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Abstract

Structural components in corrosive environments such as pipelines, bridges, air-
crafts, and turbines are imposed to stress corrosion. A stress corrosion model for
pit growth should a) accurately consider the electrochemistry of the corrosion
process, b) properly deal with the moving interface between solid and electrolyte,
and c) effectively incorporates the synergism between corrosion and mechanical
field at the interface. In Part II, the influence of mechanical loading is added to
the approach described in Part I. Part II investigates the model’s capabilities of
simulating stress corrosion via a set of numerical examples of corrosion pitting
which include experimental validation and uncertainty quantification of model
parameters and properties.
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1. Introduction

The first attempts to theorize the synergism between corrosion and mechan-
ical stress may be traced back to the works of Scully[8, 9, 10]. Turnbull[11]
gave a model of corrosion cracking assisted by environment which combined
empirical models with mechanistic influences. Sieradzki and Newman[12] also5

proposed a model with the emphasis on transgranular crack propagation. Since
stress corrosion is a multiscale (from atomic to millimeter scale) phenomenon,
distinguishing the mechanisms of interaction between stress and corrosion[13]
makes the modelling process much clearer. A common modelling approach of
stress corrosion at microscale is direct consideration of influence of mechanical10

stresses on the rate of corrosion by Gutman’s formula[14, 15]. In this approach,
the electrochemistry of the corrosion pit front is coupled with the change of
surface energy density caused by the stresses. The approach adopted in this
paper uses a simple one-way coupling of the corrosion rate to mechanical load.
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Part II utilizes the same approach of the moving corrosion front (i.e. com-15

bining FEM with the level-set method) as in Part I. It also adds the important
influence of the mechanical field of the solid domain on corrosion pit growth to
the approach. Part II of this paper, similar to Part I, focuses on more exten-
sively demonstrating capabilities of the model proposed by Dekker et al. [23] in
simulating stress corrosion. First of all, sensitivity analyses of system response20

quantities (SRQs) of interest such as pit depth to finite element mesh size and
nonlinear solution time step size are performed for an example problem. Then,
uncertainty quantification (UQ) of model parameters (e.g. the nonlocal length
scale and the applied electric potential) or model properties (e.g. the formula
of scalar strain measure related to plasticity/ dislocation) or both is conducted.25

Experimental validation is included for those example problems for which ex-
perimental measurements are available.

2. Corrosion Kinetics

Kinetics of corrosion is explained in Part I. Thus, this section deals with the
influence of a mechanical field on corrosion.30

2.1. Influence of electric overpotential on corrosion

The Butler-Volmer equation [25] is employed to determine the relation be-
tween the electric current surface density jn and electric overpotential:

jn = j0
nγoverpot (1)

where j0
n is the open-circuit (or exchange) electric current surface density which

depends on the characteristics of the metal surface in interaction to the elec-
trolyte,

γoverpot = exp( Fz
RT

ϑηe) − exp(− Fz
RT

(1 − ϑ)ηe) (2)

is the overpotential multiplier, R is the gas constant, T is the absolute temper-
ature, ϑ is the anodic charge transfer coefficient, ηe = Eapp −Eeq is the electric
overpotential, Eapp is the applied electric potential, and Eeq is the corrosion
equilibrium electric potential. Equation (2) indicates that the anodic (the ca-35

thodic) corrosion reaction mainly occurs when the sign of electric overpotential
is positive (negative).

2.2. Influence of mechanical load on corrosion

As pointed out in the introduction section, Gutman[14, 15] proposed two
contributing factors to the electric current surface density related to mechanical
stresses: elastic stresses and plastic deformations. From thermodynamic laws,
he concluded that only the part of the elastic deformation energy that changes
material volume can contribute to the electric current surface density. This
part is directly related to hydrostatic stresses and takes the following form as a
modification multiplier to the electric current surface density

γelastic = exp( ∣σh∣VM

RT
) (3)
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where σh is the hydrostatic stress, VM is the molar volume of metal, and ∣2∣ is
the absolute value of 2. Furthermore, Gutman, based on the theory of elastic
dislocations, proposed the contribution of plastic deformations to the electric
current surface density as another multiplier

γplastic =
eeq

ε0
eq

+ 1 (4)

where eeq is a scalar strain measure related to plastic deformation and/or dis-
locations occurred in the material and ε0

eq is an equivalent elastic strain at the40

onset of the elastic-to-plastic change of material state.
To consider the influence of the mechanical load on the corrosion, the two

multipliers (3) and (4) should be multiplied to equation (1):

jn = j0
nγoverpotγelasticγplastic (5)

By using equation (5), we assume a one-way influence of mechanical stresses on
corrosion.

3. Behavior of material under cyclic loads

This section presents the behavior of a solid material under cyclic loads45

according to the Chaboche model [28].

3.1. Material plasticity framework

It is assumed that the total strain is small and can additively be decomposed
into elastic and plastic strain:

ε = εe + εp (6)

where ε, εe, and εp are the total, elastic, and plastic strain tensor, respectively.
In addition, in this contribution, the hyperelasticity [29] and hyperplasticity
framework [30] are utilized to model the mechanical behavior of the material.
That is, a free energy potential scalar function is employed to derive mechanical
and thermodynamic forces and a plastic flow potential scalar function is used
to derive the rate of plastic strain and internal states:

σT = ∂Ψ

∂εe
, χT = ∂Ψ

∂β
, R = ∂Ψ

∂ζ
(7)

and

ε̇p = λ̇ ∂Υ

∂σT
, β̇ = −λ̇ ∂Υ

∂χT
, ζ̇ = −λ̇∂Υ

∂R
(8)

where Ψ = Ψ(ε,εp,β, ζ) is the free energy potential, Υ = Υ(σ,χ,R,εp,β, ζ) is
the plastic flow potential, σ is the stress tensor, χ is the internal force tensor,
R is the isotropic force scalar, β is the internal deformation tensor, ζ is the
isotropic deformation scalar, λ is the plastic flow scalar, 2T is the transpose
operator, and 2̇ is the time derivative of 2. According to the conventional
theory of plasticity, the growth of plasticity in the material occurs following the
KKT1 conditions

λ̇ ≥ 0, fy ≤ 0, λ̇fy = 0 (9)

1Karush-Kuhn-Tucker
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where λ̇ is the plastic flow rate and fy = fy(σ,χ,R,εp,β, ζ) is the yield scalar
function.

3.2. Yield function50

The von Mises criterion is used as the yield function:

fy =
√

3J2(α) − κ (10)

where
α = σ −χ (11)

is the overstress tensor,
κ = σy +R (12)

is the total isotropic stress, σy is the yield stress of virgin material,

J2(a) =
1

2
aDev ∶ aDev (13)

is the second invariant of the deviator of tensor a, aDev is the deviatoric part of
(or the deviator of) the second order tensor a:

aDev = a − aHyd, (14)

aHyd is the hydrostatic part of the second order tensor a:

aHyd
ij = 1

3
akkδij , (15)

δij is the Kronecker delta:

δij =
⎧⎪⎪⎨⎪⎪⎩

1 , i = j
0 , i ≠ j

, (16)

and ∶ is the double-dot operator between two nth order tensors b and c such
that

b ∶ c = b...klclk.... (17)

3.3. Chaboche model

It is more convenient to explain the Armstrong-Frederick type plasticity
model first since the Chaboche model is a generalization of this model in order to
incorporate different mechanisms involved in cyclic plasticity. In the Armstrong-
Frederick type plasticity model [31], the free energy and plastic flow potential
function are

Ψ = 1

2
εe ∶ C ∶ εe + 1

2
k1β ∶ β +W (18)

and

Υ = fy +
1

2

k2

k1
χ ∶ χ (19)

where C is the fourth order tensor of Hooke’s stiffness, k1 and k2 are the linear
and nonlinear scalar kinematic hardening coefficients, respectively,

W = Q∞ (ζ + 1

b
(exp (−bζ) − 1)) (20)
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is the isotropic free energy potential, Q∞ is the ultimate added stress of isotropic
hardening, and b is the exponential growth coefficient of the added stress of
isotropic hardening. By substituting the specified equations of free energy and
plastic flow potential (i.e. equations (18) and (19)) into equation (7), we obtain

σ = 1

2
(C ∶ εe + εe ∶ C) (21)

χ = k1β (22)

R = Q∞ (1 − exp (−bζ)) . (23)

In addition, substituting equations (18) and (19) into equation (8) gives

ε̇p = λ̇N (24)

β̇ = −λ̇H (25)

ζ̇ = λ̇ (26)

where

N =
√

3

2

αDev

√
αDev ∶ αDev

(27)

is the plastic strain flow direction, and

H = −
√

3

2

αDev

√
αDev ∶ αDev

+ k2

k1
χ (28)

is the internal deformation flow direction. Equations (21) to (28) hold for a
3D problem. It should be noted that a problem in a 1D or 2D spatial space
is a special case of a 3D problem, which requires imposing special conditions
on the problem formulation. For example, for a 2D plane strain or plane stress
condition, the strains or stresses are required to be zero in the out-of-plane
direction, which necessitates using the appropriate Hooke’s stiffness matrix for
plane strain or stress condition C̃ as well as substituting the modified total strain
ε̃ and modified plastic strain ε̃p for total and plastic strain, respectively:

ε̃ = L(ε) (29)

ε̃p = L(εp) (30)

where L is a linear transform function for the plane strain or stress condition
such that

a =
⎛
⎜
⎝

axx axy axz
ayx ayy ayz
azx azy azz

⎞
⎟
⎠

Lz→ ã =
⎛
⎜
⎝

axx axy 0
ayx ayy 0
0 0 (axx + ayy)$

⎞
⎟
⎠

(31)

where a is a second order tensor in a 3D spatial space with orthogonal in-plane
axes x and y and an out-of-plane axis z, $ is a multiplier equal to 0 and −ν/(1−ν)
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for a plane strain and plane stress condition, respectively, ν is the Poisson’s ratio,
and the symbol 2̃ indicates the modified quantities corresponding to plane strain55

or plane stress condition. These modifications are the reason why ε̇p/λ̇ is not
equal to N in general and must not be substituted for N, or the other way
around, in the governing equations of plasticity.

Another point to attention is that the deviatoric part of the internal force
and internal deformation tensors, in some publications, are used instead of these60

quantities themselves, or they are assumed to be deviatoric tensors. The de-
viatoricity of these quantities are mathematically assessed in Appendix A. A
mathematical proof is also given in the appendix which shows that these quan-
tities are deviatoric with the employed free energy and plastic flow potential in
this paper. However, it is advised by the authors to use the internal force and in-65

ternal deformation tensors (and not their deviators) in the governing equations
because they may be not deviatoric for certain problem conditions.

Chaboche model [28, 32] incorporates different influencing mechanisms of
cyclic plasticity by superposing different responses of internal forces into a single
one:

χ = ∑
m

χm (32)

where χm is the internal force caused by the mth cyclic plasticity mechanism.
In this work, different internal forces and internal deformations are assumed
to have the same mathematical form expressed by equations (22) and (25),70

respectively, but with different coefficients (i.e. different k1 and k2).

3.4. Calculation of quantities influencing corrosion

According to equation (5), two mechanical quantities influence the electric
current surface density: the hydrostatic stress σh and the scalar strain measure
related to plastic deformation and/or dislocation motion eeq. The hydrostatic
stress is

σh = 1

3
σkk (33)

and two different definitions of the scalar plastic strain measure are used in this
research. The first measure is the equivalent dislocation strain suggested by
Dekker et al. [23]:

ėeq = sgn(χ ∶ ε̇p)ε̇p
eq (34)

where sgn is the sign function:

sgn(a) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 , a < 0

0 , a = 0

+1 , a > 0

, (35)

ε̇p
eq is the equivalent plastic strain rate

ε̇p
eq =

√
2

3
ε̇p ∶ ε̇p, (36)

and eeq ≥ 0. This measure is useful when the cyclic load generates dislocation
pile-ups that increase material resistance to corrosion. The second measure is
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proposed here as

eeq =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

εp
eq , εp

eq < eth,1

eth,1 , eth,1 ≤ εp
eq ≤ eth,2

0 , eth,2 < εp
eq

(37)

where eth,1 and eth,2 are parameters to be calibrated by experimental data.
Equation (37) is applicable for both monotonic and cyclic loads by which dislo-
cations are generated, dislocation pile-ups are formed, and finally dislocations75

move away from the corrosion surface. The equations (36) and (37) are used for
cyclic and monotonic loads, respectively, in two different numerical examples in
Section 4.

The quantities calculated by equations (33), (34), and (37) are spatially lo-
cal. However, in order to diminish the spatial discontinuities of these quantities
caused by finite element type and mesh size, their nonlocal alternatives are uti-
lized only for calculation of the elastic and the plastic multipliers. The nonlocal
alternative of a local quantity q is defined as

qnonloc(xA) = ∫Ω
w(x;xA,Λ) q(x) dΩ

∫Ωw(x;xA,Λ) dΩ
(38)

where xA is the spatial position vector of point A, x is the spatial position
vector of a point in the domain of integration, Ω is the whole spatial domain
of problem, w is the weight function, and Λ is the vector of parameters of the
weight function. The weight function used in this contribution is

w(x;xA,Λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ
( r

lw
)2

w ,0 ≤ r

lw
≤ 1

0 ,1 < r

lw

(39)

where r = ∥x −xA∥ is the Euclidean distance from point A, ∥2∥ is the Euclidean
norm of 2, Λ = [γw, lw]T, lw is the nonlocal length scale, and γw is the exponent80

basis which is chosen to be 0.001 for all numerical examples.

4. Numerical examples

This section is designated for validation and uncertainty quantification of
the stress corrosion model explained in the previous sections. A hybrid control
scheme without passivation is adopted in the numerical examples. This scheme85

is defined by two rules: a) the activation control condition is imposed to all
interface points at the start of simulation and to every interface point added
(because of the interface motion) at the start of each time increment of the nu-
merical solution and b) the diffusion control condition (or the activation control
condition) is imposed to the interface points with concentrations equal to (or90

less than) the saturation concentration at each time increment of the numerical
solution. It should be noted that the applied electric current surface density
and the mechanical field do not influence the dissolution of metal ions in the
diffusion control condition.
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(a) (b)

Figure 1: The pencil test set-up schematic view: (a) The specimen is a prismatic pencil
electrode with a rectangular cross section. It is covered by an epoxy resin around its exterior
surface in order to solely allow dissolution from its top. The electric current caused by the
anodic dissolution flows out of the specimen via the wire at the bottom of the specimen. (b)
The pencil specimen is fixed at the bottom, restrained in x direction on its exterior left and
right surfaces, and free in the out-of-plane direction. The axial load is exerted by the support
displacement usup which is linearly increasing from 0 µm at the bottom to 0.1 µm at the top.

4.1. Example 1— Pencil test with axial load95

In a numerical dissolution test, a steel electrode in an aqueous NaCl solution
is subjected to axial loads exerted by displacements on its exterior surface.
Figure 1 shows a schematic view of the test set-up and the dimensions of the
specimen. The pencil electrode is covered by an epoxy resin so that dissolution
occurs only in the cross sectional area of the top of the electrode. The other end100

of the electrode is connected to a wire in order to conduct the electric current
away from the corrosion interface and to measure the electric current.

An initial depth of 21 µm is set, while c = 0 is assumed at the top of the
computational electrolyte domain ΓE,F. An electric potential is applied to the
specimen such that the contribution of overpotential to the electric current
surface density (i.e. j0

nγoverpot) becomes equal to 1.0 mA/mm2. The specimen is
modeled in a two-dimensional space with 3-noded triangular isoparametric finite
elements subjected to the plane stress condition. Regarding the mechanical
boundary conditions, the specimen is fixed at the bottom, and the exterior left
and right surfaces of the electrode are restrained by roller supports in x direction
and are allowed to freely move in y direction. A linearly increasing displacement
in y direction is imposed to the roller supports in order to model the axial load:

usup = [ 0
0.0005 y

] (40)

where usup is the applied displacement. Additionally, the specimen is free in the
out-of-plane direction. εp

eq is used as the scalar strain measure, and the evolution
of the depth of the pencil electrode (i.e. the deepest point of the interface) in105

time is the SRQ of interest in this numerical example. The values of the model
parameters are listed in Table 1.

Mesh and time step size sensitivity analyses of the model are carried out.
Figure 2(a) shows the corrosion depth of the specimen in time for the time
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Table 1: Model parameters used in the pencil test with axial load

F = 96485.3 C ⋅mol−1

R = 8.314 J ⋅mol−1 ⋅K−1

z = 2.19

cS = 143.0 × 10−6 mol ⋅mm−3

csat = 4.22 × 10−6 mol ⋅mm−3

cinit = 0.0 mol ⋅mm−3

D = 0.85 × 10−3 mm2
⋅ s−1

T = 293.15 K

E = 200 × 103 MPa

ν = 0.29

σy = 117 MPa

Q∞ = 87 MPa

b = 9

k1 = 35.2 × 103 MPa

k2 = 300

lw = 4 µm

(a) (b)

Figure 2: Mesh and time step size sensitivity analysis of the depth evolution in the pencil test
with axial load: (a) the depths converge to a certain value as the mesh sizes decrease to below
2 µm. (b) the depth of specimen in time shows negligible sensitivity to the time step sizes.

step size δtime−step = 1.0 s and for six mesh sizes δmesh ∈ {0.5, 1.0, 2.0, 4.0, 6.0,110

8.0} µm. It is observed that the depth of the interface is insensitive to mesh
sizes smaller than 2 µm. To assess the time step size sensitivity, Figure 2(b)
presents the corrosion depth for δmesh = 1.0 µm and for three time step sizes
δtime−step ∈ {0.1, 1.0, 4.2} s. Figure 2(b) evidently depicts negligible sensitivity
to the time step sizes. The depth is growing almost linearly (i.e. the interface115

velocity is almost constant) according to Figure 2. This is anticipated from
the results of the model which uses the constant applied electric potential as
well as the linear form of support displacements. It also expresses that the
nonlocal length scale is large enough to overcome the discontinuities of stresses
and strains caused by the finite element mesh type and size.120

In order to better understand the motion of the corrosion front (i.e. the in-
terface) and the influence of mechanical load on it, the contour map of metal ion
concentration in the electrolyte domain and the mechanical multiplier γmechanical ∶=
γelastic γplastic in the solid domain are illustrated in Figure 3. It is observed in
the figure that a) the interface motion is faster in the area close to the loading125

surface of the specimen (i.e. the area with large mechanical multiplier), b) the
size of the region with high mechanical multiplier is small in comparison to the
whole specimen size, c) the size of the flat surface on the top middle of the
specimen is reducing in time due to the faster progressing front caused by the
localized mechanical multiplier at the loading surfaces of the specimen, and d)130
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 3: The pencil test with axial load at the initial configuration in the subfigure (a), at
times t = 10,100,200,300,400,500 s in the subfigures (b) to (g), and their zoomed-in views in
the subfigures (h) to (m). The contour maps of the local value of the metal ion concentration
c and the mechanical multiplier γmechanical are shown in the electrolyte and solid domain,
respectively. The solid bold black line indicates the interface. Because of symmetry of the
problem with respect to y axis, only the right half of the specimen is shown.
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Figure 4: The schematic view of the two-dimensional pit growth test with mechanical load.
The initial semi-circular corrosion pit is located in the middle top of the metal solid specimen.
The solid domain is fixed at its left edge and can freely move by a rigid body displacement in
an angle of θsup at its right edge. The force P app is applied in the direction with an angle of
θsup, too.

the mechanical multiplier discontinuity exists because of the nonuniform mesh
configuration but can be overcome by the nonlocal quantities. It should be no-
ticed that the contour maps of the figure show local values, but the corrosion
rate and consequently the interface motion are intensified based on the nonlocal
values of the hydrostatic stress and the scalar strain measure on the interface135

surface as described in Section 3.4.

4.2. Example 2— Two-dimensional corrosion pit growth test with mechanical
load

This example, like the pencil test with axial load, is designed to simulate the
dissolution of metal into an aqueous NaCl solution in a two-dimensional corro-140

sion pit subjected to mechanical loads. See Figure 4 for a schematic illustration
of the specimen.

An initial semi-circular corrosion pit with a radius of 50 µm is located at the
top center of the solid specimen. The boundary condition on top of the pit ΓE,F

is assumed to be c = 0. Two-dimensional 4-noded rectangular isoparametric145

finite elements are used together with a plane stress condition. The specimen
is fixed at its left edge while the right edge can rigidly move by means of roller
supports under an angle θsup = 80○. The applied load P app with magnitude
18 N is exerted on the right edge in the same direction as the roller supports.
Because of applying cyclic loads to the specimen, εd

eq is used as the scalar strain150

measure. It is worth noting that εd
eq will automatically be equal to εp

eq in case of
constant loads. The SRQ of interest is chosen to be the topology evolution of the
interface. The focus is on the notch which grows at the interface area where high
values of the mechanical multiplier occur during the simulations. The values of
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Initialization Load (IL)
No Load (NoL)
Constant Load (ConL)
Cyclic Load with Frequency of 0.1 Hz (CyL0.1)
Cyclic Load with Frequency of 0.5 Hz (CyL0.5)

Figure 5: The loads applied in the two-dimensional pit test with mechanical load. In order
to start the loading of specimen from zero, the ‘Initialization Load’ applies to constant and
cyclic loads.

all parameters are the same as those in Table 1 except D = 0.575×10−3 mm2 ⋅ s−1,155

T = 288.15 K, and k1 = 52.8 × 103 MPa.
The influence of three parameters: a) the nonlocal length scale lw, b) the

electric current surface density caused by electric overpotential j0
nγoverpot, and c)

the applied load is assessed in the simulations. The applied loads are explained
in Figure 5.160

The first set of simulations is performed with j0
nγoverpot = 1.0 mA/mm2,

lw = 4 µm, and all of the applied load types. Figure 6 illustrates the contour
maps of metal ion concentration and mechanical multiplier in the electrolyte and
solid domain, respectively. It also visually presents a comparison of the interface
and notch evolution of the specimen for different load types. The notch initiates165

from the bottom-right region of the interface where the mechanical multiplier
is localized. At t = 39 s, the notch in CyL0.5 has started to rapidly grow, but
the notches in the other two load types are almost the same. t = 96 s is the
time when the deepest point of the notch reaches diffusion control in CyL0.5.
Around t = 122 s, the interface in ConL starts to grow neighboring notches170

(say, left and right notch). This occurs because two points on the interface
will have almost the same highest mechanical multiplier. The left notch in
ConL reaches the interface of CyL0.1 at t = 149 s. At this time, the left notch
in ConL is deeper than the right notch although its mechanical multiplier is
smaller. In addition, the notch in CyL0.5 is shaped like a plate because of175

the diffusion control condition. At t = 186 s, the notch in CyL0.1 is close to
reaching the diffusion control condition where the notch in CyL0.5 is mostly
growing in the regions with activation control. Additionally, the left notch of
ConL is growing deeper than CyL0.1. In summary, a) notch growth occurs in
a localized region of the interface in comparison to the interface size, b) ConL,180

in a short time interval after the start of the test, has mechanically influenced a
larger but less localized region of the interface than CyL0.1, c) ConL has started
to grow neighboring notches one of which finally becomes dominance, and d)

12



t[ s] Constant Load
Cyclic Load with
Frequency of 0.1 Hz

Cyclic Load with
Frequency of 0.5 Hz

The interfaces for all
load types

39

96

122

149

186

No Load Constant Load Cyclic Load with
Frequency of 0.1 Hz

Cyclic Load with
Frequency of 0.5 Hz

Figure 6: Zoomed views of the corrosion pit and the notch. The contour maps of metal ion
concentration and mechanical multiplier are illustrated in the electrolyte and solid domain,
respectively. The solid bold black line indicates the interface in the contour maps. The notch
initiates from the bottom-right region of the interface and grows faster as time proceeds.
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Constant Load Cyclic Load with
Frequency of 0.1 Hz

Cyclic Load with
Frequency of 0.5 Hz

No Load Other loads with lw[ µm]
4 8 12

Figure 7: Zoomed views of the interface for different load types and nonlocal length scales at
t = 186 s. As expected, the smaller the nonlocal length scale, the faster the notch grows.

Constant Load
Cyclic Load with
Frequency of 0.1 Hz

Cyclic Load with
Frequency of 0.5 Hz

j0nγoverpot[ mA/mm2]
1.0 0.5

No Load
Other loads

Figure 8: Zoomed views of the interface for different load types and overpotential induced
electric current surface densities at t = 186 s. As expected, the larger the electric current
surface density, the faster the notch grows.

the mechanical multiplier magnitude and localization of CyL0.5 is higher than
those for the other load types, which causes both a sharp and fast notch growth185

and a fast switching to the diffusion control condition that finally slows down
the fast growth of the corrosion front.

The second set of simulations is designed to quantify the uncertainty in
the nonlocal length scale. The simulations are done for lw ∈ {4, 8, 12} µm,
j0
nγoverpot = 1.0 mA/mm2, and all of the applied load types. The evolution of190

the interface is presented in Figure 7. The evolution of the interface in these
figures demonstrates that a) the notch starts from almost the same location for
all lw, b) a larger lw makes the notch shape more blunt and the notch growth
slower, c) a larger lw causes a later switch to diffusion control at the bottom of
the notch, and d) unlike using lw = 4 µm which forms two notches in ConL, using195

lw = 8 or 12 µm yields only one notch because of a more uniform distribution of
the mechanical multiplier on the interface surface.

The last set of simulations of this numerical example assesses the influence
of electric current surface density on the notch topology. Figure 8 draws the
interface and notch for lw = 4 µm, j0

nγoverpot ∈ {0.5, 1.0} mA/mm2, and all of200

the applied load types. It can be observed from the figure that a) the depth of
the notch is not linearly dependent on the electric current surface density, b) a
smaller electric current surface density postpones the switch to diffusion control
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(a) (b)

Figure 9: The C-Ring test set-up: a) geometry and dimensions in mm [36] and b) computa-
tional geometry and boundary conditions.

at the bottom of the notch, and c) the two notch in ConL form for all values of
the electric current surface density.205

4.3. Example 3— C-ring test

The C-ring test is a test provided by the Chinese standard GB/T 15970.5-
1998 for stress corrosion of metals and alloys [36]. See Figure 9(a) for the
geometry and dimensions of the specimen. Dai et al. [36] have experimen-
tally investigated stress corrosion of Q345R steel by this test and have reported210

pit/crack length evolution which is utilized for calibration and validation in this
numerical example. In the test, a constant displacement is exerted to the spec-
imen by a bolt passed through the 6mm-diameter hole, and the specimen is
immersed into hydrofluoric acid.

An initial semi-circular pit on top of the ring with a radius of approximately
7.0 µm is assumed where c = 0 at its top surface ΓE,F. A finite element model is
used with 2D 4-noded rectangular isoparametric finite elements under the plane
stress condition. The specimen is hinged at its left and is roller at its right
where it is allowed to freely move in x direction (see Figure 9(b)). A constant
displacement in x direction, usup, is imposed to the roller support in order for
the initial maximum circumferential stress σt to be 0.55σy and 0.80σy in two
separate experiments in correspondence to [36]. Based on the experimental
observations of [36], the scalar strain measure eeq is proposed here to take the
form of equation (37). Additionally, the overpotential induced electric current
surface density is set approximately equal to 0.23 mA/mm2 in accordance with
the average free corrosion in the first four hours of the experiment. A power law
constitutive model is used for the mterial behavior of the steel according to Cui
et al. [37]. Although the power law material model is a plasticity model used for
monotonic (and not cylic) loads, it is implemented with two minimal changes
in the Chaboche model explained in Section 3.3: a) assuming k1 = 0 implies
χ = 0 which means no cyclic behavior mechanism is involved and b) using the
following equation for the isotropic free energy potential

W = σy (
ε0

eq

N + 1
((1 + ζ

ε0
eq

)N+1 − 1) − ζ) (41)

where N is a parameter which can be calibrated from the data of a tensile test215

and ε0
eq is assumed to be equal to σy/E. Here, the SRQ of interest is the depth

of the corrosion pit. The parameters of the model are the same as in Table 1
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Figure 10: The pit depth of the C-ring test. The depths show good accordance to experimental
data. Noted that the experimental points and numerical curves start from the second interval.

except csat = 5.1 × 10−6 mol/mm3, ν = 0.25, σy = 535 MPa, N = 0.073, and
lw = 50 µm.

The length of the pit reported in [36] is defined as the vertical difference be-220

tween the deepest point of the pit and the initial noncorroded surface. Therefore,
the pit length can be divided into two lengths: the vertical difference between
a) the deepest point and top of the pit, called pit depth, and b) the top of
the pit and the initial noncorroded surface, called surrounding corrosion length.
According to the experimental observations in [36], the surrounding corrosion225

length grows faster than the pit depth in a time interval from the start of each
experiment. This interval is followed by an interval in which the growth speed of
the two lengths are comparable. Afterwards, the pit develops much faster than
the surrounding corrosion. Based on finite element simulations of the C-ring,
the speed of the surrounding corrosion is assumed to be constant and negligible230

in the distribution of mechanical stresses and strains. Thus, only pit growth in
the second and the third intervals are simulated and assessed.

The pit depth is plotted versus time for the two loading cases in Figure 10.
As pointed out above, the constant surrounding corrosion speed is assumed to be
0.450 and 0.238 µm/min for σt = 0.80σy and 0.55σy, respectively. Furthermore,235

the nonlocal length scale as well as parameters for the scalar strain measure
are calibrated based on the experimental results related to σt = 0.80σy: eth,1 =
0.0035 and eth,2 = 0.0280. Then, they are validated for the experimental results
related to σt = 0.55σy. The figure shows that the simulations are in good
accordance with the experimental data. In addition, the numerical results depict240

that the proposed strain measure can appropriately be employed to model the
accelerating and decelerating experimental pit depth growths.

5. Conclusions

Numerical examples have been designed in Part II to demonstrate the per-
formance of the stress corrosion model developed in [23]. Overall, it can be245

concluded from the numerical results that a) the stress corrosion model is not
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sensitive to mesh and time step size for the simulated cases, b) the employed
nonlocal formulation has successfully overcome local discontinuities caused by
mesh type and size, c) there is uncertainty in the nonlocal length scale which
should be quantified, where the results can be compared to experimental data,250

and d) the scalar strain measure should include the influence of plastic deforma-
tions and/or dislocations on the activation energy of corrosion for the problems
under investigation. Regarding the simulation results of the pencil test with
axial load, the model gives a linear depth evolution which is anticipated from
the governing equations and its linear loading. The simulation results of the255

two-dimensional pit test with mechanical load emphasizes the significance of
selecting a proper value for the nonlocal length scale. It also shows a non-
linear interface evolution with respect to the applied electric potential. From
the C-ring test simulation results, it is observed that the proposed scalar strain
measure is successful in de/intensifying the pit depth to fit to experimental data.260
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Appendix A. Assessing the deviatoricity of tensor quantities in the
Chaboche model

Any second order tensor a can be decomposed into two parts, namely devi-
atoric and hydrostatic part:

a = aDev + aHyd (A.1)

with the definitions presented in equations (14) and (15). One of the properties
of this decomposition is that a cannot be decomposed further in this sense. To
clarify this property, we should decompose aDev and aHyd in the same way as
in the decomposition of a. For the deviatoric part,

aDev = (aDev)Dev + (aDev)Hyd
(A.2)

where

(aDev)Hyd

ij = 1

3
aDev
kk δij =

1

3
(akk−

1

3
allδkk)δij =

1

3
(akk−

1

3
all⋅3)δij =

1

3
(akk−all)δij = 0

which is written in the compact form as

(aDev)Hyd = 0, (A.3)

and thus
(aDev)Dev = aDev − (aDev)Hyd = aDev. (A.4)

And, for the hydrostatic part,

aHyd = (aHyd)Dev + (aHyd)Hyd
(A.5)

where

(aHyd)Hyd

ij = 1

3
aHyd
kk δij =

1

3
(1

3
allδkk)δij =

1

3
(1

3
all ⋅ 3)δij =

1

3
(all)δij = aHyd

ij

which, again, is written in a compact form as

(aHyd)Hyd = aHyd, (A.6)
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and thus
(aHyd)Dev = aHyd − (aHyd)Hyd = 0. (A.7)

Therefore, the single-step decomposition of a second order tensor a is proved
by substituting equations (A.3) and (A.4) into (A.2) as well as equations (A.6)
and (A.7) into (A.5).275

The deviatoricity of a second order tensor a is defined as a = aDev or aHyd = 0.
In other words, a is deviatoric if and only if

tra = tr(a) ∶= akk = 0 (A.8)

where tra = tr(a) is the trace of a. Because the trace of a is a linear combination
of components of a,

dtra
dt

= tr da
dt

(A.9)

In addition, it is worth noting that tra(t) = 0 implies trȧ(t) = 0 while trȧ(t) = 0
implies tra(t) = ca where ca is a constant scalar. We will use these properties in
the proof of deviatoricity of the internal force and deformation tensor.

Consider the equation of internal deformation rate (25) and substitute the
equation of internal deformation flow direction (28) and (22) in it:

β̇ = λ̇
⎛
⎝

√
3

2

αDev

√
αDev ∶ αDev

− k2β
⎞
⎠

(A.10)

then take the trace of both sides of equation:

tr(β̇) = λ̇
⎛
⎝

√
3

2

tr(αDev)√
αDev ∶ αDev

− k2 tr(β)
⎞
⎠

(A.11)

By using the properties (A.3) and (A.9), we obtain

dtrβ

dt
= λ̇ (−k2 trβ) (A.12)

and, by solving this ordinary differential equation, trβ will be

trβ = c exp (−k2λ) (A.13)

where c is a constant which, for example, should be determined according an
initial condition. The conventional condition of a mechanical plasticity problem280

is that plastic strain and all other internal deformations and forces are zero
quantities for the virgin state of a material (i.e. when λ is zero). Hence, this
condition leads to c = 0 in equation (A.13), which means that trβ is zero re-
gardless of the plastic state of the material (i.e. regardless of magnitude of λ).
Thus, β and consequently χ are deviatoric quantities in the employed equations285

of free energy and plastic flow potential.
Now, consider the equation of plastic strain rate in a 3D spatial space (24)

and substitute the equation of plastic flow direction (27) in it:

ε̇p = λ̇
⎛
⎝

√
3

2

αDev

√
αDev ∶ αDev

⎞
⎠

(A.14)
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Obviously, ε̇p is deviatoric because of existence of the only tensor αDev in the
right hand-side of (A.14). Thus, according to the mentioned plasticity condition
of the virgin state of a material, εp will also be deviatoric. However, in a 2D
plane strain or stress condition, we should use ε̃p = L ∶ εp (instead of εp) whose
trace is not zero in general

tr(ε̃p) = tr(L ∶ εp) = (1 +$)(εp
xx + εp

yy) (A.15)

Thus, ε̃p is not necessarily deviatoric in the plastic strain or stress condition.
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