Contrasting Parallelized with Sequential Sorting

Anurag Dutta! and Manjari Saha™

! Undergraduate, Department of Computer Science and Engineering,
Government College of Engineering and Textile Technology, Serampore
2 Assistant Professor, Department of Computer Science and Engineering,

Government College of Engineering and Textile Technology, Serampore

*Corresponding Author

cmanjari@gmail.com

Abstract. Sorting is one of the important Data Management Techniques
that is quite commonly operated on Data Structures. It has been proved
that best, any sorting algorithm can do, in asymptotic versions is ¢ log, ¢,
when the iterations are made to run in sequential manner. But what if we
parallelize them? Architectural advancements, like Amdahl’s Law have
made use of the concept of Parallelism, and have successfully revolutionized
the computing power of the microprocessors. In this paper, we will try to
push the limit of computing, by making use of Graphical Processing unit
and will briefly compare the efficiency of the algorithms acquainted with
both the techniques, sequential as well and parallel in terms of running
time. In the first section, we have included some of the preexisting works
on this topic, and have mentioned about scopes of further improvement.
From the next section onwards, we have slowly put together all the pillars

required to support our work.

Keywords: Parallel Computing, Sorting Algorithms, GPU, Microproces-

SOrs

1 Introduction

Sorting Algorithms are the set of algorithms that arranges some data elements in
monotonically increasing or decreasing order of its magnitude. If, we try to get a
wide, aloof definition of this, we can start by mentioning, that it’s an algorithm
that searches for a possible permutation, where elements of each index are mon-
otonically arranged, from the set of all Permutations P (4). It is guaranteed that
there always exists an instance P; € P(A), such that in P;(4), A; = Aj4q or 4; <

A;;1Vi € n, where n is the cardinality of the data set. So far, in nearly half a
century of advances in computer science, the fastest algorithm developed so far,
manages to scoop out the necessary Permutation in logarithmic time, amortized
with linear time multiplicatively. Though there are many such algorithms which
has been successful in hitting the bottom of the jar, to name a few, Merge Sort,
Quick Sort, Heap Sort are some of the great instances, but none have crossed the
minima mark in negative sense. Infact, it can be proved mathematically,

Let us try to understand sorting in terms of searching. Each element that
are being sorted is eventually searching its accurate place in the set. So, let we
are interested in evacuating the element a; at its original place. Now, to get to
its original place, we will have to search at n places in maximum. Now, once it is
dropped at its original place, we will move to the next element of a;, and to
evacuate it to its actual place, we will have to search at most n — 1 places and
in this the number of places to be searched varies liken —3, n—4,n—5 n—6,
.., 1. Now there are a lot of searching algorithms like linear search, binary search,
interpolation search[1], but as we know, the fastest searching algorithm devised
so far is binary search which searches at logarithmic time.

So, total time

T(n) =log,n+log,(n—1)+ log,(n —2) + -+ log, 1
n-—1 n-1

T = Z log,(n — i) = log, (H(n - i)) = log,(n!)
i=0 i=0

If we consider the Stirling’s Approximation[2][3],

n

T @lin = logy (V2 () (i)
= T lin = loga (VZEn("*2)) + log, (elzmrs) ")

1
= T()|min = (n + E) log,(n) + n = nlog,(n)

But this scenario is true iff no architectural changes are incorporated in the work-
ing of the algorithms. But, if we change the course of action, of the computing
unit, or Infact change the unit of computation, we will surely fetch good stuff out
of it.

2 Graphical Processing Unit (GPU)

In the previous section, we have mentioned that, advances haven’t been possible
from the last 5 decades on the sorting algorithms, and have logically supported
it. Like, we can consider it as intractable but, since we have got no logical proof
in support of that, we have proved that the converse is not true. But, towards
the end, we have mentioned that, with architectural advances, we could probably
pass the minima. Now, in the general sorting, or the sequential sorting, we are
forced to run the n iterations of searching, which we have mentioned in the in-
troduction, in sequel. But, if by any means we could make use of the parallelism
to perform the iterations in batches, we could get the work, infact to be precise,
the sorting action done in a much smaller time. Well, fortunately, we have got
computational devices that could do the same, and those devices or hardware are
nothing by the Graphical Processing Unit. Like, they can perform multiple tasks
or better, multiple iterations of the same task simultaneously. It’s like some non-
ambidextrous person in work, being replaced by one ambidextrous.

In this section, let’s have a brief review on how this ambidexterity — analogue
hardware can fasten our work. GPUs are processing unit similar in action to the
Central Processing Unit. The major difference between this two hardware is the
computational power based on core count. In general, the core count of GPUs,
Hepy > Hepy, the core count of CPUs. Let’s for instance, take the example of two
mid specs hardware,

e Intel(R) Core(TM) 17-1065G7 CPU @ 1.30GHz 1.50 GHz
e NVIDIA® GeForce® MX330 GPU

The core count (total) of the CPU is 4, with a boost of 2.[4] At max, the CPU
can handle 8 threads' at simul. Whereas, the core count (total) of GPU is 384[5]
(unified). At max, it can handle such a huge number of threads. It’s very obvious
from the facts and figures that, GPUs are a more powerful, yet expensive com-
putational device. GPUs have been quite popular in the last few decades due to
the need of fast processing, high graphics computing, like the video games, we see
around us, these days, demands a lot of hardware supported computing.

While, CPUs are a set of singular cores, GPUs are a set of multiple cores. GPUs
consist of smaller components called as Stream Multiprocessors (SM). Each SM

consists of many Stream Processors (SP) on which actual computation is done.

1Tt is a single instance of computing.

Some useful terminologies relating GPUs[6] are

e Thread: It is a single instance of computing. One or more threads are pro-
cessed on a Stream Processor.

e Block: It is a group of Threads. One or more blocks are processed on a Stream
Multiprocessor.

e Grid: It is a group of Blocks. One Grid is generated for one Kernel and on
one GPU. Also, only one kernel can be executed at one time instance.

e Warp: Number of threads in a block running simultaneously on a Stream

Multiprocessor is called a Warp

Apart from these, GPUs invoke, with them, a wide variety of different types of
memory. Let’s have a look on them.

e Local Memory: Each Stream Processors make use of the Local Memory. All
variables declared inside a kernel are stored in this Memory

e Shared Memory: This is the memory which is common to all the threads
present inside each block. This Memory helps in reducing the latency —
memory access time. When we have to use shared memory for a variable, it
should be prefixed with keyword shared during its declaration.

e Global Memory: Main memory of the GPU. To make use of this memory,
cudaMalloc () function is taken into account.

e Constant Memory: It is generally used to store constants — that won’t change
their value during execution. When we have to use constant memory for a
variable, it should be prefixed with keyword constant during its dec-
laration.

e Texture Memory: This memory is again used to reduce latencies. It’s domain
of action is quite unique, and quite interesting to study. It takes in account
of the notion of Spatial Locality — wherein one value is pinched, while the
surrounding is also procured because these surrounding values have higher

chances of being rereferred.

Now, again, there must be some medium that would commensurate the medium
between the task and the computational unit. One such is the parallel computing
toolkit, namely CUDA — Compute Unified Device Architecture, developed by

Nvidia. According the CUDA Developers, CUDA is designed to work with pro-
gramming languages such as C, C++4, and Fortran. For, our work, we will make
use of the same.

3 CUDA Parallelism

In this section, we will offer a brief o’erview of the CUDA Toolkit. Since, the
toolkit, is made open — sourced by it’s developers, we will replicate some of the
contents directly, from the official site itself, though they will be encapsulated
with apt. referencing.

According, to NVIDIA, [7][8]

CUDA® is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical processing units (GPUs). With CUDA,
developers are able to dramatically speed up computing applications by harnessing
the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the
CPU - which is optimized for single-threaded performance — while the compute in-
tensive portion of the application runs on thousands of GPU cores in parallel. When
using CUDA, developers’ program in popular languages such as C, C++, Fortran,
Python and MATLAB and express parallelism through extensions in the form of a
few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-
accelerated applications. The CUDA Toolkit includes GPU-accelerated libraries, a
compiler, development tools and the CUDA runtime.

The first GPUs were designed as graphics accelerators, becoming more programmable
over the 90s, culminating in NVIDIA's first GPU in 1999. Researchers and scientists
rapidly began to apply the excellent floating-point performance of this GPU for gen-
eral purpose computing. In 2003, a team of researchers led by lan Buck unveiled
Brook, the first widely adopted programming model to extend C with data-parallel
constructs. Ian Buck later joined NVIDIA and led the launch of CUDA in 2006, the
world's first solution for general-computing on GPUs.

Since its inception, the CUDA ecosystem has grown rapidly to include software de-
velopment tools, services and partner-based solutions. The CUDA Toolkit includes
libraries, debugging and optimization tools, a compiler and a runtime library to de-
ploy your application. You'll also find code samples, programming guides, user man-
uals, API references and other documentation to help you get started.

CUDA accelerates applications across a wide range of domains from image processing,
to deep learning, numerical analytics and computational science.

All these statements conclude to the fact, that CUDA Toolkit improves
the performance of computational attributes by utilizing the power of the
GPUs.

4 Sorting Algorithms

As, we had mentioned in the introduction itself, that Merge Sort is the best that
sorting algorithms could do, taking the advent of sequentially accredited sorting.

Merge sort is a very good sorting technique which follows the technique of divide
and conquer[9]. Let’s have a look on its course of action.

Let we have been given a set of n elements in a list (data structure with language
independency), such that

L(n) = {ap a1, a2, ..., 1}

Under this algorithm the list is divided into equally sized sub parts and merged
step by step in a recursive[10] manner to bring it to sorted format. It is often
referred to as the best sorting technique when we are required to sort a linked
list.

The Pseudocode for this algorithm will be

function merge (list of elements, low_index, mid index, high in-
dex)

size vaultl < mid index - low _index + 1

size vault2 < high index - (mid index + 1) + 1
vaultl[size vaultl]

vault2[size vault2]

for i = 0 to i = size vaultl - 1

vaultl[i] = list of elements[low index + 1i]

end for
for i = 0 to i = size vault2 -1
vault2[i] = list of elements[mid index + 1 + 1i];
end for
i, j « 0, 0
k « low_index
while i < size vaultl and j < size vault2
if vaultl[i] > vault2[j]
list of elements[k] = vault2[]]
increment j, k
else
list of elements([k] = vaultl[i];
increment i, k
end if
end while
while j < size vault2
list of elements[k] = vault2[]j];
increment j, k
end while
while i < size vaultl
list of elements[k] = vaultl[i];
increment i, k

end while

end
function merge sort(list of elements, low index, high index)
if low index < high index
mid index ¢« low index + (high index - low_index) / 2
merge sort(list of elements, low_ index, mid index)
merge sort(list of elements, mid index + 1, high index)

merge (list of elements, low index, mid index, high in-
dex)

end if

end

The Akra — Bazzi Method[11] is one of the techniques to analyze the asymptotic
behavior of recurrences, which are of the form

k
T(x) = g(x) + Z a;T(Bix + hy(x)) Vx = x,

The asymptotic behavior of T(x) is found by determining the value of p for which

zk:“i(ﬁi)p =1

i=1

and plugging in that value of p in the recurrence format equation, we will get

T(x) €O (xp <1 + fx%du»

For, Merge Sort, the recurrence is

0 vn=1
T<n>={TgJ+T[g]+n_1 "0

and the computed closed form is like @(nlog n).

Well, this merge sort is one of the advanced sorting algorithms, but there exist
certain naive, not so good algorithms that take exponentially high time. One such
is the Permutation Sort. In permutation sort, we simply generate all permutations
of the elements present in the list, and on a later note, we check the monotonicity
of each permutation, if the tendency of monotonicity is constant, we declare that
permutation as the sorted list.

The Pseudocode for this algorithm will be
function permutation sort(list of elements)
current list « generate next permutation(list of elements)
if current list: monotonic
return current list
else
return permutation sort (current list)
end if

end

Now, generating all permutations takes execution time of the order

® (ﬁ(n - i))
i=0

where, @() is the appropriate asymptotic notation.
Here, in this paper, we will allow the Merge Sort, to make use of the computa-
tional power of the CPU Microprocessor, while, we will make use of the compu-
tational power of the GPU for the Permutation Sort.

5 Contrast between the Sorting Algorithms in Action

As mentioned in the section above, we will implement the Merge Sort Algorithm
by making use of the Computational Power of the CPU, while we will be making

use of the GPU Power for the Permutation Sort, and we will be performing these

10

two by using the NVIDIA CUDA Toolkit. The contrast will be laid on the basis
of both — worst and best — case scenario respectively.

5.1 Best Case Scenario

For both, Merge and Permutation Sort, we will have the best case, or attain the
best — case scenario, iff the elements of the list L(n) = (a;), that is intended to
be sorted is already arranged in increasing order of their magnitude, i.e., a; <
a;Vj > i. Compiling the results obtained from the binary approaches, we have
noted down the aspects of both the techniques, and the cardinality of the dataset
is varied according to the law |L;| = 10 X |L;_4|

|L;] Tepy Tepy
1 0.000000 0.000000
10 0.000002 0.000018
100 0.000009 0.000018
1000 0.000086 0.000013
10000 0.000995 0.000014
100000 0.011538 0.000014
1000000 0.133270 0.000018

NOTE: T¢py and Tgpy are the real space time (literal meaning) execution time,
measured on the basis of machine clock time in seconds, these are not based of
some kind of arithmetic falsifiability or trafficability

5.2 Worst Case Scenario

For both, Merge and Permutation Sort, we will have the worst case, or attain the
worst — case scenario, iff the elements of the list L(n) = (q;), that is intended to
be sorted is arranged in decreasing order of their magnitude, i.e., a; = a;Vj > i.
Compiling the results obtained from the binary approaches, we have noted down
the aspects of both the techniques, and the cardinality of the dataset is varied
according to the law |L;| = 10 X |L;_4|

|L;] Tepy Tepy

1 0.000000 0.000001
10 0.000002 0.000014
100 0.000010 0.000013

1000 0.000122 0.000013

11

10000 0.011004 0.000014
100000 1.222412 0.000014
1000000 9.199570 0.000018

NOTE: T¢py and Tgpy are the real space time (literal meaning) execution time,
measured on the basis of machine clock time in seconds, these are not based of
some kind of arithmetic falsifiability or trafficability

To view the CUDA enhanced code, from which, execution time was obtained and
filled in the tables, shown above, click here.

6 Conclusion

In this section, we will draw a conclusion to the observations that we have dis-
cussed in this research. It is evident from the table, that Tepy > TgpyV|L;| = 100,
otherwise, its Tepy < TgpyVILi| < 100, The main reason behind this cumbersome
result is quite simple, GPUs are designed in such a way that they fill up the
different types of their memory before computational advancements, while, CPUs
tend to work more on the computational sector at first.

Thus, from this work, we could conclude that, the fastest sequential sort-
ing, - Merge Sort is slower in action for larger cardinality of the data set, it’s
working on, when contrasted with the most naive sorting technique, Permutation
Sorting. This Also, justifies the fact that, though GPUs are expensive, still, they
have effective solution finding speed, which is in optimal requirements in the
modern world.

References

1. Gonnet G., Rogers L. and George J. (1980), “An algorithmic and complexity analysis
of interpolation search”, Acta Informatica, Springer, 13, pp 39 — 52.

2. Wang L. and Zou C., “Accuracy analysis and applications of the Sterling interpolation
method for nonlinear function error propagation”, Measurement, Elsevier, 2019, pp
55-64.

3. Manzoni K., “Modeling credit spreads: An application to the sterling Eurobond mar-

ket”, International Review of Financial Analysis, Elsevier, 2002, pp 183-218.

Intel® Core™ i7-1065GT7 Processor | Intel

GeForce MX330 Dedicated Graphics | NVIDIA

Ashu Rege, “An Introduction to Modern GPU Architecture”, © NVIDIA Corporation

2008

=

> o

https://colab.research.google.com/drive/1QRRjwJKW4MukaJ4RVml630whG9JbGu5H?usp=sharing
https://www.intel.com/content/www/us/en/products/sku/196597/intel-core-i71065g7-processor-8m-cache-up-to-3-90-ghz/specifications.html
https://www.nvidia.com/en-us/geforce/gaming-laptops/mx-330/

12

"Nvidia CUDA Home Page". 18 July 2017.

Abi Chahla, Fedy (June 18, 2008). "Nvidia's CUDA: The End of the CPU?". Tom's
Hardware. Retrieved May 17, 2015.

Jon Kleinberg, Eva Tardos, “Algorithm Design”, Pearson, 2005

Herbert Wilf, “Algorithms and Complexity”, Tailor and Francis, 2002.

Akra, M., Bazzi, L. On the Solution of Linear Recurrence Equations. Computational
Optimization and Applications 10, 195-210 (1998).

