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Abstract

The current proposal aims at a neuroscientific investigation of the magnitudes of trust air traffic controllers (ATCOs) show
when using short term conflict alert (STCA) systems with different levels of reliability that can elicit high and low levels of
human-automation trust. STCA is an automated warning system used by all ATCOs for the purpose of conflict detection and
designed for the primary purpose of ensuring safe separation between any pair of surveillance tracks. The operational use of STCA
depends a great deal on the ATCO’s trust in the system, and this trust is in term dependent on the perceived system reliability.
As different levels of system reliability will engender different levels of uncertainty or mistrust in its use, this proposal adopts an
operational definition of trust that involves decision-making under situations with uncertainty and vulnerability. This means that
human-automation trust, in the context of STCA use, relates to how well the system can facilitate successful conflict detection
under circumstances where uncertainty or unreliability lies in its use.

I. INTRODUCTION: HUMAN-MACHINE TRUST DEFINED

Contemporary technology advances in automation, artificial intelligence (AI), and computational algorithms has created great
benefits for human operators, along with increases in adverse or unexpected consequences [1], [2], [3]. To ensure safe and
seamless human-machine interaction (HMI), trust between humans and machines (in the form of AI or automated tools) has
become a widely discussed topic over the past three decades [4], [5], [6]. In particular, within the air traffic management
(ATM) domain, human-machine trust has long been recognized as essential for complex ATM systems to deliver the proposed
capacity and safety benefits [7], [8].

Irrespective of the types of interactive agents involved, trust, in general terms, is a psychological state that can manifest
itself as an intervening variable between particular external situations or experiences (e.g., social interactions) and the human
behaviors inherent to such situations [7]. More specific and operational definitions of human-machine trust that has been widely
accepted in the current human factors literature concern the perception of trust as: (i) "the extent to which a user is willing
to act on the basis of the information, recommendations, actions, and decisions of a computer-based tool or decision aid" (p.
11 in [7], adapted from p. 1 in [9])) or (ii) "the attitude that an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability" (p. 6 in [10]). Here, it is worth noting that according to the second operational
definition, trust is characterized as decision-making heuristic that machine operators use in situations that are too uncertain or
changing rapidly [3], [2].

The current study aims at a neuroscientific investigation of the magnitudes of trust air traffic controllers (ATCOs) show
when using short term conflict alert (STCA) systems with different levels of reliability that can elicit high and low levels of
human-automation trust. STCA is an automated warning system used by all ATCOs for the purpose of conflict detection and
designed for the primary purpose of ensuring safe separation between any pair of surveillance tracks [11]. The operational
use of STCA depends a great deal on the ATCO’s trust in the system, and this trust is in term dependent on the perceived
system reliability of the system [11], [12]. As different levels of system reliability will engender different levels of uncertainty
or mistrust in its use, this proposal adopts the second operational definition of trust mentioned above. This means that human-
automation trust, in the context of STCA use, relates to how well the system can facilitate successful conflict detection under
circumstances where uncertainty or unreliability lies in its use.

II. RESEARCH BACKGROUND: BEHAVIORAL AND NEUROIMAGING STUDIES ON HUMAN-AUTOMATION TRUST

Over the past three decades, numerous studies in the human factors and ergonomics domain had investigated trust between
human users and automated tools, which is simply termed as human-automation trust [8], [7], [5], [6]. As AI tools and systems
are currently undergoing rapid development and refinements in the ATM domain, we have yet to witness a published ATM study
that made a systematic investigation of human-AI trust. Henceforth, this section will focus exclusively on human-automation
trust in both ATM and non-ATM domains. Note that by "automation," we refer to the "machine execution of functions"



(p. 286 [13]) and "technology that actively selects data, transforms information, makes decisions, or controls processes" (p.
50 [10]).

Trust has been conceptualized as an essential mechanism for automated ATM systems to deliver the proposed capacity and
safety benefits [14]. However, research on trust in ATM systems has been scarce and and has almost all been done using
questionnaires that gave a subjective measure of trust [8], [7], [5], [6]. For instance, a popular questionnaire that has been
used widely in the ATM domain is the SHAPE Automation Trust Index (SATI) [15], which contains rating scales measuring
ATCOs’ overall level of trust and the constituents of trust such as reliability, predictability, and understandability. While SATI
has been found to be easy to administer, it has been criticized for being unable to provide a multidimensional measure of
trust [16]. This means that personality- and individual history-related aspects of trust cannot be assessed by SATI.

Apart from knowing that trust is commonly measured through self-report questionnaires, it is worth noting that a common
trust-related issue in the use of automated ATM tools or systems relates to the phenomenon of complacency, which occurs
when an ATCO places a high level of trust in an automated tool to the negligence or failure of monitoring the "raw" sources
of information that provide inputs to the automated system [8], [5]. In the event of overcomplacency or overconfidence in the
functionalities of the automated system, system errors may go about undetected [17]. As for the measurement of complacency,
the presence of complacency is usually inferred with respect to human performance data reflecting lower levels of attention and
shorter monitoring when using automation [18], [19], [20]. For instance, operators have been shown to scan raw information
sources less often when using automation than when performing the task manually and when automation reliability is higher
rather than lower [19], [20]. In the same vein, when operators were given a tool that contains automated settings for extracting
raw information sources, they used it much less often – indicative of faster data extraction – under automation than under
manual control [18].

On another end, mistrust of an automated system, the polar opposite of complacency, can also pose significant risks for ATCO
performance. Mistrust can either lead an ATCO to "over-monitor" the system in the event of errors [8] or ignore error warnings
given by the system entirely [21]. The latter phenomenon has been dubbed the "cry wolf effect" [22] and has led to users of
automated tools taking longer to to re-engage the use of automated services after experiencing system failures [23]. Moreover,
mistrust is a negative psychological phenomenon that can persist even in the presence of a perfectly reliable automated tool [8].
For instance, using an automated conflict detection advisory in a simulated trajectory-based operation (TBO) airspace, Metzger
and Parasumaran (2005) [19] showed that trust ratings of the automated tool were not high even though it was 100% reliable.

In addition to the aforementioned studies, current state-of-the-art studies of human-automation trust have incorporated
neuroimaging technologies and techniques. Unlike questionnaires that provide subjective measures of trust, neuroimaging
provide objective and real-time measurement of trust and trust-related psychophysiological signals emanating from the human
brain and peripheral nervous system [24]. Specifically, these techniques encompass: (i) electroencephalogram (EEG), (ii)
functional magnetic resonance imaging (fMRI), (iii) functional near-infrared spectroscopy (fNIRS), (iv) electrocardiogram
(ECG), (v) electrodermal activity (EDA) recording, (vi) electromyography (EMG), (vii) electrooculography (EOG), (viii) eye-
tracking, and (ix) photoplethysmography (PPG) [25], [24]. Among these, the first three techniques relate to the recording of
signals emanating from the brain reflective of changes in underlying neural activity while the latter five techniques involve
the recording of signals from the peripheral or autonomic nervous system (i.e., from the heart–ECG, PPG; from the skin and
musculature–EDA, EMG; from the eyes–EOG, eye-tracking).

The goal of the current proposed study is to understand the brain mechanisms of human-automation trust in ATM, and hence
we shall provide a review of notable brain imaging studies. In recognition of the fact that EEG has been the overwhelming
favorite brain imaging technique used by researchers of human-automation trust and that we plan to harness fMRI for this study,
extant human-automation studies that utilized these two types of brain imaging techniques shall be the focus of this review.
As such, the contributions of EEG and fMRI to human-automation interaction and trust were highlighted in the subsections
below. Specifically, because we aimed at learning and adopting the newest state-of-the-art experimental methodologies in our
future projects, we concentrated our efforts on a review of notable human-automation trust studies utilizing EEG and fMRI
studies over the five years only [2016 – 2021 (present)].

Recent EEG Studies

Over the past five years, there has only been a limited set of EEG studies that investigated human-related trust. We found six
noteworthy EEG studies and tabulated their key features – experimental task(s) and design, data analysis technique(s), main
findings and implications – in Table I below. A phenomenon common to all these studies pertains to the use of experimental
design or tasks that involved the modulation of reliability (or dependability) offered by an automated tool (Table I, column 2).
Reliability refers to how consistent an automation can perform in providing accurate information and was largely manipulated
through the programming and presentation of automated agents or advisories that can provide information with different
probabilities of accuracy [26], [1], [27], [3] or risk-taking tendencies [28], [29].

More importantly, with respect to the brain regions that were activated during human-automation trust-related decision
making, these recent EEG studies pinpointed anterior regions such as the (i) lateral prefrontal cortex [29], (ii) anterior cingulate



cortex (ACC) [1], [3], and posterior regions such as the (iii) occipital cortex [29] and (iv) fusiform gyrus (also known as the
occipitotemporal gyrus) [3]. Two studies further showed that power increases or variation in the beta frequency band (12
Hz – 35 Hz) were associated with increased levels of trust [27] and making discriminatory judgments between trustworthy
and untrustworthy stimuli [26]. Figure 1 shows the brain regions from which trust-related decision making EEG signals were
recorded. Figure 1A shows the effective connectivity network uncovered by Sanders et al. (2019) [3] during a participant’s
detection of mistakes made by the automated advisory while Figure 1B shows the locations of the EEG electrodes, mapped
out by Wang et al. (2018) [29], at which significant trust-related activations were found.



Table I: Summary of Key EEG Studies of Human-Automation Trust done over the past Five Years (2016-2020)





Figure 1: (A) EEG-based effective connectivity findings taken from one participant. There was strong flow of time-frequency
information (as indicated by the bright red color) from the source node of fusiform gyrus (FG) [source node] to the dorsal
anterior cingulate cortex (dACC) and posterior cingulate cortex (dPCC) [terminal nodes] when the automation was observed to
be working successfully under the high reliability condition. Lighter colors in the low reliability condition indicate relatively
weaker flow of time-frequency information. These findings were time-locked to the occurrence of the observational error
positivity (oPE, see Table 1, row no. 4) 200 milliseconds after the onset of the automated event. [Source: Fig. 3, Sanders et al.
(2019) [3]] (B) Map of EEG electrodes that recorded significant human-automation trust-related signals from the frontal and
occipital cortices. [Source: Fig. 5, Wang et al., 2018 [29]]

Recent fMRI Studies
Over the past five years, there has only been three notable studies on human-automation trust [30], [31], [32]. Two investigated

brain activations and effective connectivity between regions of interest through the use of a X-ray luggage screening task that
presented automated advisories with varying proportion of false alarms [30] and misses [31]. [Note that a false alarm refer
an emergency alarm (or alert) that is activated under an situation that does not require it [30], [7] while a miss refer to the
absence of an alarm under an emergency situation that truly requires it [31].] The remaining and more recent study was a
proof-of-concept study that investigated human-automation trust in the form of a quantum-inspired mathematical model [32]
– to date, it was the only published trust-related study in the ATM domain. Table II lists the experimental tasks and design,
data analysis techniques, main findings and implications tied to these three studies. From a quick overview of the brain-related
findings, several facts are worth highlighting: (i) Even though the behavioral response associated with advice utilization can
be the same for both human and machine agents, the brain activation patterns in response to the advice given by these agents
can be different [31]. (ii) Greater neural resources, as shown through brain activations observed from contrast analyses, during
decision making in response to advice given by a human agent than to advice given by an automated agent – and these
activation patterns differ based on the proportion of false alarms (see Figs. 2 A and B) and misses (see Figs. 2 C and D)
experienced by the user [30], [31]. (iii) Human-to-machine-agent contrasts done by Goodyear et al. (2016, 2017) [30], [31]
showed activations in the ACC and insula; the same findings were uncovered by Pushparaj et al. (2019) [32], who postulated
ACC activation to reflect reciprocal trust and insular activation to reflect pure distrust. (iv) ACC activation has also been shown
in human-human (interpersonal) trust under using an voluntary trust game that require mutual trust between two participants
in deciding the amount of financial payoffs [33]. This shows that the ACC is vital for representing or inferring the mental
states of another agent, irrespective of whether it is a human or an automated tool.

With these facts in mind, it is worth mentioning that there is current movement toward the treatment of human-automation
trust as a decision-making process [2]. Specifically, this process frames trust in the form of value-based decisions that required
the human user to continuously weigh the expected personal value of letting the automation to complete the task versus
performing it manually [2], [34], [35]. In this way, any trust-related assessment must be made against a backdrop of risk and/or
reward that may come with human-automation cooperation. Through a critical review of the decision neuroscience literature,
Drnec et al. (2016) [2] identified an assortment of brain regions, located in the prefrontal, parietal, and limbic regions that can
be involved in trust-related value-based decisions. As shown in Table III, these hypothesized value-based regions involve the
amygdala, ventral striatum, and ventral medial prefrontal cortex (vmPFC). Currently, to our knowledge, it is unknown as to: (i)



how many of these regions will be activated during human-automation trust-related decision making, (ii) the extent to which
they are activated and the scale of connectivity between them, and (iii) how these brain activation and connectivity patterns, if
present, change over time and under different physical or social environments. These issues show that there are many unknowns
concerning the neural correlates of human-automation trust and that further investigations are definitely needed.

III. STUDY RATIONALE AND MOTIVATION

The preceding review of the recent neuroscience literature on human-automation trust showed that both EEG and fMRI
showed some converging evidence with respect some common regions of activation, particularly those located in the frontal
lobe (e.g., PFC and ACC). What is missing, however, is that there is currently no published EEG study that investigated
human-automation trust in the ATM context and that there is only one fMRI study that examined this form of trust via a
conflict detection task [32]. Since what is currently known about trust-related brain mechanisms in ATM is shown through this
standalone fMRI study [32], this proposed study sets forth to extend the scope of the existing fMRI findings by adopting the
fMRI task protocol used previously by Goodyear and colleagues [30], [31] and utlizing a compound event-related paradigm
used previously by Zhong (2019) [36] (see section below, for details). Importantly, this study follows an operational definition
of trust as "the attitude that an agent will help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability." [10] (as stated in "Introduction"), which characterizes trust as a decision-making heuristic that users of automated
tool use in dynamic situations that involve risks and uncertainties [3], [2]. This definition was choosen becuase this study aims
to follow up on Pushparaj et al.’s (2019) [32] by using an improved conflict detection task that features STCAs with two
different levels of reliabilities would create air traffic control (ATC) scenarios with disparate levels of trust or uncertainties
during system use.

STCA use serves as good context for examining trust because STCA is not 100% foolproof or reliable and can set off false
alarms [7], [37], particularly in a termainal maneuvering area (TMA) with dense air traffic [38]. In the general use of automated
tools, it is worth noting that false alarms can be more damaging to overall operational performance than misses [39]. In the
ATM domain, false alarms are formally called "false alerts" and refers to any alert that does not correspond to a situation
requiring particular attention or action (e.g. an alert caused by the display of split tracks on radar) [40]. Owing to the presence
of STCA false alerts, trust in system reliability among ATCOs has always been cited as a primary concern [7], [11], [12], and
and there is a current drive directed at creating enhanced STCA systems that issue lower rates of false alerts through enhanced
algorithms (e.g., multiple tracking hypotheses tracking) – as specified in the European ATM Master Plan 2020 [38].

Crucially, this study aims to investigate ATCOs’ trust associated with STCA use through fMRI – as done recently by
Pushparaj et al. (2019) [32] – because fMRI is non-invasive, easy to administer, and is generally safe for most people. Notably,
fMRI offers good spatial resolution of the brain to an accuracy of up to 1.0 mm (which cannot be offered by EEG) and
temporal resolution of up to 1.0 second [41]. It renders structural or anatomical images of the brain, as well its functional
images, which represent hemodynamic responses to decisions and/or responses made over the period of the brain scan [41].
Based on statistical analyses that commonly operate on the basis of General Linear Models (GLMs), functional brain images
are color-coded to convey the regions of significant brain activity [42]. These color-coded regions convey "blood-oxygen-level-
dependent (BOLD)" activity, which represents a coupling of cerebral blood flow into a brain region and the neuronal activation
in that region [41]. In simple terms, this means that when an area of brain is “activated” by some mental processes, the flow
of oxygenated blood into it increases. With fMRI, BOLD activations can be detected in both cortical and subcortical regions
and this shall render a fuller picture of the brain regions (compared with the use of EEG) involved in making trust-related
decisions during STCA use.

IV. METHODS

Research Questions: The review of the recent neuroscience literature on human-automation trust showed that this form trust
has been largely investigated in the context of automated tools that are not 100% reliable or trustworthy [26], [1], [27], [3],
[28], [29], [30], [31]. The investigation of trust in this fashion presupposes uncertainty in automated tool use and this study
follows this notion in the proposed fMRI task design. Specifically, this study aims to administer an improved version of the
conflict detection task used by Pushparaj et al. (2019) [32] by incorporating the design principles used previously by Goodyear
and colleagues [30], [31]. Like what Goodyear and colleagues did, this study proposes the administration of an automated
tool, a STCA system in this study, with a low reliability of 60%. In addition, it is also proposed that a perfectly reliable
STCA system that can elicit 100% trust in system use be administered. To our knowledge, there has not been any previous
neurimaging study that investigated the brain activations associated with 100% trust in an automated or AI tool/system and
this study aims to investigate such activations and compare them with activations associated with mistrust in the same type of
tool/system. Following this line of thought, this study aims to address the following research questions:

1. Which brain regions will be activated when ATCOs use a STCA system with two vastly different levels of
reliabilities?



2. How do the brain activations observed from the use of these two types of STCAs compare and contrast against
each other (i) when observing an air traffic scenario before the onset of a conflict or STCA advice?, (ii) when making
decisions after the onset of STCA advice?, and (iii) when reflecting on the decision concerning the acceptance or
rejection of STCA advice?

3. To what extent are the significant brain regions of activations involved in trust-related decision-making correlated
with each other?

Answering these questions will contribute to the construction of a neuroimaging database that informs neuroscience re-
searchers using fMRI of the patterns of brain activations and connectivity of ATCOs with varying levels of trust for STCA use.
By collecting brain-based evidence related to human-automation trust in the ATM context, it is also hoped that such evidence
can be utlized as a useful source of reference for the future development of Machine Learning algorithms that can identify
trusted automation or AI use based on well-known brain activation and connectivity patterns [25], [43].

Targeted Sample Size: Using a fully within-subjects design, this study aims to recruit a minimum of 10 professional ATCOs.
Conflict Detection Task for fMRI: The design of the fMRI-based conflict detection task (CDT) involving a decision-making

event in each trial follows the task design of Goodyear and colleagues [30], [31] while the generation and presentation of
trial types (2) for each STCA follows a compound event-related paradigm that was used previously in a navigational decision-
making study by Zhong (2019) [36] (see subsection below, for details). Figure 3 shows the decision matrices associated with
two STCA systems with 60% and 100% reliability, respectively. Note that for the STCA with 60% reliability, 40% of the
ATC scenarios with conflicts present will feature false alerts. Figure 4 shows the two types of trials – compound and partial
– tied to the presentation of each type of STCA. Both trial types feature an initial observational phase in which air traffic
flow is observed. The compound trial differed from the partial trial with the requirement to make decisions to the advice
provided by the STCA within a period that is expected to last for an average of 4.0 seconds. Feedback about the correctness
of the reponse (i.e., whether it is right or wrong to accept or reject the STCA advice) is provided within a 2.0 second period,
following by double fixation crosses before the start of a new trial. Temporal jittering of the delays between events (i.e.,
between decision-making and feedback) and trials was important to reduce expectancy and habituation effects that can lower
BOLD signal quality [44].

Having a feedback phase is important because it will provide insights into the levels of calibrated trust among ATCO
participants. Calibrated trust refers to the condition in which the anticipated or perceived trust of a machine, automation or AI
matches the experienced trust associated with the actual use of the tool [10], [1], [3]. Seen in this light, trust can be studied
as an evolving process that gets updated with increased information of the operating machine or system [1]. The feedback
provided to ATCO participants shall allow them to adjust their self-perceived trust and fine-tune their performance based on
updated knowedge of STCA system capability.

EUROCONTROL’s Escape Light Simulator [45] will be used to design the ATC scenarios. These ATC scenarios will feature
two different numbers of aircraft that will be presented repetitively in different starting locations across the trials. This method of
presenting varying numbers of stimuli had been used previously by Goodyear and colleagues [30], [31] and serves the purpose
of preventing any habituation effects that can significantly reduced the intensitites of the collected BOLD signals. Each ATC
scenario will feature a lateral conflict between a pair of aircraft. There will be eight types of conflict events/geometries and
each of these events/geometries will be repeated three times to constitute 24 compound trials. The partial trials will only feature
obervations of these eight trials, without the need to make decisions or conduct any responses. The subection below provide
details about the numbering and ordering of these two types of trials.

With respect to STCA design, an auditory tone will signal the onset of its activation (Figure 4). At the same time when the
tone sounded, the pair of conflicting aircraft will be circled in a brightly color and the participant will have to decide whether
or not to accept the advice. Due to the small of view that makes the reading of text information difficult in the fMRI scanner,
the conflicts designed will all occur on the same flight level and the STCA will provide alerts with respect to these lateral
conflicts only. To ensure that the STCA advice presentation is kept as realistic as possible, EUROCONTROL’s guidelines for
STCA operations and managment [40] will be followed when designing the STCA.

Compound Event-Related Paradigm: The compound event-related paradigm (also called the "partial-trial design" [46]) is an
fMRI protocol that enables the separation of trials incurring two or more distinct processes (e.g., sensory, cognitive, motor)
[i.e., compound trials] from trials incurring an initial subset of such processes (i.e., partial trials) [47], [48], [46]. In the context
of the proposed experiment, compound trials pertain to the ATC trials featuring the full set of events encompassing air traffic
flow observation, decision-making in the presence of STCA advice, and feedback (Figure 4) whereas partial trials pertain to
the trials that involved the observation event only. The delineation of these two trial types shall enable an assessment of the
brain regions involved in air traffic flow observation and STCA-based decision-making under different conditions of trust.

The time courses of BOLD responses to the compound and partial trials will be estimated using a General Linear Model
(GLM) that made no a priori assumption about the shape of the hemodynamic response function (HRF) [47], [48], [49],
[50]. This GLM shall involve: (i) jittering of the inter-event temporal intervals, ranging from 1 to 3 TRs (repetition time), in
an exponential fashion to ensure a high level of accuracy in estimating the shape parameters of the hemodynamic response



function (HRF) through the sampling of more points on the HRF compared with using a fixed interval design [51], and (ii)
inter-mixing of partial and compound trials in a 3:1 ratio to prevent participants from predicting the onset of a particular trial
type and to ensure that the time courses of BOLD responses to different cognitive processes could be differentiated from each
other [48], [49], [50].

Procedure: The study is proposed to involve a pre-fMRI practice phase and a formal fMRI scanning phase interleaved with
subjective trust assessment (see Figure 5). In the initial practice phase, the participants must perform a designated number of
practice trials (e.g., 12) featuring compound and partial trials arranged in a 3:1 ratio. Upon completion and before entering the
fMRI scanner, they would be told that the advice provided by STCA would not always be 100% reliable and that they must
exercise their judgment during advice acceptance or rejection. When making a decision to accept or reject the advice provided
by the STCA, they would press one of two buttons on button box or keypad. In the fMRI scanning phase, they participants
would perform two runs featuring the same number of compound and partial trials (e.g., 32 trials - 24 compound, 8 partial)
but with different levels of STCA reliability. Each run would feature trials with STCA pre-set at a fixed reliability level (either
60% or 100%). These two types of runs will be presented in a counter-balanced order across participants. After each fMRI
run, the experimenter will ask each participant a question related to his/her level of trust in the STCA over the microphone:
"Overall, to what extent do you trust the STCA’s ability to correctly identify the conflict?" on a scale ranging from 0 (not at
all) to (completely). [Note: Alternatively, this question can be presented on a powerpoint slide and shown to participants.] This
scale is adapted from one used recently by de Visser et al. (2018) [1]. Having a subjective report of trust is important because
it will provide a quick assessment of the extent to which a participant is aware of the STCA’s functionality experienced in
each run. This subjective measure can also be useful for conducting correlational analysis with relevant BOLD parameters
estimates derived from GLM analysis.



Table II: Summary of Key fMRI Studies of Human-Automation Trust done over the past Five Years (2016-2019)





Table III: Brain regions with putative roles in decision making. [Source: Table 1, Drnec et al. (2016)]

Figure 2: (A) Brain regions activated during the decision phase in a X-ray luggage scanning task with 40% false alarms based
on human-to-machine agent contrast analysis. (B) Effective connectivity network during the decision phase in a X-ray luggage
scanning task with 40% false alarms based on human-to-machine agent contrast analysis. [Source for panels A and B: Figs.
5 and 7, Goodyear et al. (2016) [30]]. (C) Brain regions activated during the decision phase in a X-ray luggage scanning task
with 40% misses based on human-to-machine agent contrast analysis. (D) Effective connectivity network during the decision
phase in a X-ray luggage scanning task with 40% misses based on human-to-machine agent contrast analysis. [Source for
panels C and D: Figs. 3 and 5, Goodyear et al. (2017) [31]]



Figure 3: A Decision matrix for STCA system with 60% reliability. B Decision matrix for STCA system with 100% reliability.

Figure 4: A Events in a compound trial that feature observation of air traffic flow, decision-making tied to acceptance or
rejection of STCA advice, and feedback tied to the executed response. B A partial trial that features an observation of air
traffic flow after the fixation period.



Figure 5: Flowchart diagram showing the linear ordering of experimental phases. Note that the same one-item trust survey will
be used directly after each fMRI run.
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