
Simulated Rain Algorithm: A new metaheuristic method for optimization

problems

Chi Rui, Chi Xuexin

ABSTRACT: This paper presents a new heuristic method named simulated rain algorithm

(SRA) for global optimization problems. The SRA simulates the steps of rainfall in nature,

such as the splitting and merging of raindrops and the formation of rain water. And then,

based on these steps, an effective mechanism is derived to solve the global optimal problem.

Finally, the performance of SRA is benchmarked on 8 classical test functions, and the

experimental results validate the effectiveness of the proposed simulated rain algorithm.

INTRODUCTION

Heuristic algorithms are widely used due to their simple structure, flexible application and

convenient implementation [1]. They are not only used in the computer science-based

academia, but also applied in some practical engineering fields, thus promoting the

development of human science and technology [2]. Heuristic algorithms have been

developing steadily. In the early years, professor Kennedy J and Eberhart R proposed the

classical particle swarm optimization (PSO) algorithm [3]. Professor Mei proposed a genetic

algorithm (GA) [4]. In recent years, a large number of excellent heuristic have emerged, such

as the grey wolf algorithm (WOA) proposed by Professor Mirjalili et al [5], the beetle

antennae search (BAS) algorithm proposed by Professor Xiangyuan Jiang and Shuai Li [6],

and so on. Inspired by the phenomenon of rain in nature, a new heuristic algorithm named

simulated rain algorithm (SRA) is designed in this paper.

simulated rain algorithm DESIGN

In a dark cloud, there will be a certain amount of raindrops. When the raindrops reach a

certain mass, it will fall to the ground. Then, each raindrop collides with the ground and splits

into more small raindrops, and the small raindrops coalesced into a new one. Finally, the new

raindrops fuse to form rainwater, and flow to the lowest position. According to the detailed

description, the simulated rain algorithm is composed of four parts: generating initial

raindrops, splitting into small raindrops, combining into big raindrops, and forming flowing

rain water.

Generating initial raindrops

Black clouds represents the range of solution space, and the random initial raindrops

represent the initial population of the simulated rain algorithm. The number of initial

raindrops is the population size of the simulated rain algorithm, expressed in PN . The position

of initial raindrop is generated by formula (1) .

(0,1) ()min max min
i i i i Px x rand x x i N   
    ， =1,2, , (1)

Where (0,1)rand is a random number with uniform distribution. min
ix
 and max

ix
 are the upper

and lower limits of the solution space, respectively.

Splitting into small raindrops

After raindrop collides with the ground, it splits up more small raindrops with the current

raindrop as the center and kR as the radius. Assuming that the maximum number of small

raindrops produced by the current raindrop is SN , and kR decreases with the number of

iterations. The positions of these small raindrops are obtained by formula (2) .

(1,1)

()max max min

max

j i k S

k

u x rand R j N

kR R R R
k

   



   

  ， =1,2, ,

(2)

Where ju
 is the position of the split little raindrop. (1,1)rand  is a group of uniformly

distributed D -dimensional random numbers. kR represents the coverage radius of a raindrop

that splits into small raindrops. maxR and minR represent the maximum and minimum values of

kR , respectively.

Combining into big raindrops

The split small raindrops are recombined into large raindrops, and the positions of SN small

raindrops in kR region are added based on formula (3) , and then the current positions of big

raindrops are obtained by taking their average values.

1

1 SN

i j
jS

x u
N 

   (3)

Forming flowing rain water

Most of the raindrops flow to the lowest position. Rainwater is formed in the process of

dynamic accumulation of raindrops. Raindrops farther from the lowest position may not sink

into the rainwater due to the complex topography; raindrops closer to the Nadir may lose

kinetic energy and thus cease to flow. These two types of raindrops are labeled as invalid

raindrops and need to be discarded from the population, and then randomly generated

raindrops are replenished into the population based on the number of invalid raindrops. i is a

measure of the weight of raindrops in the population. When max min
i    , raindrops update

their positions according to formula (4). Otherwise, raindrops update their positions according

to formula (5).

(1) (1,1) (1,1) best
i i Pi i i Gi ix rand V x rand V x           
   (4)

(0,1) ()min max min
i i i ix x rand x x   
    (5)

()

()

()

max

max min

max max min

max

max max min

max

i
i

Pi P P P

Gi G G G

f f x
f f

kV V V V
k
kV V V V
k


 

 


  

   








(6)

Where PiV (1,1)rand  and (0,1)rand are random numbers that conform to the normal

distribution; PiV is the contraction factor of the current raindrop ix
 , max

PV and min
PV are the

upper and lower limits of PiV , respectively; GiV is the search factor of the optimal raindrop
best
ix
 , PiV and GiV are the upper and lower limits of GiV , respectively. PiV and GiV decrease

linearly based on formula (6) .

The simulated rain algorithm procedure

From the above description, the pseudo-code of the simulated rain algorithm is described in

Fig. 1.

simulated rain algorithm (SRA)

Initialize max , , , , ,max min max minmax min
P S P P G GN N D k R R V Vu Vl V

 
，， ， ， ， ，

Generate the individuals (1,2, ,)ix i N
  randomly by using (1)

While (k < Max Generation) or (the stop criterion is not met) do

For each individual 1i N  do

Splitting into small raindrops by using (2)

Combining into big raindrops by using (3)

Forming flowing rain water by using (4)

Evaluate the fitness values of the new solution ((1))if x k 

If (((1)) (())i if x k f x k 
 )

Replace ()ix k by the new solution (1)ix k 

End if

End for

End while

Output optimal solution

Fig. 1 Pseudo code of the simulated rain algorithm

BENCHMARK TEST

Benchmark Functions

In order to verify the effectiveness of the proposed algorithm, the simulated rain algorithm is

tested by the 8 benchmark functions [7], and compared with PSO and GA algorithms. The set

of benchmark functions is shown in table 1. These benchmark functions have their own

characteristics, both unimodal functions and multimodal functions, which can be more

comprehensive detection algorithm performance [8]. In order to ensure the fairness of the

experiment, all methods are executed on the same platform, Intel core i5-7200U 2.50 GHz

processor, 4.0 GB memory, and Windows 7 operating system with Matlab 2013b.

Table 1 Benchmark functions.

No. Name Formula D Range Optima
F1 Sphere 2

1
1

()
D

i
i

F x x



10 [-100,100] 0

F2 Schwefel 2.22
2

1 1

()
DD

i i
i i

F x x x
 

  
10 [-10,10] 0

F3 Rastrigin 2
3

1

() (10cos(2) 10)
D

i i
i

F x x x


  
10 [-5.12,5.12] 0

F4 Griewank 2
4

1 1

1() cos() 1
4000

nD
i

i
i i

xF x x
i 

   
10 [-600,600] 0

F5 Sum square 2
5

1

()
D

i
i

F x ix



10 [-10,10] 0

F6 Quadric 4
6

1

() random(0,1)
D

i
i

F x ix


 
10 [-1.28,1.28] 0

F7 Powell /
2 2 4 4

7 4 3 4 2 4 1 4 4 2 4 1 4 3 4
1

() [(10) 5() () 10()]
n k

i i i i i i i i
i

F x x x x x x x x x     


        24 [-4,5] 0

F8 Zakharov 2 2 4
8

1 1 1

() (0.5) (0.5)
D D D

i i i
i i i

F x x ix ix
  

    
10 [-5,10] 0

Parameter setting

For these three algorithms, the population size PN is set to 20; the maximum number of

iterations maxk = 2000. The other parameter settings are listed in table 2.

Table 2 Parameter settings for the three algorithms.

Algorithms Parameter settings
PSO

1 2 2c c  , 0.4minw , 0.9maxw
GA 0.7pc  , 0.3pm  , 0.1mu 
SRA 5SN  , 10maxR  , 0.0005minR  , 4max

PV  , 0.0005min
PV  , 2max

GV  , 0.0005min
GV 

Simulation and comparison

The experimental data of SRA, PSO and GA are calculated by running each benchmark

function 50 times independently. The best value (Best), worst value (Worst), mean value

(Mean) and standard deviation value (SD) are used to evaluate the performance of each

algorithm for function optimization problems. The optimization results of the three algorithms

for these eight benchmark functions are shown in Table 3. At the same time, in order to

visually observe the dynamic optimization process of these algorithms, figure 3 draws the

convergence curves of the three algorithms for 8 benchmark functions. The vertical axis of the

graph represents the optimal value obtained by each iteration of the algorithm (for ease of

comparison, the logarithm of the optimal function value obtained is base 10) , and the

horizontal axis of the graph represents the number of iterations of the algorithm.

Table 3 Experimental results.
Function
Criteria

F1 Sphere F2 Schwefel 2.22
Best Worst Mean Std Best Worst Mean Std

PSO 5.14E-06 1.23E-02 1.50E-03 2.20E-03 4.50E-03 1.206E-01 2.87E-02 2.52E-02
GA 9.64E-05 9.2E-03 1.4E-03 1.60E-03 3.32E-04 1.11E-02 2.7E-03 2.3E-03
SRA 3.32E-14 1.79E-08 4.90E-09 7.49E-09 1.96E-06 1.20E-04 4.18E-05 4.87E-05
Function
Criteria

F3 Rastrigin F4 Griewank
Best Worst Mean Std Best Worst Mean Std

PSO 1.67E-02 9.61E+00 6.70E+00 2.08E+00 3.82E-02 3.91E-01 1.54E-01 8.49E-02
GA 1.13E-06 5.5E-03 7.29E-04 9.82E-04 4.74E-04 1.09E-01 4.93E-02 2.54E-02
SRA 3.06E-13 2.14E-09 4.91E-10 6.21E-10 5.33E-11 1.69E-08 6.59E-09 7.26E-09
Function
Criteria

F5 Sum square F6 Quadric
Best Worst Mean Std Best Worst Mean Std

PSO 1.00E-04 1.86E-01 2.02E-02 3.53E-02 6.70E-03 4.27E-02 2.48E-02 8.60E-03
GA 1.58E-05 4.80E-02 7.20E-03 1.09E-02 9.00E-04 5.60E-03 2.80E-03 1.10E-03
SRA 7.21E-13 8.97E-08 1.16E-08 2.75E-08 1.01E-04 2.01E-03 7.39E-04 5.67E-04
Function
Criteria

F7 Powell F8 Zakharov
Best Worst Mean Std Best Worst Mean Std

PSO 2.28E-01 1.56E+02 5.21E+00 2.19E+01 1.94E-05 3.37E+01 6.74E-01 4.76E+00
GA 4.80E-03 7.83E-02 4.18E-02 2.02E-02 9.48E-02 1.91E+00 6.347E-01 4.38E-01
SRA 1.57E-12 7.19E-10 3.01E-10 2.71E-10 2.54E-11 1.96E-08 3.74E-09 6.14E-09

Fig. 2 Sphere function Fig. 3 Schwefel 2.22 function

Fig. 4 Rastrigin function Fig. 5 Griewank function

Fig. 6 Sum square function Fig. 7 Quadric function

Fig. 8 Powell function Fig. 9 Zakharov function

As can be seen from table 3, SRA performed best for the eight benchmark function tests. The

best value and the worst value are the smallest, indicating that in 50 independent runs, the

SRA search accuracy is the highest; The mean value and standard deviation vaule are also

minimum, which indicates that the coverage space quality of the optimal value found by SRA

is better, and the stability of each run of SRA is also the best. Fig. 2 to Fig. 9 show the

dynamic convergence of the three algorithms. From Fig. 2, 4, and 8, we can see that for F1, F

3, and F7 functions, SRA can quickly reach the optimal value and the convergence precision

is the highest, the global and local search capabilities are much better than those of PSO and

GA; F4 function is a multimodal function, for which the SRA search performance in the early

iterations is not much different from the other two algorithms, but SRA can jump out of local

optimum in 350s, 450s and 750s, and show strong global search ability. For F2, F5 and F6

functions, SRA performs worse than PSO and GA at the early stage of iteration, however,

SRA can jump out of local optimum in the middle and late stages of iteration, thus further

improving the convergence precision; for the F8 function, the optimization ability of SRA

before 800 generations is not much different from that of PSO, but SRA can be used to

improve the convergence precision in the search process, in two cases, the local optimum is

jumped out, which improves the optimization performance. Based on these numerical

experiments and statistical analysis, SRA shows strong optimization performance in

convergence speed, search accuracy, algorithm stability and dynamic convergence process.

CONCLUSION

This paper presents a new heuristic optimization algorithm (SRA) to solve the optimization

problem. This method simulates the phenomenon of rainfall in nature. In order to verify the

optimization performance of the proposed algorithm, 8 classical benchmark functions are

used to test, and compared with PSO and GA algorithm. Experimental results and

convergence curves prove the effectiveness of the proposed algorithm.

REFERENCES

1. Rui Chi, Zheng Li et al (2021) Reactive Power Optimization of Power System Based

on Improved Differential Evolution Algorithm. Mathematical Problems in

Engineering 2021:1–19.

2. YuJun Zheng, Sheng YongChen, HaiFeng Ling (2015) Optimal power flow by

Newton approach. Applied Soft Computing 27:553-566.

3. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In:

Proceedings of the 2007 IEEE Swarm Intelligence Symposium, pp 120-127.

4. Mitchell M (1998) An introduction to genetic algorithms. MIT press, London.

5. Mirjalili S, Mirjalili et al (2014) Grey wolf optimizer. Advance in Engineering

Software 69:46-61.

6. Xiangyuan Jiang, Shuai Li (2017) BAS: Beetle Antennae Search Algorithm for

Optimization Problems. Neural and Evolutionary Computing DOI: arXiv:1710.10724.

7. Hedar A, Fukushima M (2006) Tabu search directed by direct search methods for

nonlinear global optimization. European JouSRAl of Operational Research 170:329-

349

8. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems.

Knowledge Based Systems 96:120–133.

