ioutliers])− µ|, d1 = |w_average(ssx[iinliers, 1],d[iinliers])− µ|
16: if d0 < d1 then
17: Apply MCD to vstack(s1−s

y , ssy[ioutliers]) to obtain robust distance vector d̃ ∈ RM

18: Compute evidence strength: ξ = log10
(
(dmax/dref)

1.5(d1/d0)
)

19: if ξ < 0.3 and dmax < 2.5× dref then
20: continue
21: end if
22: Compute relaxation constant: λ = max{1,min{ξ, 2.5}}
23: if min(d̃[M − noutliers + 1 : M ]) < max{λ · dref,

1
2dmax} then

24: split_outliers_assimilate_well = True
25: break
26: end if
27: end if
28: end if
29: end for
30: α← α+ 1
31: end while

(to be continued on page 14)

4.1 Intuition

The algorithm comprises two parts. The first part (line 1–31) reorders points within the sample and performs MCD on
half-sequences to avoid misdetection and breakdown in the robust estimator when the number of outliers exceed the
1
2 (N−nvariables−1) limit [nominal ratio of η ∼ 40%]. Fig. 11 illustrates a situation where the blue points (9/16) are
drawn from cluster 1 and the gray points (7/16) are drawn from cluster 2. Fig. 11(a) describes the reordering step in
lines 1–2 of the Algorithm, where the points are sorted by the dominant component (e.g. concentration of Fe or first
PCA coefficient) based on prior analysis. With an outlier ratio of 45%, the MCD estimator would likely fail in this
case. However, if the ordered sequence is split into halves as shown in Fig. 11(c) and the MCD is applied separately to
s0y (left) and s1y (right), the incongruous point circled in Fig. 11(d) may be successfully detected. In line 6, an offset is
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Figure 11: Motivation for part 1 of the algorithm

added to the splitting point to handle the special case where the blue/gray point ratio is 50:50. Subsequently, the sample
is further considered only if two conditions are satisfied. The first, stipulated in line 14, requires the incongruous point
(ioutliers) discovered in ssy to be a significant outlier. The second, specified in lines 15–16, requires the composition
of c[ioutliers, 1] to be closer to the median than inliers within the split ssy. The second condition helps eliminate cases
where η < 25% which warrants no special treatment. In lines 23–24, MCD is applied to {s1−s

y , ssy[ioutliers]}, and
a decision is made on whether ioutliers assimilates well with the other half, s1−s

y . Samples proceed to part 2 of the
assessment upon receiving a positive decision.

The second part (line 32–64) applies MCD to an augmented half-sequence, {s1−s
y , ssy[r[1 : L− nevict]]}. This process

involves eliminating progressively more and more elements, until an improved estimate of f consensus
∗ is found or the

maximum number of evictions, nmax
evictions, is reached. Fig. 12(e) shows the elimination order is established by vector

r ∈ RL which ranks the elements in ssy (e.g. right half), excluding ioutliers, based on their disparity with respect to s1−s
y

(e.g. left half). Sorting in line 38 uses the robust distances d computed for points in ssy. Fig. 12(f) shows the interim es-
timates obtained from diminishing sets. In earlier iterations, the MCD estimator may struggle to find outliers or report
a meaningful dgmean (k)

outliers value larger than the existing estimate. With successive eviction, the proportion of outliers is
diminished and the situation steers further away from breakdown. The final fraction of outliers, η(final)

outliers, includes both
the number of evicted elements (nevict ≡ k) and outliers (n(k)

outliers) reported in the reduced set {s1−s
y , ssy[r[1 : L− k]]}.
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Figure 12: Sketch for part 2 of the algorithm
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Algorithm Split-sequence analysis (continued)

32: Apply MCD estimator to diminishing sets
33: if split_outliers_assimilate_well is True then
34: Set d[ioutliers] = 0
35: Set nmax

iterations = 8, nmax
evictions = N ≫ 2, ∆ = max{1, ⌊nmax

evictions/n
max
iterations⌋}.

36: Initialise: i = 0, nevict = 1−∆, f̂ consensus
∗ = [ ]

37: Set f̂consensus = f̂ existing
consensus

38: Compute retention vector: r = argsort(d, ascending) ∈ ZL

39: while nevict < nmax
evictions do

40: nevict ← nevict +∆
41: Apply MCD to vstack(s1−s

y , ssy[r[1 : L− nevict]]) to obtain
robust distance vector d̃ ∈ RN−nevict and outlier index vector ĩoutliers ∈ Znoutliers .

42: if noutliers = 0 then
43: continue
44: end if
45: Compute drobust = exp

(
1

noutliers

∑
i∈ĩoutliers

log d̃[i]
)

46: if drobust <
√
χ2
p,ν then

47: continue
48: end if
49: i← i+ 1
50: Set d gmean

∗ [i] = drobust

51: Set d unmasked
∗ [i] = min{log10

(
d gmean
∗ [i]/

√
χ2
p,ν

)
, 1}

52: Set ηoutliers
∗ [i] = min{f, 1− f} where f = (noutliers + nevict)/N

53: Set f consensus
∗ [i] = (1− ηoutliers

∗ [i])d
unmasked
∗ [i]

54: if terminate_early and f consensus
∗ [i] < 0.8× f existing

consensus then
55: break
56: end if
57: end while
58: if f consensus

∗ is not empty then
59: k = argmini f

consensus
∗

60: if f consensus
∗ [k] < f̂ existing

consensus then
61: Set d̂ gmean

outliers ← d gmean
∗ [k], d̂ unmasked

outliers ← d unmasked
∗ [k], η̂outliers ← ηoutliers

∗ [k], f̂consensus ← f consensus
∗ [k]

62: end if
63: end if
64: end if
Output: d̂ gmean

outliers, d̂
unmasked
outliers , η̂outliers, f̂consensus

4.2 Example

This example is based on the test data (“high-breakdown.csv”) supplied with the source code. The input and relevant
quantities shown on lines 1–3 of the algorithm are specified in Table 3.

Sample contains N = 16 points, seven of which (43.75%) are outliers. With nvariables(y) = 2, at most ⌊(N−nvariables−1)/2⌋ = 6 outliers can be detected.
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Fe↔ c[:, 1] 0.912 0.861 0.863 0.891 0.914 0.883 0.894 0.873 0.889 0.430 0.441 0.468 0.429 0.468 0.481 0.426
SiO2↔ c[:, 2] 0.058 0.079 0.073 0.048 0.049 0.079 0.052 0.072 0.060 0.299 0.323 0.296 0.303 0.312 0.271 0.307
Al2O3↔ c[:, 3] 0.030 0.060 0.064 0.062 0.037 0.038 0.054 0.055 0.051 0.271 0.236 0.237 0.268 0.220 0.248 0.266
ilr(c) 1st coeff 1.950 1.690 1.751 2.069 2.070 1.710 2.009 1.765 1.905 0.257 0.219 0.325 0.247 0.286 0.406 0.231
ilr(c) 2nd coeff 1.662 1.193 1.110 0.987 1.428 1.583 1.137 1.241 1.231 0.230 0.384 0.370 0.241 0.451 0.306 0.250
Permutation π 16 13 10 11 14 12 15 2 3 8 6 9 4 7 1 5
π(c)→ x1 0.426 0.429 0.430 0.441 0.468 0.468 0.481 0.861 0.863 0.873 0.883 0.889 0.891 0.894 0.912 0.914
π(ilr(c))→ y1 0.231 0.247 0.257 0.219 0.286 0.325 0.406 1.690 1.751 1.765 1.710 1.905 2.069 2.009 1.950 2.070
π(ilr(c))→ y2 0.250 0.241 0.230 0.384 0.451 0.370 0.306 1.193 1.110 1.241 1.583 1.231 0.987 1.137 1.662 1.428

Table 3: Trace part 1: Input, transformed and permuted sequences
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Applying MCD as described in Sec. 2.2.3 produces η̂outliers = 0.25, d̂ gmean
outliers = 5.608, d̂ unmasked

outliers = 0.3149 and
f̂consensus = 0.9133. The fraction of outliers (η̂outliers) and their impact (d̂ gmean

outliers) are both underestimated. Table 4
shows the tests performed on the left half sequence, s0y, and the requirements satisfied during the first iteration in the
split-sequence FOR loop (see Algorithm: Split-sequence analysis on page 12).

split-sequences s0y s1y
with offset α=0 0.231 0.247 0.257 0.219 0.286 0.325 0.406 1.690 1.751 1.765 1.710 1.905 2.069 2.009 1.950 2.070

0.250 0.241 0.230 0.384 0.451 0.370 0.306 1.193 1.110 1.241 1.583 1.231 0.987 1.137 1.662 1.428
For s = 0,
robust dist. d 1.007 0.942 1.137 1.771 1.539 1.817 4.550⋆ 40.722⋆∣∣s0x[:, 1]− µx

∣∣ 0.436 0.433 0.432 0.421 0.394 0.394 0.381 0.001 note: median µx = 0.862 from x1

ioutliers (⋆) [7, 8]
statistics dmax = 40.722, dref = 5.608 and τ = 0.5. Requirement 1 [dmax ≥ (2− τ)dref] is satisfied.

weighted distances from median for ioutliers and iinliers: d0 = 0.039, d1 = 0.414. Requirement 2 [d0 < d1] is also satisfied.
Table 4: Trace part 2: Tests performed on left half sequences

Applying MCD to the augmented half-sequence, s†y
def
= (s0y[ioutliers], s

1
y) as per Algorithm (line 17), Table 5 shows

the values obtained. The incongruous point assimilates well with s0y; thus it qualifies for part two of the assessment
(lines 32–64). Table 6 shows the elimination order, the formation of diminishing sets, and the values computed after
each element is evicted.

augmented seq s†y 0.406 1.690 1.751 1.765 1.710 1.905 2.069 2.009 1.950 2.070
0.306 1.193 1.110 1.241 1.583 1.231 0.987 1.137 1.662 1.428

robust dist. d̃ 11.667⋆1.434⋆ 1.281 0.847 1.738 0.299 1.829 1.078 1.896 1.541
evidence strength ξ = λ =2.313

The condition min(d̃[1 : noutliers]) < max{λ · dref,
1
2dmax} is satisfied.

split_outliers_assimilate_well is set to True. The tests for s = 1, and α = 1 (with s ∈ {0, 1}) will not be performed.
Table 5: Trace part 3: Applying MCD to augmented half-sequence

robust dist. d′ 1.007 0.942 1.137 1.771 1.539 1.817 0⋆ 0⋆

priority r 7 8 2 1 3 5 4 6
diminishing sets (s1y, s

0
y[r[1 : L− nevict]]). For clarity, elements retained from s0y are underlined.

(nevict = 1) 1.751 1.765 1.710 1.905 2.069 2.009 1.950 2.070 0.406 1.690 0.247 0.231 0.257 0.286 0.219 ×
1.110 1.241 1.583 1.231 0.987 1.137 1.662 1.428 0.306 1.193 0.241 0.250 0.230 0.451 0.384 ×

robust dist. d̃ 1.281 0.847 1.738 0.299 1.829 1.078 1.896 1.541 11.667⋆1.434 12.835⋆12.919⋆12.793⋆12.137⋆12.706⋆

ĩoutliers [9,11,12,13,14,15]
adjusted f (noutliers + nevict)/N = (6 + 1)/16 = 0.4375
η̂outliers min{f, 1− f} = 0.4375

d̂ gmean
outliers 12.500932

d̂ unmasked
outliers 0.662980

f̂consensus 0.682867 Further eviction is not required as a solution is found.
Table 6: Trace part 4: Elimination order, formation of diminishing sets and the output after one element is evicted

Here, the process terminates after one eviction. The estimated fraction of outliers η̂outliers = 0.4375 corresponds exactly
to the ground truth. It also produces a reasonable geochemical consensus value of 0.6828; as opposed to 0.9133 when
the estimator breaks down—which is misleading. This example and the graphical results presented in Fig. 10 reaffirm
the viability of the consensus score and its ability to measure outlier distortion with the split-sequence extension when
the contamination level is unknown and possibly as high as 50%.

5 Implementation

A Python implementation of the proposed algorithms will be available on GitHub at https://github.com/
raymondleung8/sampling-consensus. The code will be distributed open-source under a BSD 3-clause license.
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6 Conclusion

The mining industry currently lacks a standard framework that can convey the degree of confidence in the average
grade estimates computed for selective mining units (otherwise known as grade-blocks). This paper proposes two
measures for quantifying sampling fairness and geochemical consensus for blasthole assays located within a grade-
block. Sampling fairness considers spatial factors such as the sampling density and bias in the spatial distribution
of the blastholes. Geochemical consensus considers the disparity between the assay samples collected from a grade-
block. A novel masking expression (12) is used to measure meaningful differences. This takes into account the
fraction of outliers observed (10) and magnitude of distortion above a threshold (11). An extension based on split-
sequence analysis has been proposed to address the issue of MCD estimator breakdown when the fraction of outliers
exceeds (nsamples−nvariables−1)/(2nsamples). This allows the true extent and impact of outliers to be quantified, and
the consensus score to remain effective when samples contain up to 50% of outliers. The method was tested on data
obtained from a banded iron formation (BIF) hosted iron ore deposit within the Hamersley region in Western Australia.
An open-source implementation of the algorithms is available on github.
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