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Abstract: Performing an experimental design prior to the collection of data is in most circumstances 
important to ensure efficiency. The focus of this work is the combination of model-based and 
statistical approaches to optimal design of experiments. The knowledge encoded in the model, is 
used to identify the most interesting range for the experiments via a Pareto optimization of the most 
important conflicting objectives. Analysis of the trade-offs found is in itself useful to design an 
experimental plan. This can be complemented using a factorial design in the most interesting part of 
the Pareto frontier.  
 
Keywords: model-based experimental design, multi-criteria optimization, parameter estimation, 
model discrimination.   

1. Introduction 

Reliable mathematical models are the key for the design, scale-up, and the optimization of processes. 
Even in the case of physically-sound high-fidelity models, assessing those against experimental 
measurements is an essential requirement for the model development. Models of practical 
engineering application invariably rely on a number of adjustable parameters which will require 
experimental data for their estimation and validation. Obtaining such experimental data is in most 
cases time-consuming and expensive. In this regard the methodology of Design of Experiments 
(DOE) plays a key role to plan the experiments in an efficient way, i.e. to achieve a maximum 
amount of information (information content) with the minimum number of experiments. An insight 
into the principles and strategies of experimental design can be found for instance in the review of 
Soravia and Orth [1] and in a historical review [2]. In particular, when a model is available, 
experimental design (known as model-based experimental design, see review of Franceschini and 
Macchietto [3]) can provide a reliable and efficient tool to discriminate among different possible 
models and to minimize the uncertainty in the model-parameter estimates (improve the statistical 
quality or parameter precision).  
 
Optimal model-based experimental designs make use of the model equations and current parameter 
values to decide on the next experiment through evaluation of an objective function and application 
of an optimization technique. When the current estimate of model-parameters shall be improved, a 
typical objective function is the sensitivity of measured variables (e.g., conversion rates, 
concentration profiles, temperatures, etc.) to the model parameter of interest (e.g., stage efficiency, 
effective interfacial area, catalyst activity, activity coefficients at infinite dilution, kinetic constants, 
etc.). In the case of model discrimination the aim is to identify experimental conditions that 
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maximize the divergence between the predictions of different models (e.g., an equilibrium-stage 
model versus a rate-based model, or a plug-flow reactor model versus a model of a tubular reactor 
with non-ideal flow behavior). A review on model discrimination techniques can be found in 
Schwaab et al. [4]. A different objective may also be finding experimental conditions that are not far 
from typical operation of the scaled-up plant or even reducing experimental uncertainties [5], [6].  
 
In practical applications there will be usually more than one quality measure or objective to be 
optimized in order to identify the most interesting range for experiments to be realized. Even if we 
are dealing with a parameter estimation problem the most frequent scenario is that not only the 
sensitivity of one measured variable to a single parameter needs to be optimized, but to several. An 
example may be a system exhibiting a complex reaction network; several kinetic constants may be 
needed to be determined in a laboratory experiment. This problem is readily addressed by using a 
multi-objective optimization (MOO), also known as multi-criteria optimization (MCO), and in a non-
trivial case the objectives will be conflicting so that there will not be a single solution optimizing all. 
 
The conventional approach to quantify the information content of an experiment in optimal 
experimental design is through Information Matrices, very often the Fisher Information Matrix (FIM) 
[7]–[9]. In principle the elements of the Information Matrix constitute single objectives of what is in 
essence an MOO problem. The objective function that is typically maximized is, however, a scalar 
function of the information matrix, thus the problem is ultimately approached using single-
optimization. In the definition of the objective function a certain optimality criterion is employed. 
Although attention has been paid to establishing different optimality criteria, differentiated by an 
alphabetic notation (the most common criteria are the A-, D- and E-optimality criterion [9]–[11]), 
there is no best definition as in practice all of them have strengths and weaknesses [3], and they may 
also be conflicting with each other for non-linear models [12]. For well-posed problems this type of 
simplification to single-objective optimization through the use of the design criteria just mentioned 
may be useful to deal with a considerable number of parameters; for ill-posed problems the direct 
application of these criteria can, however, lead to numerical instabilities and regularization 
techniques need to be applied [13].  
 
Resorting to approach the optimal design of experiments (ODE) using an MOO technique enables 
the study of the trade-offs between conflicting objectives in a systematic way. The approach to find 
best compromises in an MOO problem dealing with conflicting objectives is known as Pareto 
optimization, after the Italian economist Pareto [14]. The solutions to these problems, called Pareto 
optimal or non-dominated solutions, imply that the improvement of any of the objectives is not 
possible without worsening at least one other objective. The set comprising all these optimal 
solutions is the Pareto set, often referred to as the Pareto frontier of the MOO problem. Calculation 
of the Pareto frontier permits the user to have an overview of the design space, analyze trade-offs and 
make a judicious decision based on specific preferences.   
 
In the field of chemical engineering some works focusing on model-based experiment design (i.e., 
design of experiments for improvement of parameter precision and / or model discrimination) using 
Pareto optimization started to appear in recent years [15], [12], [16]–[24]. In the works of [19], [24] 
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the trade-off between experimental effort and information gain is studied. Other works have focused 
on using MOO approaches to find trade-offs between maximizing the information content and 
minimizing parameter correlation [17], [18], [20]. Facing the simultaneous solution of model 
discrimination and improvement of model parameters through competing objective functions has 
also been the subject of some studies [21]–[23]. In spite of considering MOO approaches these 
works tackle parameter estimation through one (or more) of the traditional scalar functions of the 
FIM, and no effort has been made yet to use MOO in order to balance objectives resulting from 
practical applications and the information content. In summary the application of MOO to ODE is 
still limited in the literature [3] and more effort is needed to exploit the potential of the technique to 
quantify different aspects of interest in further applications.  
 
This work emphasizes the benefits of employing Pareto optimization in model-based experiment 
design of laboratory and pilot plant setups taken from the literature. Here the different objectives of 
interest are not aggregated into one measure but they are each individually considered. In particular 
three case studies are discussed, where the objectives of the ODE involve conflicting aims such as 
reducing the uncertainty in estimated parameter values or in other estimated variables, operating 
close to typical process conditions and discriminating between models. A key element in the strategy 
suggested in this work is the use of methodologies that permit the user having a comprehensive 
analysis of the different trade-offs between the objectives involved. Based on this a judicious 
decision on the design of experiments can be reached. It is important to emphasize that the strategy 
suggested is general and the objectives can be freely chosen by the user. Furthermore, this strategy 
supports including further constraints of, for example, a pilot plant setup (e.g., loading ranges, safety 
limits, …); this is advantageous compared to a pure statistical design of experiments, which 
generally ignores any information contained in a model and therefore also suggests experiments that 
are probably less interesting. In the next section the strategy followed is described and the different 
objective functions considered in this work are generically introduced. The application of the tools 
presented is then illustrated for three cases studies with the intention not to determine strict designs 
but suggestions using straightforward and intuitive techniques for decision support in ODE.  

2. Methodology 

The strategy followed in this work to examine the different case studies consists of setting up the 
experiment design problem at hand as a MOO problem. In a first step, the multiple objectives are 
defined (see Section 2.1). In a second step, the set of Pareto-optimal solutions for the optimization 
problem are found with the MOO method described in Section 2.2. A sketch of a Pareto frontier for 
two objectives is represented in Fig. 1a. After analysis of the trade-offs found between the objectives 
of interest, the user can design an experimental plan which incorporates conditions spread out along 
the Pareto frontier. This selection is sketched along the Pareto frontier in Fig. 1a and in the 
optimization-parameter space in Fig. 1b. However, any model has admittedly certain uncertainty and 
the user can instead decide on sampling in the neighborhood of the conditions identified. To this end 
the user can alternatively compute an experimental plan with the statistical DOE approach described 
in Section 2.3 in a reduced range of experimental conditions which reflects such uncertainty. A 
sketch of the range chosen within the Pareto frontier and the corresponding experimental design 
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according to a statistical approach (a factorial design) is sketched in Fig. 1c (the latter is further 
explained in Section 2.3).  
      ((Fig. 1)) 
Simulations are carried out with the in-house process simulator CHEMASIM of BASF which 
provides functionalities for MOO, sensitivity studies and ODE [25], [26].   

2.1. Objective functions 
A number of different variables or parameters intervene in a given process model, as shown in Fig. 2. 
Let us assume a set of experimental output variables y affected only by stochastic errors ε (these can 
include effects such as measurement errors on the output variable, the effect of other variables, other 

sources of variation inherent in the process) which can be predicted by a non-linear model , , so 
that 

dependent on a set of Np model parameters θ and a set Nd of design or input variables x (a subset of 
which are used as optimization parameters). Different objective functions are considered in this 
work.                                                      
     ((Fig. 2)) 

 Sensitivity of the output variable  to a model parameter : 

The optimization problem for parameter estimation is based on maximizing the perturbation 
of the j-th parameter on the prediction of the i-th output. Usually in DOE first derivatives are 
used to estimate local sensitivity. Rather than derivatives we use averaged finite differences 
to compute the sensitivity of the output variables with respect to the parameters. These are 
evaluated in this work using a factorial design analysis following [11]. Factorial design 
avoids correlation between parameters [27]. Other schemes to calculate so called global 
sensitivities [26] are of course also possible.  
In problems with a larger number of parameters, it is not meaningful to use each individual 
sensitivity as an objective. Therefore a common practice when using first derivatives (i.e., the 
Jacobian matrix J) is to consider the Fisher Information Matrix (FIM = JTJ) and to choose a 
scalar metric (e.g., A, D, E criteria) as objective. The present methodology allows also 
employing these conventionally used measures in model-based design of experiments [7]–[9], 
in our case evaluated for one design point. Other alternative extension of our approach for 
problems with many parameters is to consider a sensitivity matrix S (which reduces again as 
in our case for one design to a vector) consisting of elements computed using global schemes. 
In that case a similar approach is possible: the in general non-squared matrix has to be 
converted into a squared information matrix (IM) through multiplication with its transpose, 
i.e,  

IM , (2)

before applying the same scalar metrics as for the FIM (e.g., determinants, traces, etc).   

 Closeness to production processes: 
The objective is in this case minimizing the distance to the operation point characterizing the 
production process. For a chosen output variable yi a typical process value is given by yi

p. An 
objective can be defined based on the squared difference, or for several variables the sum of 
the squared differences, as 

 , , (1) 
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 , . (3)

The process value may in practice not be well specified, in which case this objective may be 
simply replaced by minimizing or maximizing a typical production objective, e.g. the costs or 
the profit of a plant. 

 Model discrimination: 
The objective in this case consists of maximizing the difference in the predictions of the two 
models which, for Nm output variables yi predicted by models I and II as fi

I and fi
II can be 

expressed as  

 1
, , . (4)

 Considering the effect of the uncertainty in experimental measurements on the 
uncertainty in estimated values:  
Additional objective functions can be considered to find the operation conditions where the 
error propagation of experimental uncertainties to estimated variables is minimized. Let us 

assume a variable  whose value is estimated out of a number Ne of experimental variables zi 

– these can be input or other output variables. Neglecting correlation or assuming the 
variables to be independent, then the objective function is in this case of the form 

 ∆ , (5)

where Δzi is the experimental uncertainty in the measured variable zi. 
This list presents a variety of objective functions that are applicable for many ODE problems. The 
method presented in this work, however, is not limited to these objective functions. In principle, the 
user can define any objective function based on the given input variables, output variables, and / or 
model parameters.  
 

2.2. MOO  
An adaptive method [25], [28] based on a hybrid algorithm is employed here to calculate a minimal 
number of Pareto-optimal solutions to linearly approximate the complete Pareto frontier within a pre-
defined tolerance. The methodology has previously been employed within product and process 
design and optimization [25], [26], [29]–[31], and parameter estimation of molecular simulation 
[32]–[34] and thermodynamic models [35].  

2.3. Statistical DOE  
An experimental plan is computed for a pre-specified number of experiments. The experimental 
conditions are set based on a factorial design matrix for the input variables chosen by the user. In the 
factorial design, the lower and upper limits of the input variables are identified by the user from the 
results of the MOO. A complete factorial design does not necessarily need to be set up, but the 
number of experiments is decided based on the estimated gain in relative variance that can be 
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achieved (the accuracy in the estimated parameters can ideally –i.e., for linear models- be increased 
proportionally to the number of experiments [11], [36]). The feasibility of the experimental plan can 
then be checked and an alternative feasible design can be suggested if necessary.  

3. Case Studies 

3.1. Cumene process 
The industrial process to produce cumene (isopropyl benzene) has been optimized in the literature by 

different authors (e.g., [37]–[39]). A simplified sketch with the main elements is shown in Fig. 3.  
((Fig. 3))  

The production of cumene involves the reaction of benzene and propene in a gas-phase reactor at 
high temperature and pressure 

C6H6  C3H6 ⇌ C9H12,
(benzene)  (propene)  (cumene) 

and a sequential reaction between the unreacted propene and cumene to produce the byproduct p-
diisopropyl benzene: 

C9H12  C3H6 ⇌ C12H18.

(cumene)  (propene)  (p-diisopropyl) 

In this work the forward kinetic constants k1 and k2 of these two reactions are considered uncertain. 
An experiment of interest aims at improving the precision of the kinetic constants while working 
close to typical process conditions and within the operating limits of the plant. Obviously a 
production plant is not intended to be used for experimental investigations but this is used here as an 
example for a mini- or pilot plant; the process might in principle be easily scaled down, which does 
not change the following principal findings. The task for improving the kinetic constants is therefore 
to maximize the sensitivity of appropriate measured variables to changes of the kinetic constants 
while staying not far from realistic process conditions. The measured variables chosen to define the 
sensitivities are the yields of cumene Ycum and p-diisopropyl benzene Ydip in the reactor with regards 
to the amount of propane at the inlet, while typical process conditions are defined based on 
minimizing production costs, in particular operational expenditures divided by the amount of cumene 
produced. The forward kinetic constants (uncertain parameters) of the reactions described are varied 
upon changes of ±10% using a factorial design as sampling method. (This uncertainty is chosen 
according to practical experience with kinetic models. The specific magnitude is only used here for 
demonstration purposes. Since we do not focus on partial derivatives as sensitivities, but allow finite 
differences or other global sensitivity measures [27], these rather large uncertainties can be handled). 
To reduce the complexity in the visualization of the results the third objective (minimizing the 
production costs) is set as a constraint following an epsilon-constraint method [40]. The optimization 
parameters are the temperature of the reactor Tr, the feed ratio Rpb of propene to benzene (both fed 
and recycled), the reflux ratios (RR1 and RR2) and the split ratios (S1 and S2, see Fig. 3) in the 
distillation columns, and the load of the plant (capacity over a nominal value of 98 kT per annum). 
The results of the MOO problem are shown in Fig. 4 for different upper-bound values of the 
constraint in the production costs (contour lines). It can be seen that for the conditions studied the 
sensitivity measures are conflicting objectives and they further conflict with the cost objective (the 
calculations suggest however that there may be a limit in the conflict between the sensitivity measure 
for the yield of cumene and the cost objective). In general the changes in the sensitivity of the yield 
in diisopropyl benzene are smaller, but also the nominal values for this yield are smaller. It is seen 
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that permitting higher costs leads in general to higher yields in the byproduct and lower yields in 
cumene. These results are tabulated in the supporting information along with the parameter values. 
The MOO results obtained are in themselves an important result to design an efficient experimental 
plan. In fact, if one compares the original ranges in which the parameters are allowed to vary during 
the optimizations and the final ranges where the Pareto-optimal solutions are located (see Tab. 1), it 
can be noticed that the range in the values of the parameter space has been considerably reduced. The 
range of possibilities where to conduct experiments are therefore reduced. Further reductions in the 
region of interest will depend on the preferences of the user and an example as well as the proposed 
experimental design in that region is given in the supporting information, where we have chosen the 
minimum number of experiments. As already mentioned, doubling the number of experiments can 
ideally –i.e., for linear models- halve the uncertainty in the measured variables.    

((Fig. 4 and Table 1)) 

3.2. Laboratory Reactor to measure the kinetics for reactive distillation 
The kinetics of a given reaction are often studied in the laboratory using standard procedures 
independently of the conditions at which the reaction occurs in the real process. Understanding the 
reaction kinetics at conditions close to those used in the actual process may however be important for 
the reliable design and operation of the latter. In this example the process of interest is a 
heterogeneously catalyzed reactive distillation (HCRD) where the reaction occurring is the 
esterification of n-hexyl acetate [41], [42], i.e.,  

C6H13OH  CH3COOH ⇌ CH3COOC6H13 H2O.	
(1-hexanol)  (acetic acid)  (n-hexyl acetate)  (water) 

This type of reaction can be studied using standard laboratory reactors such as a batch reactor [43], a 
tubular reactor [44], or a continuous stirred tank reactor [41]. The drawback of all these reactors is, 
however, that the concentration of water is increasing when the reaction is progressing. In contrast, 
the concentration of water in the reaction zone of the HCRD column is typically very low because 
water, which is the lightest boiling component in this system, is continuously removed from the 
liquid phase. As the concentration of water has a significant impact on the catalyst [45], [46], a 
continuous stirred-tank reactor (CSTR) with partial evaporation of the liquid mixture is considered in 
this work that enables to measure the reaction kinetics while keeping the concentration of water in 
the liquid phase low i.e. similar to those found in the reactive zone of the HCRD column. A sketch of 
this reactor setup is shown in Fig. 5. More details can be found in [41]. Compared to the standard 
CSTR without evaporation, the uncertainty in the determination of the reaction kinetics are with this 
reactor setup larger because of the propagation of the experimental error in the analysis of the 
composition and the mass flow rate in the vapor stream. Thus, important questions for the ODE are 
not only which experimental parameters should be chosen to maximize the sensitivity of a chosen 
observable (the mass fraction of hexyl acetate in the product) with respect to changes in the uncertain 
parameter (the forward kinetic constant of the reaction) but also which experimental parameters 
ensure a low concentration of water in the liquid phase (closeness to the process) and whether the 
gain in these two objectives justify the larger experimental complexity and the associated larger 
experimental error (details regarding experimental errors are given in [47]). The latter affect the 
uncertainty in the determination of the reaction kinetics, as mentioned, which is included as a third 
objective in the optimization task following Equation (5). The optimization parameters are the feed 
mass flow rate (the composition is kept equimolar) and the heat duty. A constraint to limit the 



Manuscript - Forte et al.  Page 9 

maximum flow rate of vapor is set. The results of the optimization with the three objectives of 
interest for the CSTR with partial evaporation are compared to the standard CSTR in which no vapor 
is produced (i.e., what would be a typical laboratory setup to measure the kinetics) in Fig. 6 (see also 
supporting information for the numerical values). It is clearly noticeable that with CSTR with partial 
evaporation the sensitivity can be increased while at the same time the water content can be 
decreased. Analyzing the results in more detail one finds that the lower the water content, the higher 
the uncertainty in the determination of the rate of reaction (see also supporting information). In view 
of the results it would be advisable to work with evaporation and in a region of experimental 
conditions where an increase in sensitivity and a decrease in water content are achieved without 
increasing excessively the uncertainty in the rate of reaction. Given the strong curvature of the Pareto 
Frontier, this region where the sensitivity is maximized (indicated in Fig. 6 and also in the supporting 
information) may be a good suggestion for collecting experimental data. The proposed experimental 
design is given in the supporting information.    
     ((Fig. 5 and 6)) 

3.3. Reactive distillation column 
The conversion of the esterification reaction described in the previous case study is in principle 
limited by chemical equilibrium, but can be enhanced by integration of separation in situ. In cases as 
this one, the application of heterogeneously-catalyzed reactive distillation (HCRD) is beneficial.  
Recently, HCRD experiments were carried with a laboratory setup that consists of a number of units 
combining a distillation tray and a catalyst-bed reaction section (so-called D+R trays) [42]. The 
experimental setup is sketched in Fig. 7.  

((Fig. 7)) 
Two models are suggested [48], [49] to describe each of these D+R trays, as sketched in Fig. 8. The 
first one (Model A, seen in Fig. 8a) consists of a vapor-liquid equilibrium (VLE) stage with a 
superimposed CSTR (i.e. the reaction is kinetically controlled); in the second (Model B, seen in Fig. 
8b) the arrangement of these two elements is sequential and the catalyst bed is modeled as a series of 
CSTRs to mimic the characteristics of a plug-flow reactor (PFR) [49]. Discriminating between these 
two models is the motivation for an experimental design discussed in the following. With this aim, a 
first objective is built based on the sum of the differences in the predictions by the two models 
regarding the product composition at various measuring points along the column, which is set to be 

maximized so as to discriminate between the models. This objective, A,B
m,HexAc,x  is calculated 

considering a total of eight sampling points (one after each D+R tray the experimental setup consists 
of), following the real setup [42]; the difference in the compositions are summed as shown in 
Equation (4) for the eight liquid streams. To be close to the real process conditions the conversion 

B
HexOHX in the benchmark model (Model B developed by [49]) is set to be maximized as a second 

objective. The optimization parameters are the feed flow rate, the amount of catalyst and the ratio of 
the reboiler duty to the feed flow. In Fig. 9a it can be seen that both objectives are conflicting and the 
Pareto frontier is non-convex. If the aim is increasing the conversion, higher values for the mass of 
catalyst (Fig. 9b), the feed rate (Fig. 9c) and the heat to feed ratio (Fig. 9d) are favorable. By means 
of this ODE approach experimental parameters can be identified for which the two models predict 
significant differences in the concentration profiles but where the closeness to the production process 
(i.e. the conversion of hexanol) is still high. The results are also tabulated in the supporting 
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information. It has been noted that the conversion calculated with model A follows the same trend 
and is in all cases higher; on the other side, the purities achieved are throughout higher than 0.9 in 
mass fraction for both products (cf. supporting information). The variation of the experimental input 
parameters that correspond to the Pareto frontier shown in Fig. 9 a) can be used as an experimental 
plan by itself; alternatively, as described above depending on the preferences of the user, a region of 
the Pareto frontier can be chosen, as suggested in the supporting information to carry out statistical 
DOE.   

((Fig. 8 and 9)) 

4. Conclusions 

In this work the capabilities of using MOO in the field of ODE for model development have been 
illustrated using three case studies as examples. Different type of conflicting objectives have been 
considered involving aims such as improving parameter precision, working at conditions close to the 
process and discriminating between alternative models. It has been demonstrated that the usage of 
reliable tools to compute Pareto sets can provide the user with useful information to study the trade-
offs between the pertinent objective functions and support him in the selection of the most interesting 
range of experimental conditions in a straightforward and intuitive way. Furthermore arbitrary 
constraints of the experimental setup can be taken into account. This helps the design of an efficient 
experimental planning, which can then be complemented through combination with statistical DOE.   
 

Symbols used 

Symbols 

ki   kinetic factor of reaction i  

mi [kg]   mass of component i 

ṁ [kg h-1]  total mass flow  

Q̇ [kW]  heat duty 

Jn   nth objective function  

r [mol mol-1 h-1] rate of reaction 

Rpb [mol mol-1] molar mixing ratio propene to benzene  

RRi   reflux ratio in column i 

Si    split ratio in column i 

T [K]   temperature  

Tr [K]   temperature of the reactor 

Yi [mol mol-1]  yield of component i 

xi [mol mol-1]   molar fraction of component i 

xm,i [g g-1]   mass fraction of component i 

Xi   conversion of component i 
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Sub- and superscripts 

A   Model A 

B    Model B 

cat    catalyst 

cum   n-cumene 

dip   p-diisopropylbenzene 

f   feed stream 

HexAc   n-hexyl acetate 

HexOH  1-hexanol 

m  

p    product steam 

prop   propane 

prope   propener   reactor 

Wat   water 

 

Abbreviations 

CSTR   continuous stirred-tank reactor  

DOE   design of experiments 

HCRD   heterogeneously-catalyzed reactive distillation 

FIM    Fisher Information Matrix 

MCO    multicriteria optimization 

MOO    multi-objective optimization 

ODE   optimal design of experiments 

PFR   plug flow reactor 
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Figure captions 
Figure 1: Sketch of a) a Pareto frontier computed for two objectives (J1 and J2), b) a suggestion for 
an experimental plan for three optimization parameters (x1, x2 and x3) based on a selection of Pareto-
optimal solutions and c) an alternative experimental plan based on a factorial design. The grey dotted 
line represents the (unknown) Pareto frontier, and the filled circles are Pareto-optimal solutions; the 
darker circles represent a certain selection of Pareto-optimal solutions for a possible experimental 
plan. The dashed red curve represents the region selected for a factorial design, and the blue 
diamonds represent the corresponding experimental plan according to a full factorial design. 
Figure 2: Variables and parameters intervening in a process model for the design of experiments.  
Figure 3: Simplified sketch of the process for the industrial production of cumene. The purities of 
the feed (xprope) and product (xcum) are specified. 
Figure 4: Pareto-optimal solutions for three values of the production costs (475 €/T as red squares, 
477 €/T as blue circles and 479 €/T as yellow diamonds) for the case study of the cumene process. 
Values of a) the two sensitivity measures chosen as objectives to be maximized (that of the yield of 
cumene to changes in k1, and that of the yield of diisopropyl benzene to changes in k2) and b) the 
respective yields The values are here calculated using a dimensionless kinetic constant. 
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Figure 5: Simplified sketch of the CSTR with partial evaporation employed to measure the kinetics 
of the catalysed esterification of n-hexyl acetate and values of the main design variables fixed during 
the optimizations. 
Figure 6: Pareto-optimal solutions for the case study of the laboratory reactor. Note that the 
sensitivity measured is maximized whereas the water content and the uncertainty in the rate of 
reaction are minimized. The three objective functions are shown a) in a three-dimensional diagram, 
b) as a projection of the sensitivity measure versus the concentration of water and c) as a projection 
of the sensitivity measure versus the uncertainty in the rate of reaction. In all cases results for the 
CSTR with partial evaporation are presented as red diamonds and for the CSTR without evaporation 
as green triangles. The region chosen for experimental design is indicated with black marker-edge 
colors. The values are calculated using a dimensionless kinetic constant. 
Figure 7: Sketch of the HCRD experimental setup. 
Figure 8: Schematic of the two models used to describe the D+R trays (delimited by the 
discontinuous lines) in the HCRD column: a) VLE stage with single CSTR superimposed and b) 
VLE stage with a number of sequential CSTRs.   
Figure 9: Pareto-optimal objective and parameter values for the case study of the HCRD column. In 
the first subfigure a) the two objectives (the conversion obtained in Model B and the differences in 
concentration of Hexyl Acetate for both models along the column) are plotted; the second objective 
is plotted against b) the mass of catalyst, c) the feed flow rate and d) the ratio of heat duty to feed 
flow. 
 

Short text 
The capabilities of multi-objective optimization in the field of model-based experiment design are 
demonstrated using three case studies from examples at laboratory and pilot-plant scale.   
 

Tables: 
Table 1 – Reduction in the original parameter space after Pareto optimization 

Parameter  Initially allowed range  Pareto‐optimal range 

Tr / K  [340; 400]  [340.0; 341.1] 

Rpb / mol mol‐1  [0.2; 0.9]  [0.44; 0.65] 

RR1  [0.1; 1]  [0.100; 0.201] 

RR2  [0.1; 1]  [0.285; 0.396] 

ln(S1)  [‐12; ‐1]  [‐1.261; ‐2.480] 

ln(S2)  [‐12; ‐1]  [‐9.277; ‐10.220] 

Load  [0.6; 1.2]  [0.600; 1.024] 
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