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Abstract 
 Additive Manufacturing (AM) allows designers to create intricate geometries that were 
once too complex or expensive to achieve through traditional manufacturing processes.  
Currently, Design for Additive Manufacturing (DfAM) is restricted to experts in the field, and 
novices may overlook potentially transformational design potential enabled by AM. This project 
aims to make DfAM accessible to a broader audience through deep learning, enabling designers 
of all skill levels to leverage unique AM geometries when creating new designs.  To demonstrate 
such an approach, a database of files was acquired from industry-sponsored AM challenges 
focused on lightweight design.  These files were converted to a voxelized format, which provides 
more robust information for machine learning applications. Next, an autoencoder was 
constructed to a low-dimensional representation of the part designs.  Finally, that autoencoder 
was used to construct a deep neural network capable of predicting various DfAM attributes.  This 
work demonstrates a novel foray towards a more extensive DfAM support system that supports 
designers at all experience levels. 

 
1. Introduction and Motivation 

Manufacturing technology is advancing at an unprecedented rate as fabrication processes 
become more and more digital.  Even dedicated experts and leading-edge companies struggle to 
keep pace with rapidly evolving technology, and the slow diffusion of knowledge from the 
narrow technical communities driving these manufacturing advances hinders novices trying to 
learn about the latest technology and design products that take advantage of new fabrication 
processes.  Fortunately, many new manufacturing technologies embrace a digital thread, which 
generates an abundance of rich design data, providing a potential resource for training novice 
designers and incumbent workers trying to keep their skills current.  However, best practices for 
utilizing this digital thread to provide feedback to designers have neither been developed nor 
critically assessed. The current work proposes a deep learning approach to extract knowledge 
from digital repositories to predict DfAM attributes associated for part designs.  This prediction 
can in turn be used to support engineers as they develop intuition for novel designs with 
advanced manufacturing technology. 

 
To test and evaluate our proposed deep learning approach, we focus on AM as a 

representative digital manufacturing technology that is evolving rapidly.  In 2015, it was 
estimated that 35% of engineering job postings required additive manufacturing skills [1].  
Moreover, the number of job postings mentioning AM and 3D printing grew by 1834% between 
2010 and 2014 [1].  This increased competition for engineers with AM skills is expected to 
impact companies of all sizes [2].  Because of these rapid increases in demand combined with 
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rapidly evolving AM technology [3], there is an urgent need for targeted AM training and 
support for novice designers [4,5].  This makes AM a great test case to investigate the proposed 
machine learning feedback approach. 

 
2. Background 
 
2.1. Advances in Design for Additive Manufacturing Feedback Tools 

 Lightweight redesign of structures and parts is a common objective in aerospace and 
other application areas. To encourage designers to better leverage the geometric opportunities 
offered by AM in the pursuit of lightweight structures, current approaches in the literature 
primarily focus on the use of robust topology optimization to mathematically determine the ideal 
structure, subject to certain performance metrics (e.g., strength-to-weight ratio) and 
manufacturability constraints (e.g., support material usage, minimum feature size).  Current 
research efforts to implement topology optimization design algorithms within the AM context 
are extensive.  These algorithms can take a variety of forms, including optimal distribution of 
material based on density [6] or optimal sizing of an initial ground structure [7], with more 
advanced algorithms even capable of accounting for multiple material phases [8].  While 
powerful, topology optimization methods may have difficulty converging to a manufacturable 
design solution without extensive prescriptive constraints [9].  As discussed by Marc Saunders 
(Director of Global Solutions Centres at Renishaw), “It is a mistake to think that designs that 
have been optimized for load bearing can simply be printed at the touch of the button” [10].  This 
qualifier is due to the often-overlooked manufacturability restrictions of AM, which largely go 
unaccounted for in current commercially available topology optimization algorithms.  
Sometimes termed “restrictive DfAM” [11], manufacturability constraints for AM include	 a 
system’s minimum manufacturable feature size and hole size [12], geometric accuracy and 
repeatability [13], anisotropic material properties due to part orientation [14,15], and concerns 
over support material usage and removal [16].  While such constraints do appear in current 
topology optimization research (e.g., self-supporting angle considerations used in [17,18] and 
minimum feature size considerations used in [8]), they further increase the complexity of 
implementing such design algorithms in practice.  This, in turn, raises the difficulty of novices 
incorporating robust topology optimization approaches suitable for AM into their design process. 

 
 In response to these challenges with topology optimization, an emerging branch of 

research has focused on the development and codification of design rules and heuristics to 
support DfAM [19].  The establishment of such “rules of thumb” is driven by the need to 
fundamentally shift how engineers think when designing parts because of the stark differences 
between AM and traditional manufacturing [20].  Typically, such design rules are focused on 
improving part manufacturability with AM; some examples of these principles include hollowing 
out parts [21], minimizing support features [22], and rounding interior corners [23]. Recently, 
such principles have been delivered in simplified worksheets have been shown to reduce the 
number of failed prints when used by novices [24].  However, the inherent challenge with 
heuristic design rules for DfAM is that it is challenging to create rules that are comprehensive 
and universally applicable; the ever-evolving and expanding types of print processes, materials, 
and capabilities for AM has resulted in the proposal of extensive set of rules for each different 
AM type (see, for example, characteristic rulesets for material extrusion [25], material jetting 
[26], and powder bed fusion [12,27]).  While researchers have proposed modular approaches to 
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streamlining heuristic rulesets for DfAM [28], such formatting is currently not applied uniformly 
across the field of DfAM.  As digital thread and digital twin paradigms become more common, 
machine learning may offer a way to generate insights by capitalizing on digital assets. 
 
2.2. Machine Learning to Predict AM Quality 

 Rudimentary neural networks have been used to support DfAM in several ways, 
including estimation of build time [29], prediction of bead geometry for weld-based rapid 
prototyping [30], and compensation for thermal deformation [31].  In most cases, these and other 
AM-related neural networks primarily serve to approximate time-consuming calculations that 
directly connect the “as-designed” structure to the “as-manufactured” structure.  However, we 
are not aware of any attempt to utilize these algorithms to provide design-centric feedback to 
assist novice designers. More generally, research on data-driven methodologies for engineering 
design is on the rise [32] and has included text-based design descriptions [33,34], patent text 
[35–37], and even online reviews [38,39].  However, the rise of online communities for solid 
modeling and engineering design (such as GrabCAD and Thingiverse) has made entirely new 
sources of data available for data mining and machine learning approaches.  Other work has 
utilized these 3D databases to extract design principles based on human analysis of a subset of 
designs [40] and to train algorithms to predict functionality of a product based on form [41]; 
however, no published work has attempted to automatically derive features of designs that are 
correlated with metrics of performance or manufacturability.  This may be because GrabCAD 
and similar databases permit contributions from non-experts [42], making low quality solutions 
more prevalent in the corpus of available data.  Therefore, existing approaches either avoid 
inferring quality or utilize human judgment to select good designs.  Traditionally, the presence of 
these poor solutions in the dataset has been viewed as detrimental; however, our work 
hypothesizes that if poor solutions can be identified, then they might be leveraged alongside 
well-engineered solutions to provide more balanced feedback for novice designers.  

 
 One of the key tenets of the current work is that the data from the online design 

repositories can be combined with machine learning in order to recognize the features that 
comprise both well-designed and poorly-engineered designs and structures for AM. Neural 
networks [43] are a common machine learning algorithm that have been particularly successful 
in two-dimensional image recognition tasks [43–45].  This success has led researchers to apply 
similar methodology to 3D recognition tasks [46], facilitated by recent advances in computing 
that enable such tasks to be performed at scale.  Seminal 3D classification datasets and efforts 
include ObjectNet3D [47], ShapeNet [48], VoxNet [49], and PointNet [50].  Most of these 
approaches focus on recognizing or creating objects with a given form and category (e.g., 
[51,52]), but there has been little work that seeks to derive the deeper relationship between 
desired functionality (e.g., performance and manufacturability) and requisite form (e.g. voxelized 
geometry), which is the focus of our work.  
 

The current work makes use of autoencoders to build machine representations of 
voxelized part geometries.  An autoencoder is a neural network that is specifically designed to 
compress an input so that it is represented with a small number of variables, and then reconstruct 
it with the highest degree of accuracy possible [53]. Once trained, the autoencoder is a useful 
artifact in and of itself. The encoder (the portion of the network that compresses a sample) can be 
used for dimensionality reduction, the decoder (the portion of the network that reconstructs a 
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sample based on the compressed representation) can be used to generate synthetic data, and the 
full autoencoder can be used to denoise samples.  The current work specifically uses variational 
autoencoders that compress samples into a latent space so that the samples are approximately 
normally distributed [54], ensuring that the latent variables contain dense information.  This is 
made possible by training the neural network with a two-part objective function containing a 
standard loss term as well as a measure of how normally-distributed the training samples are in 
the latent space (usually Kullback–Leibler divergence [55]). Variational autoencoders have been 
applied to a wide variety of data, including speech waveforms [56], human faces [57], and 
geometric primitives [58], and also used to model user surprise and curiosity [59]. 

 
3. Methodology 

The work in this paper consisted of three stages, each of which is detailed in this section.  
The first stage involved preparing data to be used for training and testing the deep neural 
network. Here, we used the solutions submitted to the General Electric (GE) GrabCAD design 
competition [60]. The next stage entailed training a variational autoencoder to learn a low-
dimensional representation of the high-dimensional part designs. The final stage trained a deep 
neural network to predict initially basic, yet relevant AM metrics (part mass, mass of support 
material, and build time), based on the low-dimensional representation achieved with the 
variational autoencoder.  All neural networks were trained using Keras [61] and Theano [62]. 
The software developed to accomplish this training is available in the Python programming 
language under an MIT License.1 
 

The approach used here mirrors other work that used variational autoencoders to relate 
fluid response spectra to voxelized geometry for both design and analysis applications [58]. In 
that work, two autoencoders were trained: one for geometry, and a second for the fluid response 
spectra. The primary difference is that the application entertained in the current work predicts a 
scalar value, necessitating only a single, geometry-based autoencoder to be trained. 
 
3.1. Data Preparation 

In 2013, GE hosted a design competition through the open source website GrabCAD 
[60], tasking competitors with using DfAM techniques to redesign a jet engine bracket with 
minimal weight while still satisfying the original loading conditions. Figure 1 shows the original 
geometry supplied to participants alongside the winning geometry and another finalist geometry 
that makes use of AM’s geometric complexity capabilities. These submissions were uploaded in 
a variety of file formats. This challenge is one of the most well-known and well-populated case 
studies in crowdsourced DfAM, making it an ideal starting point for training our neural 
networks.   

                                                
1 https://github.com/THREDgroup/AMnet/releases/tag/v0.1.0-beta 
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                       (a)                                         (b)                                          (c) 
Figure 1. GE Jet Engine Bracket Challenge (a) original design, and (b) winning design, and 

(c) a design demonstrating significant geometric complexity. 
 

After initial data filtering to remove designs that were incomplete or nonfunctional due to 
file format incompatibilities, approximately 300 designs were chosen for analysis in this work.  
The quality of the designs was not controlled for during this preprocessing step, as a varied set of 
training data is desirable for machine learning applications. 

 
The filtered files were downloaded and converted to stereolithography (STL) files, a 

standard and platform-agnostic file type used in AM. The STL files were next converted to a 
voxelized format using a MATLAB function [63] to ensure that each part could be represented 
with a vector of fixed size, a necessary requirement for many machine learning algorithms. 
Being an open source competition, the designs varied in shape, size, and orientation. For this 
project, the parts were converted at a resolution of 503 voxels with the edge length of a single 
voxel at 4mm, chosen to balance fidelity of the voxelized format against the speed at which 
machine learning algorithms could be trained.   

 
For each part, several metrics were computed, including the mass of the part itself, the 

mass of required support material, and the estimated build time.  These estimates were made 
using the MakerBot Desktop software (version 3.9.1.1143) [64], assuming an extruder 
temperature of 205 °C, 105 mm/s travel speed, 23 mm/s z-axis speed, 0.2 mm layer height, 
critical overhang angle of 68 degrees, 10% infill, and MakerBot PLA as the material.  Parts were 
oriented to minimize build time. 

 
Data augmentation approaches were used to increase the size of the available dataset 

[65]. Specifically, we used a rotational approach to increase the robustness and orientation 
independence of the trained network.  This was accomplished by applying 24 unique rotations to 
each part, increasing the number of available samples in the dataset from 296 training samples to 
7104 training samples.  An example of the result of this data augmentation approach is provided 
in Figure 2, displaying 24 unique rotations for a single voxelized part geometry. For these rotated 
parts, build time and required support material were not re-assessed. This was intended to train 
the neural network to predict build time and required support material for any part assuming that 
the part would be oriented for minimum build time. 
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Figure 2. An example of the data augmentation approach, demonstrating 24 unique rotations 

of a single voxelized part. 
 
3.2. Autoencoder Design and Training 

The first neural network trained in this work was a variational autoencoder for voxelized 
geometry. An autoencoder is a specialized neural network that compresses and reconstructs data, 
and in doing so implicitly learns a compact way to represent that data. A variational autoencoder 
accomplished this by compressing the input into a latent space, a vector space in which the 
training data are normally distributed.  The structure of the variational autoencoder used in this 
work is shown in Figure 3.  This autoencoder was designed to compress the voxelized input 
(125000 total binary variables, each representing a voxel) into a N-dimensional latent space, with 
N approximately three orders of magnitude smaller than the inputs.  The effect of the value of N 
is assessed later in this paper. 

 
The autoencoder was trained using the root mean square propagation algorithm (also 

known as RMSprop) [66], a standard algorithm for this type of application.  The loss function, 
the function minimized while training a neural network, used here was composed of two terms.  
The first was a binary cross-entropy term, a standard measure of the difference between two 
vectors that are expected to contain binary values.  The second term used was an estimate of the 
Kullback-Leibler divergence [55] of the samples in the latent space (the innermost layer of the 
network).  This second term is essential for ensuring that the neural network learns a compact 
representation in the latent space.  The neural network was trained for 20 epochs at which point 
the testing loss had stopped decreasing.  Training was performed on 75% of the dataset (5328 
samples), and validation testing was performed on the remaining 25% of the dataset (1776 
samples). 
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Figure 3. Structure of deep network for autoencoder. 

 
3.3. Prediction Network Design and Training 

Following the creation of the autoencoder, three additional neural networks were created 
to accomplish prediction - that is, the assessment of part mass, required support material, or build 
time based on the voxelized part geometry as an input.  These prediction networks used the 
weights learned in the encoder portion of the variational autoencoder as a starting point. In 
essence, this recycles the compressed representation learned by the variational autoencoder, 
giving each neural network an initial representation to work from and therefore decreasing 
overall training time.  It should also be noted that the same set of weights was utilized for all 
three prediction networks.  The structure of these prediction networks is shown in Figure 4. 

 
The RMSprop algorithm [66] was used to train each network.  The loss function used was 

mean squared error since the desired output for each network was a real-valued number.  These 
neural networks were trained for 10 epochs, at which point testing loss had stopped decreasing.  
Training was performed on 75% of the dataset (5328 samples), and validation testing was 
performed on the remaining 25% of the dataset (1776 samples). It should be noted that the split 
of the data into training and testing sets matched the split used for the autoencoder. This ensured 
that the prediction networks truly had no experience with any of the samples in the testing 
dataset.  
 

 
Figure 4. Structure of deep network for prediction of DfAM attributes. Note that the encoder 

portion of the autoencoder is repurposed in this network to allow mapping into the low-
dimensional representation. 

 
4. Results 

Figure 5 shows the results of training the autoencoder and all three of the prediction 
networks using a latent space with varying dimensionality from 2 dimensions to 128 dimensions.  
The fraction of variance explained by the neural network (specifically, the coefficient of 
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determination) as computed on the validation testing dataset is shown in the y-axis.  The 
accuracy of the autoencoder continues to increase steadily up to 32 dimensions and achieves its 
highest accuracy with 128 dimensions.  In contrast, the accuracy of the three prediction networks 
stops increasing fairly early, around 4 or 8 latent space dimensions.  Based on this assessment, 
N=8 was chosen as the preferred value for the current application.  

 

 
Figure 5. Coefficient of determination (computed on testing set) for autoencoder and 

prediction networks as a function of latent space dimensionality. 
 
Several paired examples of original voxelized part designs and reconstructed voxelized 

part designs (after being fed through the autoencoder with 8 latent dimensions) are provided in 
Figure 6.  On average, this autoencoder accounted for 42.3% of the variance in the validation 
testing dataset.  Although the reconstructions are only approximations of the original inputs, they 
still capture the broad geometric representation of the part.  Specifically, the geometry associated 
with the bolt holes and loading holes is typically reconstructed well.  This is expected since these 
geometric components occur with a great degree of similarity across many different part designs 
submitted to the competition.  The reconstruction is less accurate for the unique geometries that 
occur in between these loading points.  The autoencoder also appears to only very approximately 
capture lattice type structures.  For instance, the design provided in Figure 6a utilized a lattice 
structure that was only approximately captured during voxelization, and it appears to have been 
almost entirely disregarded by the autoencoder upon reconstruction.  A similar issue regarding 
reconstruction is apparent in Figures 6e and 6f. The accuracy and characteristics of 
reconstructions are important because they are representative of which features the network has 
learned well and which it has learned poorly.  It is likely that shortcomings in the geometry 
autoencoder will limit the accuracy of networks designed to predict mass, required support 
material, and build time. 
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Figure 6. Autoencoder examples showing original and reconstructed voxelized geometries. 

 
The three prediction networks that made use of the autoencoder explained 46.8% of the 

variance in part mass, 30.1% of the support material mass, and 22.5% of the predicted build 
time.  These values are relatively low and are likely limited by the accuracy of the encoder, but 
give promise of the feasibility of this approach. Figure 7 shows plots of the predicted value for 
these metrics, derived from the three neural networks, against the actual value, derived from the 
MakerBot Desktop software (version 3.9.1.1143) [64].  Every data point on these plots 
represents a single training sample, and the dashed line represents the ideal prediction.  The 
results of the mass prediction network might have been skewed slightly due to the existence of 
outliers.  While most solutions are lighter than 175 g, some are as high as 300 g, the mass of 
these heavy parts was significantly underpredicted.  A similar effect is apparent in Figure 7c.  
Most solutions print in less than 1500 minutes, but several take over 2500 minutes.  This might 
have skewed the network during training, as the build time for these parts was significantly 
underpredicted.  
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                        (a)                                         (b)                                          (c) 
Figure 7. Prediction versus actual value for (a) part mass, (b) support material mass, and (c) 

build time. 
 

 A likely underlying cause for the limited predictive accuracy is the limited accuracy of 
the autoencoder.  Particularly true for parts with lattice-like regions (see Figure 6), the 
autoencoder did not accurately reconstruct the voxelized geometry, which was disappointing.  
Since the autoencoder disregards some of the more detailed portions of the part design, it is 
likely that these portions were not accounted for in any of the prediction networks.  The 
functionality of the autoencoder in this regard might be improved by utilizing convolutional 
layers [67].  Convolutional methods enable neural networks to recognize and represent localized 
patterns, which would in turn make it more likely that lattice structure would be recognized and 
encoded in this application.  Convolutional neural networks have been trained with high 
accuracy in a variety of image recognition and other tasks. 
  
 Another factor that might have contributed to the limited accuracy of the prediction 
networks (particularly with respect to support material and build time) is the way in which the 
initial dataset was augmented.  Both build time and support material are inherently orientation 
dependent; however, these characteristics were not re-evaluated after the parts were rotated in the 
augmentation procedure, with the original intention that the neural networks would learn to 
predict the minimum build time and associated support material required for the part regardless 
of the orientation in which it was presented.  It is possible that the prediction accuracy would 
increase if every part was associated with support material mass and build time computed for the 
specific orientation of the part that was autoencoded.  This and additional future work are 
discussed next.  

 
5. Conclusions and Future Work 

This work represents a novel foray into the automated computation of DfAM attributes 
using deep neural networks, with an initial focus on predicting part mass, mass of required 
support material, and build time based on voxelized part geometry.  First, part designs were 
downloaded from the GE GrabCAD design challenge and voxelized, and this dataset was 
augmented through a rotation technique.  Next, a specialized neural network known as an 
autoencoder was trained to compress and reconstruct part designs in order to learn a compact 
representation of the voxelized geometries.  Finally, three predictive neural networks were 
trained (each recycling the encoding portion of the autoencoder) to predict part mass, support 
material, and build time based on a voxelized input.  Limited accuracy was achieved for these 
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three networks, with coefficients of determination of 46.8% for part mass, 30.1% for support 
material mass, and 22.5% for build time.  Despite the limited accuracy of these three predictive 
networks, this work demonstrates the basic feasibility of leveraging deep learning methods to 
predict attributes in parts designed for AM. 

 
Two incremental improvements to the existing deep learning network may increase 

training accuracy.  First, modifying the networks trained here to utilize convolutional layers 
could improve the accuracy of the autoencoder (and therefore the prediction network as well) by 
enabling the networks to recognize and represent localized voxel patterns.  This could account 
for the detailed geometric regions that are not recognized by the current autoencoder.  Second, 
refining the data augmentation procedure could also lead to improved outcomes.  The size of the 
dataset might be augmented further by using a randomized set of rotations that are not 
constrained to 90-degree turns.  This would likely necessitate the rotation of STL files prior to 
voxelization.  Separately assessing the required support material and build time for every rotation 
of the part could also increase predictive accuracy by providing more robust and complete 
training data. 

 
 Predicting attributes such as those investigated in the current work may be useful to 
designers, but the underlying equations that lead to the predictions are complex and not human-
interpretable.  More detailed design recommendations (such as where to add or subtract material) 
will be of limited use unless accompanied by some form of justification or explanation.  This 
will be especially true for components that are flight or safety critical.  Therefore, if this method 
is to be extended for more detailed DfAM recommendations, those recommendations must be 
paired with design-related and human-understandable rationales.  Emerging principles and 
algorithms in the field of eXplainable Artificial Intelligence (XAI) may be of use towards this 
end.   
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