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Abstract 14 

We herein propose two-step approach based simulation-optimization models for groundwater 15 

remediation using enhanced random vector functional link (ERVFL) and evolutionary marine 16 

predator algorithm (EMPA). The weighted least square method is used to improve the 17 

robustness of the ERVFL network, where weights are computed using the kernel density 18 

estimator (KDE). The EMPA is developed by modifying the marine predator algorithm 19 

(MPA) using elite opposition-based learning, biological evolution operators, and elimination 20 

mechanisms. In the multi-objective version of EMPA, the non-dominated solutions are stored 21 

in an external repository using an archive controller and adaptive grid mechanism to promote 22 

better convergence and diversity of the Pareto front. The performance evaluation of EMPA 23 

on several test functions suggests its superiority over other metaheuristics for both single-24 

objective and multi-objective optimization. The ERVFL network is then used to approximate 25 

mailto:eldho@iitb.ac.in
mailto:clu@hhu.edu.cn


2 
 

the finite difference based groundwater flow and transport models to accelerate 26 

computational efficiency. The two-step approach based S-O models are then developed by 27 

integrating the simulation models directly or through the ERVFL network with the EMPA. 28 

The first step aims to find optimal pumping locations using EMPA with combinatorial 29 

optimization technique by minimizing the percentage of contaminant mass remained in the 30 

aquifer. In the second step, the ERVL based proxy simulator is coupled with EMPA and used 31 

for multi-objective optimization while explicitly using the pumping well locations as 32 

obtained in the first step. The multi-objective optimization generates a Pareto-optimal 33 

solution representing the relationship between the water extraction rates and the amount of 34 

contaminant mass in the aquifer. Further analyses suggest that the two-step approach shows a 35 

significant advantage over the traditional methods for multi-objective groundwater 36 

remediation. 37 

Keywords: Groundwater remediation, Enhanced random vector functional link (ERVFL), 38 

Evolutionary marine predator algorithm (EMPA), Kernel density estimator (KDE) 39 
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Notations 51 

RC  Crossover operator 

k

sc  Dissolved contaminant concentration of species k (ML
-3

) 

D   Search space dimension 

hD  Coefficient  of hydrodynamic dispersion (L
2
T

-1
) 

d  Hydraulic drawdown (L) 

be  Bottom elevation (L)  

te  Top elevation (L) 

bH  Aquifer thickness (L) 

K  Kernel smoothing function 

M Contaminant mass (M) 

m  Mutation scaling factor 

dN  Number of the input-output dataset 

P  Penalty weight matrix 

Q Pumping rate (L
3
/T) 

sq  Volumetric flux rate per unit volume representing sources or sinks of 

water (T
-1

) 

LR  Random number generated from Lévy distribution 

BR  Random number generated form normal distribution 

dR  Retardation coefficient 

T  Number of stress period  

t  Time (T) 

u  Seepage velocity (LT
-1

) 
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t  Time step (T) 

nr  Chemical reaction term (ML
-3

T
-1

). 

L  Longitudinal dispersivity (L) 

T  Transverse dispersivity (L) 

  Del operator 

  Hydraulic head (L) 

  Regularization factor 

  Residuals  

f  Scaling factor 

 52 
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1. Introduction 67 

The pump and treat (PAT) method is a physical process to remediate contaminated 68 

groundwater. Usually, simulation-optimization (S-O) models are used for designing PAT-69 

based systems to remediate contaminated groundwater (McKinney and Lin 1994; Seyedpour 70 

2019). In the  S-O modeling, the simulation model is executed by the optimization model 71 

repeatedly to compute optimal values of the control parameters (i.e., pumping locations, 72 

extraction rates, injection rates) of the PAT system for achieving the remediation goals 73 

(McKinney and Lin 1994; Jiang and Na 2020; Majumder and Eldho 2020). Usually, 74 

surrogate/proxy simulators are used to approximate computationally expensive finite 75 

difference or finite element based simulation models to accelerate computational performance 76 

(Jiang and Na 2020). The most common surrogate simulators are the extreme learning 77 

machine (ELM), support vector machine (SVM), feed-forward neural network (FFNN), and 78 

random vector functional link (RVFL) (Pao et al. 1994; Kumar et al. 2013; Yadav et al. 2016; 79 

Majumder and Eldho 2020).  80 

Among them, the RVFL network is quite popular due to its universal approximation 81 

ability of any continuous function with compact input-output datasets and high computational 82 

performance (Scardapane et al. 2015; Zhang and Suganthan 2016; Elaziz et al. 2020). The 83 

network structure of RVFL is similar to the extreme learning machine (ELM), and single-84 

layer FFNN, except a direct link, exists between the input layer and the output layer (Pao et 85 

al. 1994). Such direct links between the input and output layers are standard practice in neural 86 

networks to avoid over-fitting issues during the training phase (Pao et al. 1994). In RVFL, the 87 

input weights and hidden layer thresholds are randomly sampled from a uniform distribution, 88 

and the output weights are computed by minimizing a loss function using Moore-Penrose 89 

pseudo-inverse or ridge regression (Zhang and Suganthan 2016). The RVFL network shows 90 

better generalization ability and superior computational efficiency than the SVM and single-91 
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layer FFNN (Zhang and Suganthan 2016). Nevertheless, the training dataset with outliers 92 

may reduce the generalization ability of the RVFL network. This issue can be resolved by 93 

incorporating the weighted least square (WLS) approach in the RVFL network, where 94 

weights are computed using the kernel density estimator (KDE) (Dai et al. 2015). 95 

Some of the popular optimization methods for groundwater remediation and 96 

management are cat swarm optimization (CSO), genetic algorithm (GA),  particle swarm 97 

optimization (PSO), grey wolf optimizer (GWO), differential evolution (DE), simulated 98 

annealing (SA), harmony search (HS) and tabu search (TS) (McKinney and Lin 1994; 99 

Sidiropoulos and Tolikas 2008; Tamer Ayvaz 2009; Kumar et al. 2013; Yang et al. 2013; Luo 100 

et al. 2014; Majumder and Eldho 2016, 2020; Zhao et al. 2020). Recently, a metaheuristic, 101 

namely the marine predator algorithm (MPA), has been proposed by emulating the 102 

cooperative hunting strategy of the marine predators to capture prey (Faramarzi et al. 2020). 103 

The performance of MPA is superior to various other metaheuristics (GA, DE, SA, and PSO) 104 

in terms of exploration and exploitation ability (Faramarzi et al. 2020). Since its invention, 105 

MPA has been getting lots of attention in various fields such as structural engineering, 106 

electrical and power engineering, and energy (Elaziz et al. 2020; Ridha 2020; Sun et al. 107 

2020). The performance of MPA can be further improved by various strategies such as: 108 

incorporating elite opposition based learning, using biological evolution operators, and 109 

incorporating elimination mechanisms (Wang and Li 2019; Dhargupta et al. 2020). 110 

 In groundwater remediation, decision-makers often encounter several conflicting 111 

objectives, such as minimizing the cost of remediation, minimizing cleanup time, maximizing 112 

reliability, and minimizing health risks (Erickson et al. 2002; Yang et al. 2013). Some of the 113 

most common multi-objective optimization techniques are non-dominated sorting genetic 114 

algorithm (NSGS-II) (Deb et al. 2002), multi-objective grey wolf optimizer (Mirjalili et al. 115 

2016),  multi-objective particle swarm optimization (MOPSO) (Coello et al. 2004), Pareto 116 
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archived evolution strategy (PAES) (Knowles and Corne 2000), and Niched Pareto tabu 117 

search (NPTS) (Yang et al. 2013). A Pareto dominance scheme is used in all these algorithms 118 

to obtain non-dominated/ Pareto-optimal solutions (trade-off among the conflicting 119 

objectives) with good convergence and a selection criterion based on density to promote good 120 

diversity among the non-dominated solutions. Now, the question arises, do we need another 121 

new metaheuristic as there are so many already? The No-free launch (NFL) theory logically 122 

proved that it is theoretically impossible to label a metaheuristic as the universal optimizer. A 123 

metaheuristic showing superior performance for one class of problems may show quite 124 

inferior performance to another (Wolpert and Macready 1997). This NFL theory thus 125 

motivates researchers to develop new metaheuristics in a quest to find a better one.  126 

Determining the optimal locations of pumping wells is crucial for designing an 127 

effective PAT-based groundwater remediation system (Wang and Ahlfeld 1994; Seyedpour 128 

2019). In most of the previous groundwater remediation studies on multi-objective 129 

optimization, the pumping well locations are predefined/guessed along the centreline of the 130 

plume for a homogeneous aquifer with a uniform and narrow plume (Erickson et al. 2002; 131 

Yang et al. 2013, 2017; Luo et al. 2014; Jiang and Na 2020). However, determining optimal 132 

pumping location is not straightforward for highly heterogeneous aquifers with wider 133 

contaminant plume (Wang and Ahlfeld 1994; Huang and Mayer 1997; Guan and Aral 1999).  134 

In a few previous studies, groundwater remediation systems were designed by incorporating 135 

both the pumping rates and pumping well locations as continuous decision variables in the 136 

management model (Wang and Ahlfeld 1994; Guan and Aral 1999). The Hermite 137 

interpolation function is used to convert discrete pumping well locations of FDM into a 138 

continuous function in space (Wang and Ahlfeld 1994; Guan and Aral 1999). However, the 139 

interpolation step may lead to some amount inaccuracies in the management model. 140 

 141 
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Recently a novel two-step approach has been proposed for the remediation of 142 

contaminated groundwater that segregates a single objective optimization problem into two 143 

management models. The first management model uses the combinatorial optimization 144 

method to find optimal pumping locations (while keeping the extraction rate as a predefined 145 

constant value) by minimizing the amount of pollutant mass in the aquifer. The optimal 146 

locations of pumping wells obtained in the first step were used explicitly in the second step to 147 

achieve the remediation goal. The two-step approach can overcome the ‘curse of 148 

dimensionality issue and is thus suitable for high-dimensional optimization problems 149 

(Mirjalili et al. 2014). The two-step approach was found to be computationally more efficient 150 

and accurate than the traditional approach. However, the efficacy of the two-step approach 151 

was not evaluated for multi-objective groundwater remediation. Partially motivated by this, 152 

the present study aims to check the efficacy of the two-step approach for multi-objective 153 

groundwater remediation in the highly heterogeneous aquifer. The present study also has 154 

many other novel features, as discussed in the next section. 155 

The present study attempts to develop a two-step approach-based simulation-156 

optimization model for multi-objective groundwater remediation using enhanced random 157 

vector functional link (ERVFL) and evolutionary marine predator algorithm (EMPA). The 158 

ERVFL network uses the weighted least squares (WLS) method to improve the robustness of 159 

the algorithm, where weights are computed using the kernel density estimator (KDE). The 160 

ERVFL network is used to approximate simulation models representing groundwater flow 161 

and contaminant processes to enhance computational performance. Further, EMPA is 162 

proposed by modifying the marine predator algorithm using elite opposition-based learning, 163 

biological evolution operator, and elimination mechanism. In the multi-objective version of 164 

EMPA, the archive controller and adaptive grid mechanism store the non-dominated 165 
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solutions in an external repository. Further, the single-objective and multi-objective versions 166 

of EMPA are used for groundwater remediation using the two-step approach.  167 

 168 

2. Methodology 169 

This study used the MODFLOW and MT3DMS codes for simulating groundwater 170 

flow and contaminant transport processes through the subsurface (Zheng and Wang 1999; 171 

Harbaugh, Arlen 2005). Further, a proxy model based on the ERVFL network is developed to 172 

approximate numerical flow and transport models. This study uses EMPA as an optimization 173 

model for the remediation of contaminated groundwater. The detailed methodologies 174 

discussing ERVFL and EMPA are discussed below. 175 

2.1. Random vector functional link (RVFL) 176 

The RVFL network consists of one hidden layer with additional direct links between 177 

input layers and hidden layers (Fig. 1). The direct links help avoid overfitting issues during 178 

the training phase (Pao et al. 1994; Vuković et al. 2018).  179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

Fig.1. Pictorial representation of random vector functional link 
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Let us consider  a distinct input-output dataset of dimensions dn ,191 

( , ) ; 1, 2,....n m

j j dx y j n                                                                                               (1) 192 

Where jx  and jy  are the input and output datasets and can be represented as, 193 

1 2 3[ , , ,..... ]T n

j j j j jn nx x x x x                                                                                               (2a) 194 

1 2 3[ , , ,...... ]m

T m

j j j j jmy y y y y                                                                                           (2b) 195 

In RVFL, one fraction of the output is predicted by functional mapping of generic input jx  to 196 

a linear combination of a fixed number ( L ) of nonlinear transformations of the input itself. 197 

The other fraction of the output is predicted using the direct links between the input and the 198 

output layer (Vuković et al. 2018).  199 

1 1

( ) 1,2,.....
L n

j i i j i k j d

i k

O g w x b x j N
 

                                                                 (3) 200 

Where L  is the total hidden neurons; g  is the activation function; 1 2[ , ,...... ]n L

T

i i i niw w w w   is 201 

the input weight vector connecting hidden neuron i  to the input neurons; ib  is the threshold 202 

of the hidden neuron i ; 1 2[ , ,..... ]T

i i i im m     is the output weight vector connecting hidden 203 

neuron i  to output neurons; 1 2[ , ,..... ]T

k k k km m      is the output weight vector connecting 204 

output neurons with input neuron k  and 
m

jO R  is the predicted output. 205 

In matrix form, the Eq. (3) can be expressed as, 206 

O H                                                                                                                                    (2a) 207 

1 2 ( )[ ]N L nH H H                                                                                                                    (2b)                                                                        208 

( )i k L n m                                                                                                                           (2c) 209 

1 1 1 1

1

1 1

( ) ( )

( ) ( )

L L

N L N L N L

g w X b g w X b

H

g w X b g w X b


  
 
 
 
 

  

                                                           (2d) 210 
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1

2

2

N N n

X

X
H

X


 
 
 
 
 
  

                                                                                                                       (2e) 211 

1 2 3[ , , ,...... ]T

N N mO O O O O                                                                                                       (2f) 212 

Where 1H  is the input matrix; 2H  is the hidden layer output matrix; H  is a concatenated 213 

matrix of 1H  and 2H  ; O  is the predicted output matrix.   214 

The loss function is defined as the squared difference of the predicted output                215 

(O H  ) and actual output (Y ) (Vuković et al. 2018).    216 

2|| || & || ||Minimize H Y                                                                                                     (3)   217 

The Eq.(3) can be formulated as a regularized least square (ridge regression) problem, which 218 

minimizes the loss function and norm of the output weights (Vuković et al. 2018). 219 

2 2

2 2

1
min ( ) || || || ||

2 2L
J H Y



 
     

 
                                                                                     (4)  220 

Where,    is known as the regularization factor, which help to minimize variance in the 221 

prediction of output weights ( )(Scardapane et al. 2015; Vuković et al. 2018). 222 

The solution of Eq.(4) can be obtained by equating the gradient of ( )J   to zero (Vuković et 223 

al. 2018). 224 

0T TJ
H H H Y


   


                                                                                                   (5)                                                                       225 

  
^ 1

T TH H I H Y


                                                                                                             (6)                                                                                                    226 

Where I  is the identity matrix; 
TH  is the transpose matrix of H . 227 

 228 

 229 

 230 
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2.2. Enhanced random vector functional link (ERVFL) 231 

The generalization ability of the RVFL can be further improved by incorporating the 232 

weighted least squares (WLS) approach into Eq.(4), where weights can be computed using 233 

kernel density estimator (KDE) (Dai et al. 2015).  234 

2 2

1 2 2

1
min ( ) || || || ||

2 2L
J P H Y



 
     

 
                                                                                (7)   235 

Where 1 2( , ,.. ... )j NP diag p p p p  is the penalty weight matrix representing the contribution 236 

of each sample to the loss function. Each element of the matrix p  is computed according to 237 

the reliability of the sample. A suspected outlier will have very low reliability and thus a 238 

small jp  value. The assignment of a small jp  value to the outlier reduces its importance in 239 

the loss function (Eq.7). The residuals (  ) is computed using original RVFL as, 240 

1 1

( ) 1,2,.....
L n

j i i j i k j j d

i k

g w X b X Y j N
 

                                                         (8)          241 

The probability density function (PDF) of residuals can be computed using KDE as 242 

(Majumder and Eldho 2019) 243 

1

1 1
( )

N
j

j b b

x
f x K

N h h

 
   

 
                                                                                                  (9) 244 

Where ( )f x  is the probability density function of the residuals; bh  is the bandwidth; N  is 245 

the number of samples.  246 

The kernel smoothing function ( K ) assuming it as Gaussian can be expressed as (Majumder 247 

and Eldho 2019), 248 

2

2

( )

21
( , )

2

j

b

x

h

j b

b

K x h e
h 

 
 
 
                                                                                               (10) 249 

Further, a weight ( jp ) is assigned to each residual ( j ) with respect to the probability of 250 

residual, which is computed using KDE as, 251 
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( )j jp f                                                                                                                               (11)                                                                                                                                                                                                                                                        252 

 After computing jp , the output vector   is computed by minimizing the gradient of 1J (Eq. 253 

7) as,  254 

1 0T TJ
PH H H PY P


    


                                                                                        (12) 255 

 
^ 1

T TH pH pI H pY


                                                                                                      (13) 256 

 257 

2.3. Marine predator algorithm (MPA) 258 

 MPA imitates the cooperative foraging behavior of marine predators using the 259 

Brownian and Lévy movements (Faramarzi et al. 2020). The search processes of the MPA are 260 

divided into three phases with specified number of generations based on velocity ratio 261 

between predator and prey  (Elaziz et al. 2020).  262 

Exploration phase: 263 

In the exploration phase, predators explore the search space using Brownian motion with high 264 

velocity in pursuit of finding suitable prey (Eq.14) (Faramarzi et al. 2020). 265 

 1

max

1
( ) 0

3

t t t t

i i c B g B ix x p r R x R x t t                                                                   (14) 266 

Where, maxt   is the total number of iterations; 
t

ix  is the position of a candidate marine 267 

predator; 
1t

ix 
 is new position of candidate marine predator; t

gx  is the position of best marine 268 

predator; cp  is a constant having value  0.5; [0,1]r U  and [0,1]BR N .  269 

 270 

Transition phase: 271 

In this phase, the velocities of half of the marine predators are reduced using a parameter FC  272 

to exploit the search space. The other half of the predators with higher velocities explore the 273 
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search space. A factor [0,1]fp U  is used to distribute the population for exploration and 274 

exploitation. The position of a candidate predator is updated as (Faramarzi et al. 2020).                   275 

1 1

max max

1 2
( ) 0.5 &

3 3

t t t t

i i c L g L i fx x p r R x R x if p t t t   
           

 
        (15a) 276 

1 1

max max

1 2
( ) 0.5 &

3 3

t t t t

i g c F B B g i fx x p C R R x x if p t t t   
           

 
        (15b) 277 

max

2

max

1

t

t

F

t
C

t

 
  
 

                                                                                                               (15c) 278 

Where, LR  is a random number generated using Lévy distribution. 279 

Exploitation 280 

In this phase, the velocities of marine predators are low due to the use of the parameter CF . 281 

The position of a candidate marine predator is updated according to the equation below 282 

(Faramarzi et al. 2020). 283 

1 1

max max

2
( )

3

t t t t

i g c F L g L ix x p C R x R x Where t t t   
         

 
            (16) 284 

Eddy formation and fish aggregating devices' effect ( ADF ) 285 

Environmental factors such as eddy formation and fish aggregating devices' ( ADF ) 286 

may significantly affect the behavior of marine predators (Faramarzi et al. 2020). In a 287 

previous study, it is mentioned that 80% of the time, Shark spends in the vicinity of FADs, 288 

and the rest of the time, Shark makes many long jumps in various directions in a quest to 289 

search for prey. Such behavior of Shark can be incorporated in the MPA algorithm to avoid 290 

local minima entrapment. By considering eddy formation and ADF , the positions of a 291 

candidate marine predator are updated as (Faramarzi et al. 2020) 292 

1

min max min{ ( )}t t

i i F ADx x C x r x x W if r F                                                               (17a)  293 

1 2

1 [ (1 ) ] ( )t t

i i AD r r ADx x F r r x x if r F                                                               (17b) 294 
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Where, maxx  and maxx  are vectors which contain lower and upper values for each dimension 295 

of candidate predator; [0,1]r U ; FAD  represent the probability of considering the effect of  296 

fish aggregating device with a value 0.2; W  is a vector of binary variables  0 and 1. The 297 

elements of W is constructed by generating a random number from [0,1]r U and setting the 298 

value of each element to zero if the element is smaller than FAD . Otherwise, set the value of 299 

the element to one if the element is greater than FAD (Faramarzi et al. 2020). 300 

Marine Memory 301 

During the search process, marine predators save the best position ( gx ) obtained so far, and 302 

the corresponding fitness value ( ( )gf x )(Faramarzi et al. 2020). 303 

1

1

1

( ) ( )

( ) ( )

t

g g

t

g g

t

g g

if f x f x then

x x

f x f x













                                                                                                        (18)   304 

 305 

2.4. Elite opposition based learning (EOBL) 306 

The EOBL is a standard procedure to improve the solutions in the field of artificial 307 

intelligence (Dhargupta et al. 2020). In EOBL, for every candidate solution, an opposite point 308 

(also known as the point of reflection) is generated using central symmetry (Soncco-Álvarez 309 

et al. 2019). Among them, the solution with better fitness value is selected for the next 310 

generation. Let us assume a candidate solution ,1 ,2 ,[ , ,..... ]i i i i Dx x x x  and the corresponding 311 

opposite point ,1 ,2 ,[ , ,..... ]e e e e Dx x x x . The following equation is used to compute the opposite 312 

point of the candidate solution ix . 313 

, ,[ ] 1,2.......e

i j j j i jx lb ub x j D                                                                             (19)                                            314 

Where , [ , ]i j j jx lb ub is the j
th

 element of the i
th

 candidate; ,

e

i jx  is the opposite point 315 

(solution); and  jub  and jlb are the upper and lower bound of the  j
th

 element. 316 
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2.5.  Biological evolution  317 

 Biological evolution is a natural process that makes living beings stronger/fitter over 318 

successive generations. The biological evolution process of marine predators can be modeled 319 

mathematically using differential evolution operators (mutation, crossover, selection) (Wang 320 

and Li 2019).  321 

Mutation: 322 

For each candidate solution (
i

tx ), select three other candidates randomly from the population. 323 

Generate a muted solution (
t

iy ) using the following equation (Storn and Price 1997).  324 

1 2 3 1 2 3( ) 1,2,..... & 1,2,.... ;t t t t t t t

i r r r r r ry x m x x i N t T x x x                              (20) 325 

Where 1

t

rx , 2

t

rx , and 3

t

rx  are three distinct candidates selected randomly from the population; 326 

[0.2,0.8]m U  is the mutation scaling factor; N  is the size of the population; T  is the total 327 

number of generation. 328 

Crossover: 329 

In this phase, generate an offspring solution ( t

ijz ) by exchanging the elements of muted 330 

solution vector ( t

ijy ) with the elements of candidate solution vector ( t

ijx ) (Storn and Price 331 

1997).   332 

1,2,.... ; 1,2,....

t

ij R rt

ij t

ij R

y C r or j d
z i N j D

x C r

   
   

  

                             (21) 333 

Where 0.2RC   is the crossover operator; D  is the dimension of the candidate/muted 334 

solution vector; [0, 1]r U ;   1,rd U D . 335 

 336 

 337 

 338 
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Selection: 339 

 The candidate (
t

ix ) and offspring solutions (
t

iz ) are compared with respect to their 340 

respective fitness value, and the better one is selected for the next generation (Storn and Price 341 

1997).   342 

1
( ) ( )

1,2,.....
( ) ( )

t t t

i i it

i t t t

i i i

z f z f x
x i N

x f z f x


  

  
  

                                                                        (22) 343 

Where ( )t

if x is the fitness function value computed at the point 
t

ix . 344 

 345 

2.6. Elimination mechanism 346 

The survival of the fittest (SOF) principle states that only the fitter candidates survive and 347 

vulnerable candidates die in the successive generation due to various natural reasons (Wang 348 

and Li 2019). However, the new candidates will keep on joining the population due to natural 349 

birth or other reasons (Wang and Li 2019). The steps to implement the elimination 350 

mechanism in the MPA are stated below: 351 

(a) Sort the candidates (population) in ascending order according to their respective 352 

fitness values.  353 

(b)  Eliminate some of the candidates with low fitness values. To facilitate this, generate a 354 

random integer ( RN ) within the range ,
2 f f

N N 
 
  

. 355 

Where, N  is the size of the population (total number of candidates) and f is the 356 

scaling factor. To preserve the fitter candidate for the successive generation, the value 357 

of should always be greater than 1. 358 

(c) After removing RN  candidates, add the same number of new candidates with 359 

randomly assigned positions within the bounds of decision variables space. 360 

 361 
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2.7. Multi-objective Optimization (MO)  362 

 A multi-objective optimization (MO) problem, with more than one conflicting 363 

objectives problem can be expressed as  (Deb 2012)  364 

( ) 1,2,3,4,......,

( ) 0 1,2,3,4,.......,

( ) 0 1,2,3,4.......,

1,2,3,4,.........

m

i

k

L U

j j j

Minimize F x m M

Subject to I x i I

E x k K

x x x j N

 
 

  
 

 
 
    

                                              (23)  365 

Where, mF  is the m
th

 objective function; 1 2 3[ , , ........... ]Dx x x x x  is a vector of decision 366 

variable of dimension D ; N  is the total number of decision variables; 
iI  are the j

th
 367 

linear/nonlinear inequality constraint; kE  are the k
th

 linear/nonlinear equality constraint; L

jx  368 

and U

jx   are the lower bound and upper bound of the decision variable ix . 369 

The MO finds the sets of solutions representing trade-offs between objectives known 370 

as Pareto optimal solution (Deb 2012).  371 

Pareto dominance 372 

Let us assume two solution vectors 1 2 3[ , , ...... ]Dx x x x x  and 1 2 3[ , , ...... ]Dy y y y y . The 373 

corresponding objective function vectors are 1 2( ) [ , ... ]x x x

mf x f f f  and 1 2( ) [ , ... ]y y y

mf y f f f .  374 

The solution vector x  dominate y  (denoted as x y ) if and only if (Mirjalili et al. 2016) : 375 

{1,2,..... }: ( ) ( ) {1,2,..... }: ( ) ( )i i i ii D f x f y i D f x f y                                                 (24) 376 

Pareto optimality 377 

If a solution vector 
Dx R  is not dominated by any other solution in the feasible region of 378 

search space, then x  is the Pareto optimal solution (Mirjalili et al. 2016). 379 

|Dy R y x                                                                                                                        (25)                                                                                                                                          380 

Pareto optimal set 381 

The Pareto optimal set is the set of all Pareto optimal solutions (Mirjalili et al. 2016).  382 
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{ | , }D D

sP x R y R y x                                                                                                  (26) 383 

Pareto optimal front 384 

The Pareto optimal front is the projections of the Pareto optimal set in the objective functions 385 

space (Mirjalili et al. 2016). 386 

{ ( ) | }f sP f x x P                                                                                                                  (27) 387 

External repository 388 

This study used an external repository (archive) to store non-dominated solutions using an 389 

archive controller and adaptive grid mechanism (Coello et al. 2004; Mirjalili et al. 2016). 390 

Archive controller: 391 

The archive controller controls the entry of non-dominated solutions into the repository 392 

during the course of iteration based on the following conditions (Mirjalili et al. 2016). Let us 393 

consider a non-dominated solution sN  willing to enter into the repository.  394 

Case 1: Add sN  into the external repository if the archive is empty. 395 

Case 2: If sN  is dominated by one or more member in the external repository, then discard396 

sN . 397 

Case 3: If sN  is not dominated by any member in the external repository, then directly add it 398 

to the repository. 399 

Case 4: If one or more members in the external repository are dominated by sN  then remove 400 

the dominated members and add sN  to the repository. 401 

Adaptive grid mechanism 402 

The purpose of the adaptive grid mechanism is to maintain diversity among non-dominated 403 

solutions (Mirjalili et al. 2016).   404 

Case 5: If sN  fulfill the criterion (neither sN nor any individual in the repository dominate 405 

each other) to enter into the external repository but the repository is full, then invoke the 406 
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adaptive grid mechanism. To make space for sN , remove an individual from the most 407 

crowded segment of the repository using the roulette wheel selection method. If sN  lies 408 

outside the current bound of the grid, then recalculate the grid and relocate each individual of 409 

the grid (repository) to accommodate sN . The removal of individuals from the most crowded 410 

space of the repository helps to improve the diversity of the Pareto optimal solutions. Various 411 

parameters are used to implement the adaptive grid mechanism such as grid inflation 412 

parameter ( 0.1  ), the number of grid per each dimension ( 10gridn  ), best individual 413 

selection pressure parameter (   ), and repository individual selection parameter ( 2  ) 414 

(Liu et al. 2020). 415 

All the possible cases discussed above are also be represented in pictorial form (Fig.2). 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 
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 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

Selection of best individual 444 

The best individual selection mechanism chooses the least crowded segment of the search 445 

space using the roulette wheel selection method to emphasize better exploration (Mirjalili et 446 

al. 2016).  447 

Performance metrics 448 

In multi-objective optimization, performance matrices  such as inverted generational distance 449 

(IGD), spacing (SP), and maximum spread (MS) are used to check the convergence and 450 

diversity of the non-dominated solutions with respect to the true Pareto-optimal solutions 451 

(Deb 2012).  452 

 453 

 454 

Fig. 2. Pictorial representation of all the possible cases of archive controller 
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3. Formulation of management models for groundwater remediation 455 

 The amount of contaminant mass extracted from the aquifer with a pumping strategy 456 

can be expressed as,      457 

0e rM M M                                                                                                                         (28) 458 

Where 0M  is the total amount of contaminant mass in the aquifer before pumping, eM  459 

is the amount the contaminant mass extracted from the aquifer with a pumping strategy, and 460 

rM  is the remaining amount of contaminant mass in the aquifer after pumping. 461 

Mathematically, 0M  and rM  can be expressed as, 462 

0 0 0

1

gN

i i i i

i

M x y c


                                                                                                   (29a) 463 

1

gN

r i i i i

i

M x y c


                                                                                                     (29b) 464 

Where gN  is the number of spatial grids representing the aquifer domain;  is the porosity of 465 

the porous media; i ix y  is the area of the rectangular grid ‘ i ’  [L
2
]; 0i  is the hydraulic 466 

head value at grid ‘ i ’ prior to pumping [L]; 0ic  is the contaminant concentration at grid ‘ i ’ 467 

prior to pumping [ML
-3

]; i is the hydraulic head value at grid ‘ i ’ after pumping [L]; ic  is the 468 

contaminant concentration value at grid ‘ i ’ after pumping.  469 

The present study proposes two management models for the remediation of 470 

contaminated groundwater. In the first management model (Eq.30), the objective is to find 471 

optimal pumping locations with a constant pumping strategy by minimizing the percentage of 472 

remaining contaminant mass in the aquifer.  473 

0

0

100rM
Min OF

M
                                                                                                             (30a)  474 

[1, 2..... ]i cr N                                                                                                                       (30b)                                                                                475 
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1 2[ , ,..... ...... ]r i DW r r r r                                                                                                          (30c) 476 

1 2 ..... .....i Dr r r r                                                                                                            (30d) 477 

1 2

1 2( , ,..... ..... )
i D

i D

i r r r rf Q Q Q Q                                                                                                   (31e) 478 

1 2

1 2( , ,..... ..... )
i D

i D

i r r r rc f Q Q Q Q                                                                                                  (30f)      479 

1 2 ..... .....i n

QQ Q Q Q K                                                                                             (30g) 480 

Where ir  is an integer generated randomly within the range (1, )cN ; cN  is the total number of 481 

grids representing the locations of candidate pumping wells; rW  is a vector representing the 482 

locations of pumping wells which are randomly generated; D  is the total number of active 483 

pumping wells; 
ri

iQ  denotes that in the ir
th

 grid a pumping rate  of value 
iQ  is assigned; and484 

QK  is the constant pumping rate.  485 

The second management model considers minimizing two conflicting objectives 486 

simultaneously. The first objective minimizes water extraction rates, which can indirectly 487 

minimize the pumping cost and treatment cost. The second objective is to minimize the 488 

amount of contaminant mass in the aquifer.  489 

1 ,

1 1

wDT

i t

t i

Minimize OF Q
 

 
  
 
                                                                                               (31a)  490 

2

0

100rM
Minimize OF

M

 
  
 

                                                                                               (31b) 491 

min max

,i i t iQ Q Q                                                                                                                   (31c) 492 

max 1,2,3,.........
i

Td d i D                                                                                     (31d)                                                                                                                                                          493 

max 1, 2,3..........T

ic c i D                                                                                     (31e)  494 

Where, T  is the number of stress periods; wD  number of active pumping wells; ,i tQ  495 

represent pumping rate from the i
th

 extraction well in the t
th

 stress period; 
min

iQ and 
max

iQ  are 496 
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the upper and lower bounds of pumping rates for the i
th

 pumping well; 
T

id  is the hydraulic 497 

drawdown in the location of i
th

  extraction well; 
i

Tc  is the contaminant concentration in the 498 

location of i
th

 extraction well; maxd  is the permissible hydraulic drawdown; maxc is the 499 

permissible contaminant concentration; and cf  is a multiplying factor which is used to give 500 

the same weightage to both terms of the composite function.        501 

 502 

4. Model development 503 

In this study, finite difference method is used to simulate the subsurface flow and 504 

solute transport processes (Zheng and Wang 1999; Harbaugh, Arlen 2005). The groundwater 505 

remediation process is divided into two steps: (i) Determination of optimal pumping location 506 

for groundwater remediation (ii) Multi-objective optimization to obtain Pareto optimal 507 

solution. Both the steps are discussed below. 508 

 509 

4.1. Combinatorial optimization to determine the location of optimal pumping wells 510 

 Here, the simulation model is directly integrated with EMPA to develop the S-O 511 

model. The steps to find optimal pumping locations are: 512 

i) Select a set of grids ( 231cN  ) as the locations of candidate pumping wells. The 513 

set of candidate pumping wells can be expressed as: [1,2,3,..... ]cS N .  514 

ii) Assign the pumping rate ( iQ ) to zero to each pumping location. Mathematically,   515 

set    0 , [1, ]i cQ where i N   516 

iii) Generate a vector rW  of dimension ‘ ( 15)D  ’ representing the set of active 517 

pumping wells. Each element of rW   is an integer generated randomly within the 518 

range [1, 231].  519 
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iv) Assign a constant pumping rate ( QK ) to each active pumping locations. 520 

v) Using the Eq.(30), compute the fitness function value. 521 

vi) Compute optimal fitness value and corresponding vector of active pumping wells  522 

( vW ) by iteratively repeating steps (ii-v) using EMPA. 523 

 524 

4.2. Multi-objective optimization to find the Pareto optimal solution 525 

The optimal pumping locations obtained in the first step are directly used for multi-objective 526 

groundwater remediation. Here, a proxy simulator is developed by approximating the 527 

simulation models using the ERVFL network. The proxy simulator is further coupled with 528 

the multi-objective version of EMPA to generate Pareto optimal solutions for groundwater 529 

remediation. The steps are enumerated below. 530 

(i) In the simulation model, set the pumping well locations using the vector vW  as 531 

obtained in the 1
st
 step. 532 

(ii) Repetitively execute the simulation model to generate the input-output dataset to 533 

train EVRVL based proxy model. The input dataset are the extraction rates (534 

[ , ]Q LB UB ) within specified upper and lower bound, and the output dataset is 535 

the respective hydraulic drawdown ( d ), contaminant concentration ( c ), and the 536 

percentage of contaminant mass 
0

%rM

M

 
 
 

 in the aquifer. 537 

(iii) Train an ERVFL based proxy simulator using the input-output dataset. Check the 538 

accuracy of the proxy simulator.   539 

(iv) Integrate the ERVFL based proxy simulator with EMPA to develop the S-O 540 

model. 541 

(v) The management model for multi-objective optimization is the form of Eq. (31). 542 

Use the S-O models for obtaining Pareto optimal front representing the 543 
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relationship between optimal pumping rates and the percentage of remaining 544 

contaminant mass in the aquifer.   545 

 546 

5. Numerical Experiments 547 

 In this section, several numerical experiments are carried out to check the 548 

performance of the evolutionary marine predator algorithm (EMPA) for both single-objective 549 

and multi-objective optimization. 550 

 551 

5.1. Single objective optimization 552 

We here consider six composite functions to check the performances of the single-objective 553 

version of the EMPA with respect to the other metaheuristics (Particle Swarm Optimization-554 

PSO, Cat Swarm Optimization-CSO, Differential Evolution-DE, Grey Wolf Optimizer-555 

GWO, Marine Predator Algorithm-MPA). The composite functions are constructed by 556 

shifting, hybridizing, and rotating primitive multimodal and unimodal benchmark functions 557 

(Liang et al. 2005). The surface plot of the composite functions resembles many real-world 558 

optimization problems (Fig.S2-Supplementary). Due to the presence of massive numbers of 559 

local minima, the composite functions are ideal for checking the capability of metaheuristics 560 

to escape local minima as well as exploitation and exploitation ability. Three statistical 561 

parameters, viz. best, mean, and standard deviation, are used to measure the metaheuristics 562 

performances. Dataset for statistical analysis is generated by executing each metaheuristic 563 

fifty times for each benchmark function. The results of composite test functions are shown in 564 

Table 1. The results show that in most cases, the performance of EMPA is better than other 565 

metaheuristics in obtaining the optimal solutions.  566 

 567 
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Table 1. Statistical comparisons of the optimal solutions obtained by EHSMS and other metaheuristics for composite benchmark functions 568 

Function Statistical 

Parameters 

PSO CSO DE GWO MPA EMPA 

F10 Best 88.08 0.0321 97.84 0.0472 2.26 0.066 

SD 91.90 117.37 7.737 74.26 68.32 72.28 

Average 193.12 140.02 110.96 86.73 93.99 53.95 

Rank 6 5 4 2 3 1 

F11 

 

Best 88.05 0.0077 70.70 2.40 7.62 0.0422 

SD 67.80 87.55 18.94 71.77 50.88 41.66 

Average 164.94 90.01 107.28 76.76 73.04 61.42 

Rank 6 4 5 3 2 1 

F12 Best 95.19 0.0047 102.24 0.25 0.602 0.01358 

SD 68.11 115.46 11.44 94.21 45.59 63.9718 

Average 193.72 100.011 119.14 72.75 62.73 53.3714 

Rank 6 4 5 3 2 1 

F13 Best 88.05 0.0098 62.00 0.8258 2.52 0.0133 

SD 57.34 131.65 18.94 36.41 30.06 40.68 

Average 163.23 120.01 105.00 63.36 55.17 60.03 

Rank 6 5 4 3 1 2 

F14 Best 0.072 0.0034 65.50 0.7961 2.430 0.0111 

SD 79.78 113.53 19.57 99.98 51.67 61.41 

Average 164.30 120.012 105.49 46.02 55.02 45.69 

Rank 6 5 4 2 3 1 

F15 Best 21.50 82.61 89.27 3.620 2.281 0.0115 

SD 62.97 18.81 10.98 51.94 68.31 63.24 

Average 156.19 108.65 103.37 54.71 60.58 56.03 

Rank 6 5 4 1 3 2 

 569 
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5.2. Multi-objective optimization 570 

The performance of MO-EMPA in terms of convergence and diversity of the non-571 

dominated solutions is compared with the NSGA-II. The parameters of MO-EMPA and NSGA-572 

II are given in Table S6 (Supplementary). Following Got et al.(2020), two performance metrics 573 

namely inverted generational distance (IGD) and spacing (SP), are considered here. The IGD 574 

quantitatively measures the convergence of the approximate Pareto optimal front with respect to 575 

the true Pareto optimal front. On the contrary, the spacings are used to quantitatively measure the 576 

diversity of the non-dominated solutions in the approximate Pareto-optimal front. We here 577 

consider nine test functions from the literature (Zhang et al. 2009; Deb 2012). The test functions 578 

are: ZDT1 (convex), ZDT2 (convex), ZDT3 (discontinuous), 1UF (convex), 4UF (non-convex), 579 

5UF (discontinuous), 6UF ( discontinuous), 9UF (multi-modal) and 10UF (multi-modal). The ZDT 580 

test problems are relatively easy to solve. However, the UF test functions are the most 581 

challenging problems in the literature of multi-objective optimization. It is noteworthy to 582 

mention here that the smaller value of IGD and SP indicates the better convergence and better 583 

diversity of the approximate Pareto front. Fig.3 shows the non-dominated solutions obtained by 584 

MO-EMPA and NSGA-II.  585 

The MO-EMPA and NSGA-II are evaluated twenty times for each test function to 586 

compare them statistically in terms of IGD and SP metrics. The statistical results in the form of 587 

box plots for both IGD and SP metrics are shown in Fig. 4 and Fig. 5, respectively. In both the 588 

figure, the box plots indicate superior performance (better convergence behavior and better 589 

diversity) of MO-EMPA over NSGA-II for most of the test functions.  590 

 591 

 592 
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 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

Fig.3. Approximate Pareto optimal fronts of the benchmark functions obtained by MO-EMPA 

and NSGA-II with respect to true Pareto optimal front 
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 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

              Fig.4. Box plot showing statistical results for IGD 
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 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

6. Case study 651 

This study considers a highly heterogeneous unconfined aquifer for remediation of contaminated 652 

groundwater using the two-step approach. The domain of the aquifer and boundary conditions 653 

are almost identical to the East-Texas study area (Aquaveo 2018). However, many of the aquifer 654 

parameters are assumed and quite different than the East-Texas aquifer to make the aquifer more 655 

realistic and complex. The hydraulic conductivity field of the aquifer is generated using the 656 

truncated normal distribution shown in Fig.6. Fig.7a shows the aquifer domain with hydraulic 657 

conductivity fields and boundary conditions. Other aquifer parameters are: recharge ( rN ) = 658 

0.00006 m/d; bottom elevation ( be ) = 180 m; top elevation ( te ) = 230 m;  thickness  of the 659 

Fig.5. Box plot showing statistical results for SP 
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aquifer ( bH ) = 50 m; porosity () = 0.3;  specific yield ( yS ) = 0.2; transverse dispersivity ( T ) 660 

= 10 m; longitudinal dispersivity ( L )= 50 m; total number of stress period (T ) = 15; length of 661 

stress period ( t ) = 365 days; and time steps of each stress period ( t ) = 10 day.  There are five 662 

injection wells in the aquifer that act as continuous contamination sources (Fig.7a). The injection 663 

wells are injecting contaminated water into the aquifer at a constant rate of 75 m
3
/day for five 664 

years. Also, the concentration of contaminant in the injected water is 75000 µg /L. In this study, 665 

subsurface flow and transport of contaminants are simulated using MODFLOW and MT3DMS. 666 

The size of the spatial grid in the MODFLOW model is assumed to be 53.54 m×29.95 m. The  667 

contaminant contour after five year is shown in Fig.7b. Moreover, a zone for artificial recharge 668 

of area 720231.76 m
2
 is considered to dispose of the extracted water during the remediation 669 

process (Fig.7a). The simulation models are further coupled with the metaheuristics based on the 670 

two-step approach to develop management models  for remediating contaminated groundwater. 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 
Fig.6. Histogram showing hydraulic conductivity distribution 
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 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

6.1. Pumping well location optimization 699 

 The pumping well locations, which are the decision variables, are denoted by integers 700 

making it a combinatorial optimization problem. It should be noted that the pumping rates should 701 

be kept constant to find optimal locations for remediation. We here identified 231 finite-702 

difference grids as the candidate pumping well locations [Fig.7b]. The aim here is to select 15 703 

Fig.7. (a) An unconfined aquifer showing hydraulic conductivity field and boundary 

conditions (b) Contaminant contour due to continuous contamination for five years  and 

rectangular nodes represnting probable pumping locations   
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pumping wells out of 231 candidates by minimizing the Eq.(30). The total number of possible 704 

combinations is massive: 
231

15

231!

15!(231 15)!
C 


.   705 

Due to such a massive number of combinations and highly nonlinear relationships between the 706 

decision variables (pumping well locations) and fitness values (amount of contaminant mass in 707 

the aquifer), the numerical simulation model cannot be approximated using a proxy simulator 708 

with a finite number of training data. Hence, the finite difference based simulation model is 709 

directly integrated with the metaheuristics to achieve the objective. 710 

The pumping well locations obtained using EMPA and other metaheuristics are shown in 711 

Fig. 8. The fitness values corresponding to the optimal pumping locations are listed in Table 2. 712 

From the results, it can be deduced that the performance of EMPA is better than other 713 

metaheuristics in obtaining optimal pumping locations. Further, the performance of the 714 

metaheuristic are compared using the violin plots. A Violin plot is very similar to the box plot, 715 

except it also shows the probability distribution of numeric data using the kernel density 716 

estimator (KDE). In a Violin plot, the box and marker represent the interquartile range and 717 

median of the dataset, respectively. The whiskers represent the extreme values of the dataset, 718 

excluding outliers. The probability distribution plot also helps to assess whether the numeric 719 

dataset is sparse or multimodal. The dataset for violin plots is generated by executing each 720 

algorithm ten times to obtain the percentage of contaminant mass in the aquifer (Eq.30a). The 721 

violin plots obtained by EMPA and other metaheuristics are shown in Fig. 9. It is observed that 722 

the maiden value is least (minimum) for EMPA and maximum for PSO. The finding suggests the 723 

superior capability of EMPA in obtaining the median/average fitness value compared to other 724 

metaheuristics. The PSO is more prone to get entrapped in the local minima, which is the reason 725 
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for its poor performance. Further, we may get a fair idea of the data distribution by observing the 726 

interquartile range, whiskers, and probability density plots.  727 

Table 2. Fitness values ( 1OF ) corresponding to optimal pumping locations obtained using 728 

EMPA and other metaheuristics (Case study-2)     729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 PSO CSO DE GWO MPA EMPA 

Contaminant 

mass 

remained- 

0OF  (%) 

15.010 14.948 14.634 14.2611 14.283 13.328 

Rank 6 5 4 2 3 1 

Fig.8. Optimal pumping locations (with contaminant contour prior to start 

pumping) obtained using EMPA and other metaheuristics 
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 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

We further performed the Dunn and Sidák’s test to compare the metaheuristics results 759 

statistically. The Dunn and Sidák’s test results are interpreted in pictorial form (Fig.10a). In the 760 

figure, the lines represent the interval (range) of the data. A marker in the middle of the line 761 

shows the mean value of the dataset. Two different datasets are significantly different if their 762 

interval (line) is disjoint. The figure shows that the solution obtained by EMPA is significantly 763 

different and better in obtaining the optimal solutions than the other metaheuristics. Further, the 764 

convergence behavior of the three best algorithms (GWO, MPA, and EMPA) are shown in Fig. 765 

10b 766 

Fig. 9. Violin plot depicting the statistical results of the fitness value       

( 0OF ) using EMPA and other metaheuristics 
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 783 

6.2. Multi-objective optimization for groundwater remediation   784 

The optimal pumping locations obtained in the previous step are directly used here for 785 

multi-objective optimization. Here we first approximate the simulation models of groundwater 786 

flow and contaminant transport processes using the ERVFL network. The pumping rates (input 787 

dataset) are assumed to be in the range [-300, 0] m
3
/day. The output datasets are the respective 788 

hydraulic drawdown, the contaminant concentration, and the percentage of extracted 789 

Fig.10.(a) Visual interpretation of Dunn and Sidák’s test results (b) 

Variations of the fitness function ( 0OF ) with respect to iteration number   
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contaminant mass from the aquifer. A total of 15000 input-output datasets are generated by 790 

repetitively executing the simulation models. The datasets are further subdivided into two parts 791 

to train and test the ERVFL network separately. The number of hidden neurons is assumed as 792 

1000. Further, the cross-validation approach is used to compute the regularization parameter                   793 

( rC ) (Scardapane et al. 2015; Vuković et al. 2018). 794 

We search the regularization parameter ( rC ) in the interval 2 , { 15, 14,.......,15,14}j j    795 

to obtain minimum RMSE of the testing dataset. Once we obtain the regularization parameter (796 

rC ) in terms of 2 j , the value of rC   is further refined by searching around it. The cross-797 

validation approach identified the values of the regularization parameter ( rC ) as 0.76, 0.20, and 798 

2.3 in approximating the hydraulic drawdown, contaminant concentration, and the total amount 799 

of extracted contaminant mass, respectively.  800 

After training, the accuracy of the ERVFL network is further tested using the coefficient 801 

of correlation ( R ), and root mean square error ( RMSE ). In Fig. 11 (a, b, c), the coefficient of 802 

correlations in estimating hydraulic drawdown, contaminant concentration, and percentage of 803 

extracted contaminant mass using ERVFL are 0.992, 0.985, and 0.991, respectively. Also, in all 804 

the three cases, the RMSE values are small positive numbers [Fig. 11 (a, b, c)]. The results 805 

suggest the excellent generalization ability of the ERVFL model in approximating the numerical 806 

simulation model. The performance of ERVFL is further tested when the training dataset is 807 

corrupted due to outliers. We added one hundred outliers to corrupt the training dataset. Fig. 11 808 

(d) shows very poor performance ( R =0.793 and RMSE =758.40) of the original RVFL while 809 

computing the contaminant concentration. However, the performance of ERVFL is quite good 810 

when the training dataset is corrupted with outliers ( R =0.962 and RMSE =53.40). The results 811 
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indicate the superior performance of ERVFL over RVFL in approximating datasets corrupted 812 

with outliers. 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

  829 

 830 

 831 

Fig.11. Scatter plot depicting the relationship between (a) Drawdown computed using numerical 

model vs ERVFL (b) Concentration computed using numerical model vs ERVFL (c) Percentage of 

extracted contaminant mass computed using numerical model vs ERVFL (d) Concentration computed 

using numerical model vs RVFL (Data corrupted with outliers)  (e) Concentration computed using 

numerical model vs ERVFL (Data corrupted with outliers) (f) Predefined pumping well location for 

traditional approach 
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In the second step of the two-step approach, the aim is to obtain the Pareto-optimal 832 

solution of two conflicting objectives: minimization of total pumping rate and the minimization 833 

of the total amount of contaminant mass in the aquifer. The mathematical formulation of the 834 

management model is given in Eq. (31). Here we consider two metaheuristics:  NSGA-II and 835 

MO-EMPA. The Pareto-optimal solutions obtained using both the metaheuristics are shown in 836 

Fig. 12. The Pareto fronts are generated for four different sets of generations: 100T  , 250T  , 837 

500T   and 1000T  . From the visual appearance of Pareto fronts, it is observed that the MO-838 

EMPA is quicker (in terms of the number of generations) than NSGA-II to obtain the whole 839 

Pareto front. The Pareto fronts obtained using MO-EMPA  after 100 and 250 iterations are 840 

spread over a broader range of the objective functions space than NSGA-II. However, the spread 841 

of  Pareto optimal solutions after 1000 generations are similar for both the metaheuristics. It is 842 

noteworthy to mention here that we have relaxed the constraints mentioned in Eq. (31) to 843 

generate the whole Pareto front. 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 
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 862 
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 865 

 866 

 867 

 868 

 869 

 870 

Here, we check the effectiveness of the two-step approach with respect to the traditional 871 

approach for multi-objective groundwater remediation. In the traditional approach, the 872 

researchers manually fix/guess the pumping well locations by studying the concentration plume 873 

(Erickson et al. 2002; Yang et al. 2013; Jiang and Na 2020). Fig.11d also shows the predefined 874 

pumping well location used in the traditional approach. The manually defined pumping well 875 

locations are never the best pumping locations for effective groundwater remediation. Fig.13 876 

compares the Pareto-optimal solutions obtained using the two-step approach and the traditional 877 

Fig.12. Pareto optimal solutions depicting the relationship between pumping 

rate and the percentage of contaminant mass in the aquifer using NSGA-II vs 

MO-EMPA with varying generation number 
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approach. Here also, we consider four scenarios by varying the range of decision variables 878 

(pumping rates): (a) 55 45Q     (b) 60 30Q      879 

(c) 80 20Q      (d) 300 0Q   . 880 

The figure shows that the percentage of contaminant mass in the aquifer using the two-step 881 

approach is far less than the traditional approach for the same pumping rate. The difference in 882 

the percentage of contaminant mass for the same pumping rates is almost 15% for cases (a) and 883 

(b). Further, comparing the four scenarios, we also observed that the difference between the two 884 

Pareto optimal fronts is less prominent when the ranges of pumping rates (decision variables) are 885 

more. By increasing the range of pumping rates, we are giving more weightage to it in the 886 

optimization model than the pumping locations. This is the reason for such behavior of the 887 

Pareto front.  888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 
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 915 

7. Conclusion 916 

 In this study, simulation-optimization (S-O) models are proposed for multi-objective 917 

groundwater remediation by integrating the evolutionary marine predator algorithm (EMPA) 918 

with enhanced random vector functional link (ERVFL). The performances of the single objective 919 

version of EMPA in obtaining the optimal values of composite test functions are found to be 920 

better than other metaheuristics. Further, the performance of the MO(multi-objective)-EMPA is 921 

tested on a series of benchmark functions, and the results were found to be relatively better than 922 

NSGA-II in terms of two performance metrics viz. spacing and inverted generational distance.  923 

Fig.13. Pareto optimal fronts obtained using two-step approach vs traditional 

approach with varying decision variables range (a) 55 45Q    (b) 

60 30Q    (c) 80 20Q    (d) 300 0Q    
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 This study also proposes the ERVFL network as a proxy simulator to enhance the 924 

computational performance of simulation models. The ERVFL model showed excellent 925 

generalization ability in approximating the simulation model representing the groundwater flow 926 

and contaminant transport processes. Further, the ERVFL network performed significantly better 927 

than the original RVFL when the training dataset is corrupted with outliers.  928 

The most novel contribution of the present study is the use of the two-step approach for 929 

groundwater remediation. In the first step, the optimal pumping locations are obtained for 930 

groundwater remediation using combinatorial optimization by minimizing the amount of 931 

contaminant mass in the aquifer while keeping the constant pumping rates. The optimal solutions 932 

obtained using EMPA are compared with other metaheuristics using violin plots and Dunn and 933 

Sidák’s test. The results showed the superior performance of  EMPA over other metaheuristics in 934 

obtaining optimal pumping locations.  935 

The optimal pumping locations obtained in the first step are directly used in the second 936 

step to design multi-objective groundwater remediation strategies. The Pareto-optimal solutions 937 

(tradeof between optimal total pumping rates and percentage of contaminant mass in the aquifer) 938 

obtained using MO-EMPA is compared with NSGA-II. It is observed that the MO-EMPA 939 

generates the whole Pareto-optimal front with less number of generations compared to NSGA-II. 940 

The two-step approach is further compared with the traditional approach while varying the 941 

decision variables space. The comparison results show that the two-step approach is significantly 942 

better than the traditional approach for multi-objective groundwater remediation. The present 943 

study does not consider hydrological uncertainties for multi-objective groundwater remediation. 944 

In the future, hydrological uncertainties can be incorporated into the management model using 945 

chance constraints.  946 
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