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U.S. National VS30 Models and Maps Informed by Remote Sensing and Machine Learning 

Geyin, M.1 and Maurer, B.W.2  

Abstract: The shear-wave velocity time-averaged over the upper 30 m (VS30) is widely used as a proxy for 1 

site effects, forms the basis of seismic site class, and underpins site-amplification factors in empirical ground-2 

motion models. Many earthquake simulations therefore require VS30. This presents a challenge at regional scale, 3 

given the infeasibility of subsurface testing over vast areas. While various models for predicting VS30 have thus 4 

been proposed, the most popular U.S. national, or “background,” model is a regression equation based on just 5 

one variable. Given the growth of community datasets, satellite remote sensing, and algorithmic learning, more 6 

advanced and accurate solutions may be possible. Towards that end, we develop national VS30 models and 7 

maps using field data from over 7,000 sites and machine learning (ML), wherein up to 17 geospatial parameters 8 

are used to predict subsurface conditions (i.e., VS30). Of the two models developed, that using geologic data 9 

performs marginally better, yet such data is not always available. Both models significantly outperform 10 

existing solutions in unbiased testing and are used to create new VS30 maps at ~220 m resolution. These maps 11 

are updated in the vicinity of field measurements using regression kriging and cover the 50 U.S. states and 12 

Puerto Rico. Ultimately, and like any model, performance cannot be known where data is sparse. In this regard, 13 

alternative maps that use other models are proposed for steep slopes. More broadly, this study demonstrates 14 

the utility of ML for inferring below-ground conditions from geospatial data, a technique that could be applied 15 

to other data and objectives.   16 

Introduction 17 

Subsurface seismic-wave velocities (e.g., shear-wave velocity, VS) affect the amplitude, duration, and 18 

frequency content of ground motions. Measurements or estimates of these velocities are thus needed to predict 19 

ground motions and, by consequence, coseismic phenomena. Ideally, these velocities would be obtainable: (i) 20 
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quickly (i.e., by time- and cost-efficient means); (ii) at high spatial resolution (e.g., consistent with the scale 21 

at which subsurface velocities change); and (iii) over the spatial extents that experience strong motion (e.g., a 22 

metropolitan region). Problematically, state-of-practice methods for measuring VS typically result in discrete, 23 

1D VS-profiles that require considerable time and cost. As a result, it is infeasible to measure VS over vast areas, 24 

as would be required for regional earthquake simulations. Even in cases where VS is needed for important, site-25 

specific purposes (e.g., at seismic-recording stations, to develop empirical ground motion models, or GMMs), 26 

it is often the case that VS is estimated, rather than measured (e.g., Ahdi et al., 2017).  27 

Accordingly, efforts have been made to predict VS profiles remotely (e.g., Boore and Joyner, 1997; Holzer 28 

et al., 2005; Wald and Allen, 2007; Castellaro et al., 2008; Boore et al., 2011; Thompson et al., 2014; Parker 29 

et al., 2017; Foster et al., 2019; Yu, 2021). These efforts have mostly focused on predicting the time-averaged 30 

VS in the upper 30 m (VS30), which: (i) is widely used as a proxy for site effects; (ii) forms the current basis of 31 

seismic site class; (iii) underpins site-amplification functions (e.g., Stewart et al., 2017); and (iv) is a required 32 

input to all modern empirical GMMs. VS30 thus serves an important role in regional earthquake simulations, 33 

post-earthquake data products (e.g., Worden et al., 2010), site-specific hazard analyses, and indirectly, the 34 

National Seismic Hazard Model (Petersen et al., 2019), given the need for VS30 when developing GMMs. At 35 

present, a patchwork of VS30 models is used in the U.S., with the national “background,” model adopted by the 36 

U.S. Geological Survey (Heath et al., 2020) being a regression equation with one input – topographic slope 37 

(e.g., Wald and Allen, 2007; Allen and Wald, 2009). The underlying, seminal concept – that flat ground tends 38 

to be soft and steep ground tends to be hard – is quite useful, but also often inefficient and/or insufficient for 39 

predicting VS30. Several regional models have thus aimed to improve on this approach, generally by using 40 

higher-resolution elevation models, more advanced statistical schemes, and/or by binning the data on mapped 41 

geology (e.g., Ahdi et al., 2017; Wills and Clahan, 2006; Thompson et al., 2014; Li and Rathje, 2020). 42 

Considering the growth of community geophysical datasets, satellite remote sensing, and algorithmic learning, 43 

more advanced and accurate solutions may yet be achievable, both at national and regional scales.   44 
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Toward that goal, this paper develops U.S. national VS30 models and maps using machine learning (ML), 45 

wherein 17 above-ground geospatial variables are used to predict below-ground VS30. Examples of geospatial 46 

predictor variables, which are obtained from remote-sensing and existing, mapped information, include 47 

topographic slope and various topographic indices; distance to rivers, streams, and other water bodies; and 48 

various values describing or predicting geology, hydrology, lithology, climate, etc. While such predictors lack 49 

mechanistic links to VS30, they correlate in complex and interconnected ways – an ideal application for ML. 50 

Although the concept of a “geospatial” VS30 model is not new – all existing models could be described this way 51 

– neither algorithmic learning nor a large quantity of predictors has previously been used (whether at national 52 

or regional scale). In this regard, accurate prediction of VS30 likely requires many variables (i.e., more than 53 

topographic slope), but traditional regression requires hypotheses of what is believed to matter and how, 54 

limiting the number of variables easily modelled. Because such beliefs are unnecessary with ML, it can provide 55 

learning insights that are unlikely, if not infeasible, with traditional techniques. The adopted approach thus 56 

allows for a large body of predictive information to be utilized, with more potential for that information to be 57 

exploited. In the following, the data and methodology are first described, after which the trained ML models 58 

are compared via unbiased tests against the national “background” model of Wald and Allen (2007) and Allen 59 

and Wald (2009), as implemented by Heath et al. (2020a,b). For brevity, we refer to this slope-based model as 60 

Allen and Wald (2009), or AW09. The resulting map products, which are updated in the vicinity of field 61 

measurements using regression kriging, are then presented.  62 

Data and Methodology 63 

A total of 7,081 VS30 measurements were selected for analysis, as mapped in Figure 1 for the contiguous U.S. 64 

Not shown are 24 measurements in Hawaii, 23 in Puerto Rico, and 15 in Alaska. While these data represent a 65 

range of geographic and geologic settings, they are biased toward densely populated, high-seismicity regions 66 

where there is greater need for VS data. As a result, some U.S. states are unrepresented in model training and 67 

testing, a limitation that is shared by all existing national models. In addition, and as will be discussed further, 68 
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the compiled data are biased with respect to both topographic slope, with <10% of measurements made on 69 

terrain with >3˚ slope, and soil sites, with <10% of measurements having VS30 > 760 m/s.  70 

 

Figure 1. Spatial distribution of VS30 measurements in the contiguous U.S. 

Significant data sources included the McPhillips et al. (2020) and Parker et al. (2017) VS30 compilations. 71 

To these the authors added unique VS-versus-depth measurements where the complete, measured VS-profile 72 

was publicly available. This augmented the available VS30 data by 1,021 points. Larger sources of such data 73 

included Kayen et al. (2011), Salomone et al. (2012), Ahdi et al. (2017), and Kwak et al. (2021). In computing 74 

VS30 from VS profiles, the extrapolation method of Boore et al. (2011) was applied to profiles that did not reach 75 

30 m depth. While this increases the measurement uncertainty at certain sites, it was deemed acceptable, given 76 

the incomplete coverage of VS30 data at national scale. Of the compiled data, 80% was randomly selected for 77 

model training and the remaining 20% was held for unbiased testing. While the definition of a truly unbiased 78 

test is debatable (e.g., test sites are occasionally located near training sites), it should be noted that the AW09 79 

model against which comparisons will be made was originally trained using much of the data compiled herein 80 

for testing. As a result, the ensuing tests are likely biased in favor of the existing AW09 model. Finally, it must 81 

be emphasized that empirical models can be particularly unreliable when encountering unfamiliar regions or 82 
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features. The limits and resolution of each predictor variable – introduced below – should thus be understood 83 

by users.  84 

In the current effort, either 15 or 17 predictor variables were compiled at the sites of VS30 data. These 85 

consisted of: the predicted depths to (1) bedrock and (2) groundwater; the mapped (3) geologic unit and (4) 86 

consolidation state; the (5) classified geomorphologic phonotype (consisting of landforms that include valley, 87 

depression, hollow, footslope, flat, and others); the measured (6) distance-to-river, (7) compound topographic 88 

index (which describes the hydrologic environment), (8) topographic slope, and (9) topographic position index; 89 

the (10) profile curvature and (11) tangential curvature; the (12) roughness, (13) terrain ruggedness index, (14) 90 

and vector ruggedness measure; and lastly, the geomorphologic landform’s (15) Shannon diversity index, (16) 91 

uniformity, and (17) entropy, which collectively describe the diversity and spatial distribution of geomorphons 92 

in a sample area. The range, resolution, and source of each variable is in Table 1. The goal of these variables, 93 

which predominantly use above-ground data, is to predict below-ground conditions.  94 

Table 1. Range, spatial resolution, and sources of predictor variables in the dataset. 

Variable (Units) Source Range in Dataset Spatial Resolution 

Depth to bedrock (cm) Shangguan et al. (2017) 0 to 43,437  250 m 

Depth to groundwater (m) 
Fan & Miguez-Macho 

(2020) 
0 to 216 ~1000 m (30 arc-sec) 

Geologic unit (N/A) Horton et al. (2017) Categorical 25 m to 500 m (varies) 

Consolidation state Horton et al. (2017) 0 or 1 25 m to 500 m (varies) 

Distance to river (m) Lehner et al. (2006) 0 to 8.4 x 104  ~90 m (3 arc-sec) 

Compound topographic index 

(N/A) 
Verdin et al. (2017) 484 to 2858 ~90 m (3 arc-sec) 

Geomorphologic phonotype 

Amatulli et al. (2018) 

Categorical ~1000 m (30 arc-sec) 

Topographic slope (%) 0 to 26.7 ~1000 m (30 arc-sec) 

Topographic position index (N/A) -37.38 to 22.94 ~1000 m (30 arc-sec) 

Profile curvature () -0.0012 to 0.0013 ~1000 m (30 arc-sec) 

Tangential curvature () 
 -9.0577 x 10-4 to 

9.35069 x 10-4 
~1000 m (30 arc-sec) 

Roughness 0 to 284 ~1000 m (30 arc-sec) 

Terrain ruggedness index 0 to 90.88 ~1000 m (30 arc-sec) 

Vector ruggedness measure 0 to 0.0457 ~1000 m (30 arc-sec) 

Landform entropy 0 to 2.9572 ~1000 m (30 arc-sec) 

Landform uniformity 0.0536 to 1 ~1000 m (30 arc-sec) 

Landform Shannon index 0 to 2.0467 ~1000 m (30 arc-sec) 
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 Except for the geologic unit and consolidation state, which were sampled from the Horton et al. (2017) 95 

U.S. national geologic map compilation, all variables are continuously available in North America, and in 96 

many cases, have global coverage. While surface geology ultimately resulted in a marginally better model, the 97 

Horton et al. (2017) compilation does not include Alaska, Hawaii, or Puerto Rico. Additionally, it will be 98 

shown that undesirable transitions occur at a few state boundaries, where differences in the state source maps 99 

result in different mapped geologies on either side of a state line, and by corollary different VS30. For these 100 

reasons we ultimately present two map products – one that includes mapped surface geology (“Model 1”, 101 

which performs slightly better), and one that does not (“Model 2”). The geologic unit is also a unique feature 102 

in that it was reclassified, whereas all other variables were used directly as sampled. Specifically, we: (i) 103 

grouped all sedimentary, igneous, and metamorphic rock units; and (ii) of the remaining units applicable to 104 

soils, selectively excluded those sparsely populated with VS30 data. In this regard, sites that do not map as either 105 

a type of rock or as alluvial, fluvial, glacial, lacustrine, peat, or terrace deposits are implicitly treated as a 106 

general, unknown soil deposit. In addition to the predictors in Table 1, several others, including annual 107 

precipitation (Fick and Hijmans, 2017), distance to coastline (NASA, 2020), and regional flags (e.g., Western 108 

US vs. Eastern US) did not improve performance and were not adopted. The futility of the latter might be 109 

explained by the lack of high VS30 measurements (e.g., <3.5% of the data has VS30 > 1150 m/s). 110 

Having compiled VS30 data and predictor variables, several ML techniques were used to train prospective 111 

models, including support vector machines (e.g., Vapnik, 1995), Gaussian process regression (GPR) (e.g., 112 

Rasmussen, 2003), decision trees (e.g., Rokach and Maimon, 2008), and decision tree ensembles constructed 113 

by gradient boosting, bagging, or random forests (e.g., Breiman, 1996; Piryonesi and El-Diraby, 2021). Of the 114 

resulting models, those that are easier to interpret tend to have lesser accuracy and portability (e.g., an 115 

individual decision tree), while those that tend to perform best (e.g., tree ensembles) are more convoluted. 116 

Once promising techniques were identified, the internal parameters of those techniques (i.e., 117 

“hyperparameters’) were optimized to minimize the prediction error. 5-fold cross validation was used to 118 

evaluate and mitigate overfitting, as is common. Numerical predictors were BoxCox transformed (Box and 119 



7 

 

Cox, 1964) and normalized to have values between 0 and 1 to reduce spurious interactions among predictors. 120 

The particulars of the developed models are further described in the following.  121 

Results and Discussion 122 

Using the training set and all 17 predictor variables (i.e., including surface geology), many provisional 123 

models were trained. Of these, three were adopted for optimization and testing. Two were ensembles of 200 124 

decision trees each, where relatively weak decision tree models were combined to build a stronger model. 125 

When a decision tree is trained, recursive decision forks are formed, such that a specific combination of model 126 

inputs maps to an expected output. However, because an individual tree is typically neither accurate nor 127 

portable (i.e., it is prone to overfitting), trees are generally ensembled. This modeling approach, which is found 128 

in popular ML toolkits (e.g., TensorFlow, Scikit, PyTorch), is reviewed by Friedman (2001) and practically 129 

demonstrated in detail by Elith et al. (2008). A primary distinction of tree ensembles is how the individual 130 

models are trained and combined. In this regard, “bagging” and “boosting” were respectively employed to 131 

develop the two tree ensembles. In bagging (also referred to as bootstrap aggregating), numerous versions of 132 

the training set are formed via bootstrap sampling, with each used to train a decision tree, and the predictions 133 

from the various trees are aggregated to make a final prediction. Given this resampling and averaging, bagging 134 

tends to minimize the prediction variance and reduce overfitting, relative to other ensembling methods. In 135 

boosting, a sequence of decision trees is built from weaker trees, wherein each tree attempts to learn from the 136 

prior trees by increasing the weight on observations that were poorly predicted. In this way, the most difficult 137 

cases are emphasized, such that subsequent models focus on them more. In contrast to bagging, the models 138 

that perform best are weighted most. While boosting is slow, it may maximize accuracy relative to other 139 

ensembling techniques, albeit at the expense of overfitting (Piryonesi and El-Diraby, 2021).  140 

The last of three adopted models was a GPR model. In contrast to other ML techniques that learn exact 141 

values, both for a model’s parameters and for its output, GPR infers probability distributions via the Bayesian 142 

approach and is nonparametric. An important ingredient of GPR models is the prior assumption, or kernel 143 

(also called the covariance function in the context of GPR), which describes how a model’s predictions are 144 
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related, given different inputs. We ultimately adopted a squared exponential kernel function, which is the 145 

default in many ML toolkits (e.g., Duvenaud, 2014), and which results in a “smooth” model, rather than one 146 

in which non-differentiable behavior (e.g., multilinearity) is permitted. Benefits of GPR include the ability to 147 

impart judgement via the kernel and its intrinsic use of interpolation, which makes GPR relatively less reliant 148 

on a large dataset. On the random test set (i.e., the 20% of VS30 data held from training), the bagged ensemble, 149 

boosted ensemble, and GPR models had respective mean absolute errors (MAEs) of 112 m/s, 118 m/s, and 150 

110 m/s, whereas the AW09 model had an MAE of 171 m/s. This represents an average improvement of 34%. 151 

The mean square errors (MSEs) suggest larger improvements, with the three respective models reducing MSE 152 

by 52%, 51%, and 50%, relative to AW09.  153 

Finally, while the three adopted models perform well individually, we used “meta-learning” to combine 154 

them (Dzeroski and Zenko, 2004). Also known as “stacking”, this approach recognizes that the base models, 155 

which were each developed using different approaches, may be more (or less) effective in different situations. 156 

The GPR model, for example, has the lowest MAE but the largest MSE, meaning that it prioritizes accuracy 157 

at the expense of some large outliers. Stacking can result in a meta-model that performs better than any base 158 

predictor and which is more stable (i.e., it avoids large swings on account of which model is chosen). While 159 

stacking refers to a specific ML technique, the basic concept is ubiquitous in natural hazards modeling (e.g., 160 

ensembling of ground motion or hurricane models in a logic tree). Starting with the three base models, the 161 

training set was again partitioned for 5-fold cross-validation. The out-of-fold predictions (i.e., the validation 162 

data) were then used to train the meta-model using a bagging algorithm. In other words, the base models were 163 

optimally coalesced through analysis of their out-of-fold predictions. The resulting meta-model, henceforth 164 

termed “Model 1,” achieved an MAE of 108 m/s on the unbiased test set and reduced the MSE by 55% relative 165 

to AW09. While these additional improvements are minor, the generalization that results from stacking could 166 

provide other, unrealized benefits during forward application. The overall improvement relative to AW09 is 167 

summarized in Table 2, which compiles MAE values binned on VS30 and topographic slope. Model 1 has lower 168 

MAE across all VS30 and all slopes, but especially for VS30 < 180 m/s and 537 < VS30 < 2000 m/s. This may be 169 

attributable to: (i) AW09’s truncation of low VS30 predictions at 180 m/s; and (ii) the predictors used by Model 170 
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1 (e.g., geology) that help to distinguish when relatively flat ground is rock rather than soil, where the latter is 171 

the default assumption of slope-based models.  172 

 

Table 2. Mean absolute errors (MAE), binned on VS30 and topographic slope, for the unbiased test set. 

Bin 

Variable 

Bin 

Range 

Model 1 

MAE 

(m/s) 

AW09 

MAE 

(m/s) 

Improvement 

(%) 

VS30 

(m/s) 

0-180 55.64 164.76 66.23 

180-259 55.84 57.38 2.70 

259-360 77.65 84.61 8.23 

360-537 98.43 126.09 21.93 

537-760 148.32 239.39 38.04 

760-1150 296.73 520.70 43.01 

1150-2000 531.23 1055.53 49.67 

>2000 1484.25 1700.35 12.71 

Slope 

(deg) 

0.00-0.13 39.26 46.03 14.70 

0.13-0.21 44.08 76.05 42.04 

0.21-0.30 88.51 140.10 36.82 

0.30-0.40 101.93 200.77 49.23 

0.40-0.55 101.94 159.17 35.96 

0.55-0.78 119.46 198.80 39.91 

0.78-1.24 155.38 280.24 44.56 

>1.24 168.70 200.95 16.05 

 

Plotted in Figure S1 of the electronic supplement are measured vs. predicted VS30 values for the compiled 173 

dataset, both for Model 1 and AW09. The corresponding prediction residuals, defined as r = ln 174 

(observed/predicted), are in Figure 2. Also shown via green lines are the residual standard deviations, 175 

computed as 0.218 and 0.555 for Model 1 and AW09, respectively. Model 1 residuals are thus less dispersed 176 

(e.g., R2 = 0.72 vs. 0.02) and minimally biased, whereas AW09 tends to overpredict lower VS30 values and 177 

underpredict higher VS30 values. It can similarly be shown that the Model 1 residuals are unbiased with respect 178 

to each input variable. In this regard, residuals are plotted vs. each numerical input in Figure S2. Collectively, 179 

the results suggest that Model 1 warrants adoption and further evaluation as a national background model.     180 
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Figure 2. Prediction residuals [ln (observed/predicted)] computed for (a): Model 1; and (b) AW09. The green 

bands depict the standard deviations of the residuals for each model. 

While simplified interpretations of model structure are often infeasible with ML (i.e., relative to traditional 181 

regression), insights can be gained via the computed predictor importance (e.g., Auret and Aldrich, 2011), 182 

which may be interpreted as each variable’s relative contribution to the accuracy of a model. Accordingly, the 183 

relative importance of each variable was computed and is plotted in Figure 3, where variables are sorted from 184 

most to least important. This approach to model interpretation was also used by Durante and Rathje (2021) 185 

and Geyin et al. (2022), who developed ML models for liquefaction-induced ground failure. The most 186 

influential variables in Model 1 include the predicted depth to bedrock, measured topographic slope, three 187 

different indices of surface roughness, and the mapped geologic unit and geomorphologic phonotype. These 188 

predictors are ~3-5 times more influential than the least important variable – distance to river. These results 189 

also reflect both the utility and insufficiency of topographic slope, which is useful, but which alone cannot 190 

predict when flat ground is relatively hard or when sloping ground is relatively soft. Lastly, these results have 191 

important implications for forward mapping, given that spatial biases or discontinuities in important variables 192 

(e.g., a mispredicted geology or depth to bedrock) can be expected to cause similar problems in the predicted 193 

VS30. 194 

σ = 0.218 σ = 0.555 
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Figure 3. Relative predictor importance ranking for Model 1. 

Using Model 1, VS30 predictions were next mapped throughout the contiguous US, wherein regression 195 

kriging (Hengl et al., 2007) of model residuals was used to update predictions in the vicinity of measurements 196 

(i.e., to bring them into agreement). With this approach, which was used by Thompson et al. (2014) to map 197 

VS30 in California, a model trained on various predictors (i.e., “regression”) is combined with spatial 198 

interpolation of that model’s residuals (i.e., “kriging”). Thus, the residuals are predicted at unsampled locations 199 

using nearby measurements (where residuals are known) and are used to update the model’s predictions in the 200 

vicinity. Defining the residuals as r = ln (observed/predicted), which pass the Lilliefors (1967) test for 201 

normality, an exponential semivariogram model was selected for its best fit of the data: 202 

 𝑆𝑒𝑚𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (ℎ) =  𝑐0 (1 − 𝑒
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Where 𝑐0 and 𝑎 are respectively the semivariogram sill and range, defined as 𝑐0 = 1.1576 and 𝑎 = 4.7667, and 204 

h is the separation distance between locations. This semivariogram and its fit of the empirical data are shown 205 

in Figure S3. Using this information, which describes spatial correlation, residuals were predicted nationally. 206 

As a representative example, the krigged residuals are shown in Figure 4 for the Puget Sound region of 207 

Washington State. Predicted residuals approach the computed residual at sites of VS30 measurement and 208 

attenuate with distance toward zero (i.e., the model’s mean residual). The rate of this attenuation is controlled 209 

by the semivariogram in Eq. (1). Similarly, the standard deviation of the krigged residual approaches zero at 210 

measurement locations (reflecting the “known” error) and increases to σ = 0.218 (i.e., the overall model 211 

uncertainty) at locations far away. It should be noted, however, that VS30 measurement uncertainties are not 212 

considered in this process. In the future, measurement uncertainties could be assigned via regression kriging 213 

or the multivariate normal method (Worden et al., 2018; Foster et al., 2019). The primary benefit of the latter 214 

is that it allows for assignment of site-specific uncertainty assignments, although this would require a rigorous, 215 

judgment-based analysis of all 7,081 VS30 measurements.  216 

 

Figure 4. Krigged residuals in the Puget Sound region of Washington State. 
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A national VS30 map was next created by computing the product VS30*exp(r), where VS30 is the prediction 217 

from Model 1 and r is the krigged residual. This process scales the prediction up or down in the vicinity of 218 

measurements, thereby correcting for local or sub-regional prediction bias (e.g., where VS30 is mispredicted at 219 

a site or across a city). It should be noted, however, that biases at larger scales (e.g., state-scale) were not 220 

observed. As a representative example, the resulting krigged VS30 map is shown in Figure 5 for the Puget Sound 221 

and is compared to AW09. Aside from local VS30 discrepancies, the most notable difference is the shift in 222 

predicted VS30 across mountainous terrain, with AW09 consistently predicting higher VS30 on steeper slopes.  223 

 

Figure 5. VS30 predicted by: (a) Model 1 with residual kriging; and (b) AW09 in the Puget Sound.  

As previously mentioned, the compiled dataset is biased toward sites that are flatter and softer, with very 224 

few measurements in mountainous terrain. Plotted in Figure S4 of the electronic supplement, for example, is 225 

the cumulative distribution of the compiled data with respect to slope, which indicates that ~5% of 226 

measurements are from sites >5˚ slope. In this regard, the developed model might be more appropriately 227 

branded a “soil, or flatter ground, VS30 model,” given that the data were not weighted to give equal 228 

consideration to bins of higher slope and VS30. This is not unreasonable, given that VS30 is of greatest interest 229 

where infrastructure exists (flatter ground), and where subsurface conditions have the potential to alter ground 230 
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motions (soil sites). Although the test data from steeper terrain and harder sites indicate that Model 1 231 

outperforms AW09 (see Table 2), these predictions should nonetheless be viewed skeptically, given the 232 

paucity of data. Although not backed by the available data, it is our judgement that Model 1 generally 233 

underpredicts VS30 on steep slopes. While these predictions are generally less consequential for engineering 234 

purposes, we created an alternative map termed “Model 1alt.” Here, Model 1 is heuristically blended with 235 

AW09 using a weighting scheme in which Model 1 predictions are adopted for slopes ≤ 5˚, AW09 predictions 236 

are adopted for slopes ≥ 10˚, and otherwise: 237 

𝑉𝑆30 = 𝑀𝑜𝑑𝑒𝑙 1 ∗ (−
1

5
∗ (𝑠𝑙𝑜𝑝𝑒) + 2) + 𝐴𝑊09 ∗ (

1

5
∗ (𝑠𝑙𝑜𝑝𝑒) − 1)                              (2) 238 

where VS30 is the Model 1alt prediction and slope is measured in degrees. This scheme is based on the data 239 

available for analysis (see Figure S4) but is ultimately subjective. While the performance of Model 1alt is 240 

slightly less than that of Model 1, it is our judgement that the blended predictions are more reasonable across 241 

the full domain of topographic slope. An example of the Model 1alt map is shown in Figure 6 for the Puget 242 

Sound. Both the original and alternative maps can be downloaded as ~220 m resolution geotiff files from 243 

Geyin and Maurer (2022) (https://doi.org/10.17603/ds2-80d8-9m83) and provide continuous coverage of the 244 

contiguous U.S. 245 

https://doi.org/10.17603/ds2-80d8-9m83
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Figure 6. VS30 predicted by Model 1alt with residual kriging in the Puget Sound.  

Although the developed model, with 17 predictors, performs better than any other on the training and 246 

unbiased test data, it: (i) covers only the contiguous U.S., given the extents of the Horton et al. (2017) geology 247 

compilation; and (ii) results in discontinuities at a few state borders, an example of which at the Nebraska-248 

Kansas border is shown in Figure S5. While the first of these problems could be rectified by augmenting the 249 

Horton et al. (2017) national compilation with additional maps, the latter problem, which results in minor but 250 

unreasonable shifts in the predicted VS30, would be resolved only through a rigorous reinterpretation of the 251 

state source maps. Given these problems, the preceding effort for Model 1 was repeated without surface 252 

geology (i.e., the mapped geologic unit and consolidation state). The resulting model, henceforth termed 253 

“Model 2,” achieved an MAE of 115 m/s on the unbiased test set (vs. 108 m/s by Model 1 and 171 m/s by 254 

AW09) and reduced the MSE by 49% relative to AW09 (vs. a 55% reduction by Model 1). Thus, while surface 255 

geology is useful, Model 2 provides a serviceable alternative given the stated limitations. Following the same 256 

methodology, the relative predictor importance was computed for Model 2 and is shown in Figure S6. The 257 

ranking of variables is very similar to Model 1 (see Figure 3), except for: (i) the absence of surface geology; 258 

and (ii) a slight upward shift in the importance of groundwater depth, which suggests that it provides additional 259 
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utility in the absence of geologic mapping. This is unsurprising, given that surface geology and groundwater 260 

depth are correlated under certain conditions. 261 

Analogous to Figure 2, the Model 2 prediction residuals, defined as r = ln (observed/predicted), are plotted 262 

in Figure S7 and have a standard deviation of 0.264 (vs. 0.218 for Model 1 and 0.555 for AW09). Again, use 263 

of surface geology is beneficial, but a large improvement over slope-based methods is still achieved in its 264 

absence. Finally, following the prior methodology, two maps were created using regression kriging to update 265 

Model 2 in the vicinity of field measurements. The semivariogram defining the spatial correlation of Model 2 266 

residuals is shown and defined in Figure S8. Using the weighting scheme given in Eq. (2) the Model 2 map 267 

was blended with AW09, such that predictions shift toward AW09 predictions at larger topographic slope, 268 

creating “Model 2alt.” Both the original and alternative maps (Model 2 and Model 2alt) can be downloaded 269 

from Geyin and Maurer (2022) (https://doi.org/10.17603/ds2-80d8-9m83) and provide continuous 270 

coverage of the 50 U.S. states and Puerto Rico at ~220 m resolution. While the Model 1 and Model 2 maps 271 

are provided for transparency into the modeling process, we recommend adoption and further testing of the 272 

Model 1alt and Model 2alt products, the first of which is mapped in Figure 7 for the contiguous U.S. 273 

 

Figure 7. VS30 predicted by Model 1alt with residual kriging in the contiguous United States.  

https://doi.org/10.17603/ds2-80d8-9m83


17 

 

Limitations, Uncertainties, and Future Work 274 

The developed models are inherently tied to the data compiled for analysis. While this is true of any model, it 275 

is especially true of empirical models, given the lack of mechanistic links between the prediction variables and 276 

target. ML models are unfortunately no exception. While Models 1 and 2 improve upon a national slope-based 277 

model in unbiased tests, their performance in data-poor regions cannot be known. The models should thus be 278 

used cautiously in these locations (e.g., Colorado, Florida, etc.), where the model uncertainty may exceed that 279 

suggested by the presented test statistics, given that neither the training nor test data represents those locales. 280 

Nonetheless, the merits of the presented approach and models, which warrant adoption and further testing 281 

alongside other solutions, are arguably compelling. In the future, this approach could be improved in several 282 

ways (in addition to the obvious need for more VS30 data). First, it is well known that ML (like any algorithmic, 283 

or “AI,” learning technique) can make strong models, but is generally weak in explaining the “why.” It can be 284 

difficult, for example, to explain the influences and interactions of variables, or the physical structure of the 285 

resulting model. This is particularly true when multiple models are “stacked” to produce an ensemble that is 286 

more effective, but also more convoluted. Thus, focused efforts to identify new geospatial variables that more 287 

efficiently and sufficiently correlate to VS30 are warranted and could produce additional gains.  288 

Second, the models rely on the accuracy and spatial resolution of inputs, some of which are themselves 289 

predictions (e.g., surface geology). Mispredictions may therefore occur in the vicinity of geomorphic 290 

transitions (e.g, at the base of a mountain, as in Salt Lake City, UT), where the resolution of input variables 291 

may not capture local conditions, or where one or more variables is inaccurate (e.g., among other examples, 292 

the unmapped presence of artificial fill, as in Seattle, WA). The adopted approach should therefore improve 293 

as the accuracy and resolution of the geospatial predictors improves. Third, the uncertainty of VS30 294 

measurements, which are especially non-trivial for surface-wave inversion methods, were not included in the 295 

present effort but could be in the future, as could uncertainty more broadly. Fourth, regression kriging is one 296 

of several approaches for updating predictions with field data. Other methods (e.g., Worden et al., 2018; Foster 297 

et al., 2019) may provide advantages in certain situations, such as when site-specific measurement 298 
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uncertainties are available. Moreover, the geostatistical updating was not bound by predictor variables, but 299 

potentially should be. As one example, an underpredicted VS30 in a unit mapped as igneous rock shouldn’t 300 

necessarily suggest that VS30 is also underpredicted 1 km away in a unit mapped as alluvium, contrary to what 301 

a univariate semivariogram suggests. This possibility could be evaluated in the future. While improvements 302 

are inevitably warranted, this study demonstrated the utility of ML for inferring VS30 from geospatial 303 

information. Ultimately, more data and future research will confirm or update the findings presented herein 304 

and succinctly summarized below.    305 

Conclusions 306 

This paper developed U.S. national VS30 models using ML and geospatial information. Using these models, 307 

predictions were mapped at national scale and updated in the vicinity of field measurements. Of the resulting 308 

maps, Model 1alt and Model 2alt, which each defer to existing models on steeper slopes, are recommended. 309 

Of these, Model 1alt performed slightly better, but requires geologic information that may be unavailable or 310 

otherwise problematic. Based on the presented tests, these maps warrant adoption and further evaluation 311 

alongside existing solutions. More broadly, the approach employed herein can be applied to other subsurface 312 

data and objectives (e.g., predicting liquefaction, as demonstrated by Geyin et al., 2022).  313 

Data and Resources 314 

All data analyzed in this study is publicly available, as described and referenced in the text. The resulting VS30 315 

maps are downloadable from Geyin and Maurer (2022) (https://doi.org/10.17603/ds2-80d8-9m83). Eight 316 

additional figures are provided in the supplemental material, as described in the main text.   317 
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