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ABSTRACT 

 

Polymer Electrolyte Membranes (PEM) fuel cells are a promising source of alternative energy. However, 

their production is limited by a lack of well-established methods for quality control of their constituent 

materials like the electrode and PEM during roll-to-roll manufacturing. One potential solution is the 

implementation of deep learning methods to detect unwanted defects through their detection in scanned 

images. We explore the detection of defects like scratches, pinholes, and scuffs in a sample dataset of 
PEM optical images using two deep learning algorithms: Patch Distribution Modeling (PaDiM) for 

unsupervised anomaly detection and Faster-RCNN for supervised object detection. Both methods achieve 

scores on performance metrics (ROC-AUC and PRO-AUC for PaDiM and AP for Faster-RCNN) that are 

comparable to their scores on benchmark datasets and show potential for localizing relevant defects of 

interest. Overall, deep learning methods show promise at detecting defects and has the potential to 

achieve real-time defect detection. 
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1. INTRODUCTION 

The rising threat of climate change and growing worldwide energy demand necessitates the 
development of clean energy technologies that have a minimal carbon footprint and environmental 

impact. Polymer Exchange Membrane (PEM) fuel cells constitute a promising example of such a clean 

energy technology with the potential for a wide range of applications. However, one barrier to their 

deployment is the need for quality control methods for relevant materials during manufacturing, such as 

the PEM, electrode, and gas diffusion layer. [1] In particular, the existence of harmful defects, which 

include pinholes[2][3][4][5][6], cracks[7][8][9][10], bubbles[11][12][13], delaminations [14][15][16], and 

coating/thickness irregularities[12][17][18] is well-documented. Research on such defects has included a 

mix of investigating their impacts on material performance, their underlying causes 

[19][20][21][14][15][22], as well as methods for detecting and localizing them. It is particularly desired to 

develop in-line detection methods for roll-to-roll manufacturing, which can non-invasively detect defects 

in ‘real-time’, or quickly enough as to be almost instantaneous and thus allowing the processing of large 

volumes of material. Previous work in this area mostly involves methods including infrared (IR) 

thermography[23][24] [25][26], pressure drop measurements[24], and optical inspection through a camera 

feed. IR thermography methods utilize a gas that reacts with the material when there is a defect, and has 

been used to detect defects like pinholes[26] and bare spots on the gas diffusion electrode catalyst layer 

[23][25]. For example, Ulsh et al. [26] have detected artificially-induced pinholes in membrane-electrode 

assemblies (MEAs) through pulsing hydrogen-containing gas at the membrane.  

This study focuses on optical inspection of PEM materials. Optical inspection includes X-ray 

fluorescence, which has demonstrated potential to monitor the chemical composition and film thickness 

of the catalyst layer [25][27]. However, such methods are not under serious investigation for its slow 

acquisition times, and this was one of the factors driving research into IR thermography. More recently, 

optical methods include multispectral imaging, in which incident light generates a measured thermal 

response from a material. This has applications in thickness mapping of Li-ion battery electrodes [28] and 



for general purpose membrane inspection[29][30][31]. Another type of optical defect detection involves 

the rolling of the material across a camera feed, so that images of the membrane can be processed by 

computer vision (CV) algorithms that can locate and identify defects [32][33]. Such optical methods have 

been investigated for the detection of defects in PEM materials, many of which involve pre-determining a 

set of defects in the optical image, and the application of CV algorithms like intensity thresholding to 

isolate anomalously bright or dark spots in the image [34][35][36][37]. For example, in Rupnowski et 

al.[35], defects are artificially induced to two sample membranes: one membrane with scratches and 

scuffs, and the other with debris sprinkled onto the surface. CV algorithms based on binary thresholding 

show potential at identifying sprinkled debris but are not investigated for detecting scratches and scuffs 

due to their complex morphology. In Johnson [36], a thresholding algorithm is used to find potential 

objects of interest on a membrane, and a neural network is used to classify the objects based on their 

characteristics like shape and brightness. Another method used on polymer films by Tolba et al. [38] 

calculates the similarity of each region of an image on a rectangular grid with a defect-free baseline, 

where similarity is calculated by comparing the luminance and contrast between the image region and 

baseline as well as their covariances. While high scores are obtained using this method, a potential flaw is 

that its performance may be sensitive to the selection of the baseline image. An assumption made is that 

one small sub-image can entirely describe a defect-free membrane, when there may be high variance in 
the appearance of a defect-free image.  

 The study by Johnson marks the beginning of a trend of applying machine learning for optical 

defect detection methods. However, the machine learning methods used still leave open challenges: in the 

study by Johnson, careful feature selection is required before the neural network can be trained, which 

may be cumbersome, and the neural network can only classify defects that can be detected by a binary 

thresholding algorithm. Challenges also exist in the work by Rupnowski et al. [35], in that the binary 

thresholding algorithms were not successful in detecting some faint artificial slits and scuffs. Overall, 

optical methods that depend on manually designed CV algorithms may be unable to generalize to 

unforeseen defects. For example, an algorithm trained to detect defects by filtering regions of interest by 

size, shape, or brightness may miss other defects that do not fit the parameters specified in the CV 

algorithms.  
With this problem, the task of optical defect detection lends itself to the possibility of applying 

more advanced deep learning methods. Machine learning already has many applications in PEM fuel cells 

[39] ranging from on-line fault diagnosis[40][41][42][43][44][45], aiding in fuel cell design [46][47][48], 

and predicting optimal operating conditions [49][50][51]. However, to the authors’ knowledge, there have 

been no studies using machine learning, besides that by Johnson, centered on detecting defects from 

membrane images during the roll-to-roll manufacturing process. There is, nevertheless, a variety of 

studies investigating deep learning for defect detection in other materials that serve as inspiration 

[52][53][54][55][56][57][58]. Unsupervised anomaly detection is a deep learning framework that is well 

applied in this area. Unsupervised anomaly detection models only require baseline anomaly-free images 

for training and a relatively small test dataset of defective and defect-free images for selecting an anomaly 

threshold. After training, models have the ability highlight any anomalous pixels or regions in an image. 

Without feature selection, there is great potential to generalize to unforeseen defects. The amount of 

image preprocessing is minimized, as the model can account for much of the noise and irregularities that 

may appear in the baseline image. Thus, anomaly detection methods have significant defect detection 

applications, having been applied in detecting defects in a variety of objects like textiles and metals [59]. 

An example of an anomaly detection algorithm is Patch Distribution Modeling (PaDiM) developed by 

Defard et al. [60]. PaDiM is evaluated on benchmark datasets including the MVTec-AD dataset, and 

achieves superior performance compared to previous existing methods as evidenced by its high AUC-

ROC and PRO-AUC scores [60]. Another type of deep learning model is the object detection model. In 

object detection, a dataset of images labeled with bounding boxes identifying certain objects in the images 

is used to train a model to detect and identify the same objects in new images. Object detection is a 

popular machine learning problem, with many different model architectures created like Faster-RCNN 

[61] and YOLO [62]. Object detection is also particularly appealing because of existing methods for ‘few-



shot’ detection, where a small dataset showing very few instances of a particular object is used to train a 

network. In this study, PaDiM and a Faster-RNN object detection model are trained and tested on a small 

dataset of PEM optical images, and their relative advantages and disadvantages are discussed. 

 

2.  METHODS 

The following section will separately outline the procedure used to train PaDiM for anomaly 

detection and Faster-RCNN for object detection.  

 

2.1 Detection of defects as anomalies using PaDiM 

The full procedure for PaDiM, outlined in Defard et al. [60], is summarized as follows: each 

defect-free image in the training dataset is input into an image classification convolutional neural network 

(CNN) pretrained on ImageNet [63] and embedding vectors for each image are created by extracting 

activation vectors from different layers of the CNN. In the implementation of PaDiM used in this study, 

the pretrained model used was EfficientNet-B4, a CNN developed by Tan et al. [64][65]. Activation 

vectors were extracted from the 3rd, 7th, and 17th blocks, which allowed various semantic levels to 

contribute to the feature vector. After extracting features, a W H (the largest resolution of the activation 

maps that features are extracted from) map of embedding vectors is created for each image, where each 

embedding vector at position (i,j) ∈ [1, W]  [1,H] on the map contains only values in the extracted 

features that are spatially connected to position (i,j). Finally, a vector mean and covariance is calculated 

for the vectors in each position (i,j) ∈ [1, W]  [1,H] over all the training images, to create an W H map 

of vector normal distributions. In the inference step, embedding maps are created using the same method 

for test images, and for each position (i,j) on the map, an anomaly score is assigned by calculating the 

Mahalanobis distance [66] between the embedding and the learned normal distribution. Finally, the WH 

map is resized to the original image resolution to yield a pixel-level anomaly map for the original test 

image. To segment anomalies, pixels with values in the anomaly map higher than a chosen anomaly 

threshold are highlighted. In our implementation of PaDiM, 2 GPUs were used to parallelize the training 

and testing processes. 
 

2.1.1 Detection and Localization of Scratches and Scruffs 
The first image dataset investigated in this study featured scratches and scuffs that were 

artificially induced on some electrodes. To create the scratches/scuffs dataset, four 8 11’’ fuel cell 

electrode specimens were used, which were originally featured in Rupnowski et al. [35]. Two of these 

specimens contained artificially induced defects in the forms of scratches and scuffs arranged in a 6x3 

grid, of which one had defects induced prior to tacking a polymer electrolyte membrane, and the other 

had defects induced after. Two specimens were identified as defect-free baselines, of which one had a 

polymer electrolyte membrane, and the other did not. A large high-resolution image was taken of each 

membrane using reflectance mapping [35], and labels around the artificially induced defects were 

manually drawn. 

These images were investigated at different resolutions. To create input images to the model, each 

membrane image was split into a 6c  3c grid of smaller sub-images, where c was an integer constant, and 

each sub-image was resized to 224 224 pixels. Three values of c (1,3,5) were tested. As c increased, 

each sub-image was shrunk less relative to its original size during resizing, and thus image resolution 

increased. 

For c=1, each of the four membrane specimens was each split into a 6x3 grid of sub-images. This 

yielded 36 images containing defects and 36 defect-free images. Because the defects were originally 

created in a grid on the membrane, each defective image contained 1 defect with little overlap. Two 

different procedures were used to organize the images into training and test data and evaluate the model. 

The first, which will be referred to as the “standard” procedure, followed Defard et al. [60]. The model 

was trained on the defect-free training data, and then evaluated on the test dataset containing both 

defective and defect-free images to yield final accuracy scores. 18 of the total 36 defect-free images were 



chosen randomly to create the training set, and the remaining 18 were used as test data. To combat class 

imbalance arising from the different number of defect-free images in the test and training data, each of the 

18 defect-free test images was duplicated once to create 36 defect-free test images in total. Finally, after 

all images were reduced from size 1359-1365 pixels  2041-2124 pixels to size 224 pixels  224 pixels to 

be processed by the PaDiM model, each image in the training dataset was augmented through rotations of 

90, 180, and 270 degrees clockwise, as well as random flips (horizontal, vertical, and both horizontal and 

vertical). Finally, the model is trained on the defect-free training images and evaluated on the test images 

using the average ROC-AUC, PRO-AUC score, and threshold PRO. The PRO-AUC is the area under the 

per-region overlap curve, which is described in Bergmann et al. [67] and Shi et al. [68]. The threshold 

PRO is the average per-region overlap ranging from 0 to 1 calculated by segmenting anomaly-containing 

pixels using a chosen threshold, which is described in Bergmann et al. [59]. In this study, the chosen 

threshold was one that maximized the F1 score, which is defined in Lipton et al. [69] as follows: 

 

 

𝐹1 =
2 ∗ 𝑡𝑝

2 ∗ 𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 

 

Here, tp is the number of true positives, fp is the number of false positives, and fn is the number 

of false negatives. To address potential instability resulting from the small dataset sizes in this study, 36 

repeated trials were taken with different random samples of 18 defect-free images from the original set of 

36 sub-images to use as training data, and the average of the scores were reported at a 95% confidence 

interval. These trials were conducted once without reducing the embedding vector size and once where 

the embedding vector size was reduced through randomly selecting 100 features, as performed in Defard 

et al. [60].  

The standard evaluation method closely resembles the evaluation method used by Defard et al. 

[60] and allows for direct comparison with the current study. However, the sizes of the test and training 

datasets are smaller than those seen in the benchmark MVTec-AD dataset [59], where there can be 

hundreds of different training images and more than a hundred test images for one object class. In 

contrast, there are 18 unique images to be used for training and 54 unique images used for testing. Thus, it 

is worth investigating whether the small dataset sizes prevent the final model and anomaly thresholds 

from generalizing to defects outside the test dataset. This can be done by quantifying the variance in 

model performance across the different images in the test set. To do this, another procedure was used to 

evaluate the models, to be referred to as leave-one-out cross-validation (LOOCV). 36 runs were repeated 

like in the standard procedure with c=1, except in each run, a different defective image was removed from 

the rest of the images. Then, all the 53 remaining images were used to train and evaluate the model to 

obtain accuracy scores and select a pixel-level anomaly threshold, just like in the standard procedure. This 

process will be referred to as the “inner loop.” The calculated accuracy metrics were the ROC-AUC, 

PRO-AUC, and threshold PRO. Afterwards, the threshold PRO was evaluated on the removed image 

alone, using the threshold and trained model obtained in the inner loop, a process which will be referred 

to as the “outer loop.” This is repeated 36 times, each time with a different defective image taken out to 

be evaluated in the outer loop. Finally, the average of all 36 outer loop threshold PRO scores is calculated 

at a 95% confidence interval and compared to the average threshold PRO scores obtained on the inner 

loop to quantify the model’s performance degradation. Different random train/test splits of the defect-free 

membrane sub-images were used in the 36 repeated runs. This procedure was also tested without 

dimensionality reduction as well as with 100 randomly selected features. A schematic of this cross-

validation procedure is shown in Figure 1. 



 
Figure 1: A schematic of the leave-one-out cross-validation (LOOCV) procedure is displayed. In each run, all the sub-images are 

split into train and test datasets: the baseline sub-images are split into train and test images (1a), and one defective sub-image is 
held out from the rest of the defective images (1b). In 1c, the model is trained on the baseline images and tested on some baseline 

and defective sub-images, which are also used to choose an anomaly threshold by optimizing the F1 score. Finally, the model and 

chosen threshold are tested on the held-out image by evaluating the per-region overlap (PRO) score on the held-out image. This 
process is repeated 36 times, each time with a different defective sub-image held out. 

 

For c=3 and c=5, the resolution was higher and more sub-images were created from the larger 

membrane images. Thus, all the sub-images created from splitting the defect-free baseline membranes 

into a 6c 3c grid were used for training data, and all the sub-images created from splitting the defect-

containing membranes were used for test data. Data augmentation through rotating and flipping the 

images was not used because a larger number of sub-images was available, close to the number of images 

per class in the MVTec-AD benchmark dataset [59]. Only the standard procedure was used (no LOOCV).  

 

2.1.2 Detection and Localization of Pinholes 

PaDiM was also investigated in its ability to detect and localize pinholes on the membrane. The 

pinhole dataset was created from 4 8 11” electrode samples, of which one was described in Rupnowski 

et al. [35], each containing 9 artificial pinholes. The smallest pinholes were approximately 150 µm. These 

images were also divided into a grid of sub-images, except instead of dividing a whole membrane image 

into a grid of images with a preset dimension (e.g., 6c  3c), the membrane image was kept at its original 

resolution and divided into a large grid of 224 224 pixel sub-images, with no resizing, after each 

dimension in each membrane was slightly cropped to become a multiple of 224. This was because a far 

larger resolution was required for the small pinholes to become visible. 39 sub-images containing 

pinholes were then manually isolated and segmented to create a test dataset. There were more images than 

the number of pinholes because some pinholes were located on the boundary between two sub-images, 

causing two images to contain the same pinhole. 36 random images from the set of pinhole-free images 

were also added to the test set, so that the total size of the test set was 75. Both the standard and LOOCV 

evaluation method were used, each once with no dimensionality reduction, and another with 100 

randomly selected features. In the standard procedure, 20 runs were repeated. Data augmentation on the 

training data was not used because of its larger size. 

 



2.2. Detection of defects and objects using Faster-RCNN 
Object detection models with the Faster-RCNN [61] architecture were trained to detect defects as 

well. While anomaly detection methods many already be tailored for detecting defects, object detection 

methods may be suitable for when defects need to be classified. The methods used in this study are 

particularly inspired by recent advances in few-shot object detection. Few-shot object detection is a 

framework where models are optimized to detect objects after being trained on very few images. Some 

recent work on few-shot detection includes a study by Wang et al. [70], in which a “two stage fine-

tuning” approach (TFA) is developed. In this two-stage approach, a Faster-RCNN model is first trained 

on a large base dataset and then fine-tuned on a smaller novel dataset. The base dataset contains many 

different object classes, each of which contains many images. The novel dataset contains all the object 

classes in the base dataset as well as some new classes, but there are only K examples of each class in the 

novel dataset, where K is a very small number like 1,5,7, etc. This method, while illuminating some 

effective strategies for learning from small datasets, cannot be optimally implemented in this study 

because it requires a large base dataset during the first stage of training, which should ideally be similar to 

the novel dataset. However, aside from the small hand-labeled datasets of scratches, scuffs, and pinholes 

used in the PaDiM study, there is no obvious candidate for a closely related base dataset that is well-

labeled. Thus, it is not immediately obvious how to exactly replicate the few-shot object detection method 
by Wang et al. [70]. Nevertheless, we can borrow some insights by using a more rudimentary single-stage 

fine-tuning approach. By using a technique that is similar to but less optimal than TFA, the results from 

this study can establish a baseline performance for object detection in PEMs that can be expected to 

improve as more data becomes available to fully implement TFA.  

 To train a model to detect defects, a rudimentary fine-tuning approach inspired by TFA is used. A 

model with the Faster-RCNN [61] architecture pre-trained on a section of the PascalVOC benchmark 

dataset is taken from an online model repository [70]. The ResNet backbone, region proposal network, 

and feature extractor are frozen according to TFA, and only the box classifier and regressor are given 

randomized weights and then trained on a novel dataset that contained only images of defects. Through 

this process, knowledge from the PascalVOC training dataset could be used for transfer learning to 

improve prediction performance on detecting defects. A cosine similarity-based box classifier with 𝛼 =
20 was used [70]. In this study, two novel datasets were used: the pinholes and scratches/scuffs. Model 

architectures and training hyperparameters were the same as those used to train on the Pascal-VOC novel 

classes in Wang et al. [70], which can be found in their publicly available code repository [70]. During 

testing, 1 GPU was used to parallelize the inference step. 

 

 

2.2.1 Detection of Pinholes 
To create an image dataset from the sample images containing pinholes, a 66 × 66 rectangular 

boundary was drawn around each pinhole, and the image inside each boundary was resized to 800 800, 

which is the input resolution for Faster-RCNN, and then added to the training dataset. Box labels were 

then manually drawn around the pinhole in each image. To acquire baseline images, each sample was 

divided into a grid of 66 66 sub-images. Gaussian adaptive thresholding was used to extract baseline 

sub-images that contained bright spots and discard the rest. Each baseline sub-image was also resized to 

size 800 800, and sub-images containing a pinhole were discarded. It should be noted that the drastic 

resizing was done to make the pinhole appear larger in each sub-image, as object detection models are 

known to perform worse at detecting small objects [71]. Finally, to perform 5-shot and 10-shot learning, 

either 5 or 10 pinhole images were randomly chosen from the 36 total pinhole images to be used as 

training images, the rest were used for testing, and 36 baseline images that contained bright spots were 

also randomly selected to be added to the test dataset. For each shot (5 or 10), stable results were obtained 

by repeating runs 30 times with different random seeds. At each new random seed, a new random sample 
of 5 or 10 images was taken from the total set of defective images to serve as the training data.  

 



2.2.2 Detection of Scratches and Scuffs 
For the scratches/scuffs sample images, the same procedure was used with a few modifications. A 

lower resolution was used: each defect-containing membrane was split into a 6 3 grid of sub-images, 

such that approximately each sub-image contained 1 defect, and each defect was manually labeled. In the 

original study [35], 12 scuffs and 24 scratches were reported to be created on the membrane, and ideally 

there should be the same number of images containing scratches and scuffs. However, some images were 

labeled with both, which will be explained in the Analysis section of this paper. One of the baseline 

membranes (membrane B2 in Rupnowski et al. [35]) was split into 18 sub-images as well, to be added to 

the test set in each run. Only 5-shot learning was used for the scratches and scuffs because of the lower 

data availability.  

 

3. RESULTS 

For PaDiM, various performance metrics obtained from implementing the standard procedure are 

displayed for both the scratches/scuffs dataset in Table 1 and the pinhole dataset in Table 2. All margins 

of error are rounded up to the nearest hundredth. For all the accuracy metrics, averages were rounded 

down to the nearest hundredth, while the margins of error were rounded up to the nearest hundredth. For 

c=3,5, time metrics were rounded to the nearest hundredth and other performance metrics were rounded 

down to the next hundredth. The pixel-level ROC-AUC score summarizes the model’s ability to localize 

defects (segment pixels that are part of a defect), and the image-level ROC-AUC score describes the 

model’s ability to detect them (classify whether an image contains a defect overall) [60]. Additionally, 

stages of the testing process were timed to investigate the feasibility of real-time in-line quality 

inspection, and the results are shown in Tables 1 and 2. For these time efficiency metrics, the confidence 

intervals were rounded up to the nearest hundredth and the averages were rounded to the nearest 

hundredth (up or down). The total inference time is the amount of time elapsed during the inference step 

on all the test images, which is when Mahalanobis distances are calculated for all the patches’ feature 

vectors in all the test images [60]. The total testing processing time describes the time elapsed from when 

features start being extracted for the test images to when the inference step finishes. This metric most 

realistically represents the total time it takes for the model to make a prediction on an image, starting from 

when the images are input and ending when the model outputs an anomaly map for each image. The 
inference times in this study are shorter than those reported in the original PaDiM study due to our 

parallel GPU implementation. For example, the original study reports an inference time of 0.23 seconds 

per image using a CPU, while for the pinhole dataset, the inference time is on average 0.42 seconds for 75 

images, or around .01 second/image. 

Performance metrics obtained from implementing the LOOCV procedure are displayed in Table 3 

for the scratches/scuffs dataset and in Table 4 for the pinholes, and runtimes for the LOOCV procedure 

were not evaluated to avoid redundancy.  

 

Features c 
Image ROC-

AUC 

Pixel ROC-

AUC 

PRO-AUC 

score 

Threshold PRO 

score 

Inference time 

(s) 

Total Processing 

time (s) 

100 1 0.9 ± 0.02 0.95 ± 0.01 0.82 ± 0.01 0.47 ± 0.01 0.42 ± 0.01 1.09 ± 0.02 

248 1 0.9 ± 0.01 0.95 ± 0.01 0.83 ± 0.01 0.48 ± 0.01 0.62 ± 0.02 1.5 ± 0.06 

100 3 0.85 0.94 0.84 0.53 0.96 3.99 



Features c 
Image ROC-

AUC 

Pixel ROC-

AUC 

PRO-AUC 

score 

Threshold PRO 

score 

Inference time 

(s) 

Total Processing 

time (s) 

248 3 0.82 0.94 0.84 0.53 1.32 4.51 

100 5 0.81 0.95 0.86 0.52 2.1 10.78 

248 5 0.79 0.95 0.86 0.52 2.74 11.27 

 

Table 1: Performance metrics using PaDiM for anomaly segmentation are recorded on the scratches and scuffs dataset, using the 
standard evaluation procedure. Values are rounded to the nearest hundredth. For c=1, metrics are averaged over 36 repeated trials 

and are displayed at a 95% confidence interval. For c=3 and c=5, only 1 run is taken because the dataset sizes were larger, so 

there were no confidence intervals recorded. 

 

Features 
Image ROC-

AUC 

Pixel ROC-

AUC 

PRO-AUC 

score 

Threshold PRO 

score 

Inference time 

(s) 

Total Processing 

Time (s) 

100 0.99 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.8 ± 0.01 0.42 ± 0.01 1.37 ± 0.11 

248 0.99 ± 0.01 0.99 ± 0.0 0.99 ± 0.01 0.81 ± 0.01 0.64 ± 0.02 1.64 ± 0.1 

 
Table 2: Performance metrics using PaDiM for anomaly segmentation are recorded on the pinhole dataset using the standard 

evaluation procedure. 20 runs were repeated. 

 

Features 
Inner Image ROC-

AUC 

Inner Pixel ROC-

AUC 

Inner PRO-AUC 

score 

Inner threshold 

PRO 

Mean outer threshold 

PRO 

100 0.89 ± 0.02 0.95 ± 0.01 0.83 ± 0.01 0.46 ± 0.01 0.63 ± 0.12 

248 0.9 ± 0.01 0.95 ± 0.01 0.83 ± 0.01 0.48 ± 0.01 0.65 ± 0.11 

 
Table 3: Performance metrics using PaDiM for anomaly segmentation are recorded on the scratches and scuffs dataset using the 
LOOCV procedure. Scores are averaged over 36 images at a 95% confidence interval.  

 

Features 
Inner Image ROC-

AUC 

Inner Pixel ROC-

AUC 

Inner PRO-AUC 

score 

Inner threshold 

PRO 

Mean outer threshold 

PRO 

100 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.8 ± 0.01 0.8 ± 0.09 



Features 
Inner Image ROC-

AUC 

Inner Pixel ROC-

AUC 

Inner PRO-AUC 

score 

Inner threshold 

PRO 

Mean outer threshold 

PRO 

248 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.81 ± 0.01 0.8 ± 0.08 

 
Table 4: Performance metrics using PaDiM for anomaly segmentation are recorded on the pinhole dataset using the LOOCV 

procedure. Scores are averaged over 39 images at a 95% confidence interval. 

 

The model performs the best on the pinhole dataset. The high image-level ROC-AUC scores 

indicate that the model can effectively distinguish whether an image contains a pinhole. However, the 

high pixel-level ROC-AUC scores are difficult to interpret because very few pixels belong to a pinhole 

compared to the number of pixels belonging to the baseline, leading to class imbalance in the pixel labels. 

The PRO-AUC accounts for the imbalance by ignoring areas that are not labeled as defective [59], but the 

PRO-AUC scores are very high as well. The only scores that are not saturated (very close to 1.0) are the 
threshold PRO scores. The outer threshold PRO scores from LOOCV are close to the threshold PRO 

scores from the standard procedure and inner LOOCV loop. This suggests that the model generalizes well 

when localizing new pinholes. However, as evidenced by the large confidence interval in the outer 

threshold PRO, there can be high variance in model performance when making new predictions. 

Inspecting the model pixel predictions on the pinhole images evaluated in the outer loop (with 100 

randomly selected features), one pinhole is completely missed. This pinhole and the pinhole with the 

smallest nonzero relative area segmented are shown in Figure 2a and 2b. They have visibly plain 

appearances, without the concentric circles characteristic of other pinholes [35], which may cause the 

model to overlook them. While visual inspection of their anomaly heat maps seems to indicate that the 

anomaly scores of their pixels are above average, their scores are simply not high enough to surpass the 

chosen anomaly threshold. The distribution of various threshold PRO scores for different pinhole images 

obtained during the cross-validation outer loop is shown in a histogram plot in Figure 3. 
 

a)                                        

 

 

 

 

 

 

 

 

 

b)    

 

 
 

 

 
 

 

 
 

 

Figure 2: Two examples of pinhole images are shown. The ground truth outlines the pinhole, indicating that it is anomalous. The 

predicted heat map shows a heat map of anomaly scores output by the model, where red indicates high anomaly scores. The 



segmentation result is created by circling regions that have predicted anomaly scores greater than a chosen anomaly threshold. 

Here, the anomaly threshold is chosen by maximizing the pixel classification F1 score. 2a) shows a pinhole that was completely 
missed by the algorithm, although its heatmap showed relatively high anomaly scores. 2b) shows another pinhole. The model 

recognizes the pinhole as anomalous, but only 16% of its pixels have a score higher than the anomaly threshold.  

 

 
Figure 3: Histogram distribution of PRO scores for each image containing pinholes. 1 pinhole image had a value of 0, but the rest 

obtain a nonzero PRO. Scores are obtained in trials where 100 random features were selected (d=100). 

 
 

Inspecting the results from a separate standard run with dimensionality reduction, there are three 

false positives in the baseline pinhole image predictions. Some seem to be from debris like lint, which 

still may be worth detecting. These false positives are shown in Figure 4. There are no other false 

positives in that one run specifically, so the model appears to have good specificity.  

 

 

 

 

 

 

 

 

 
Figure 4: False positives predicted by PaDiM on some baseline images from the pinhole dataset. The first appears to be from a 

small bright spot, and the second two appear to be from pieces of foreign debris. These are the only false positives that are 
predicted among all the 75 images.  

 

Model performance on the scratches and scuffs dataset is weaker. Inspecting results from the 

LOOCV procedure with dimensionality reduction, some low-contrast defects that were anticipated in 

Rupnowski et al. [35] to be challenging to detect were indeed missed by the model. However, as the 

resolution increases, the low-contrast defects become more conspicuous and can be localized by the 

model. For example, three defects were not localized during LOOCV, but were localized in the runs with 

c=3. These defects are displayed at low resolution (c=1) in Figure 5, and at higher resolution (c=3) in 

Figure 6.  

While higher resolution allows faint defects are more easily segmented, it also causes the model 

to be more susceptible to segmenting false positives. Small bright spots are ubiquitous in the sample 

images, and as resolution increases, they become more visible and are more likely seen as defects by the 

model. Other false positives are large and localizable at all resolutions and may represent significant 

defects, but their true nature is unknown. For example, a triangular section of the electrode has a lighter 

tone from the rest of the sample, which might be from a fold in the sample causing the section to have a 



higher elevation during image scanning. The real reason for the discoloration is unknown, and whether it 

represents a truly harmful defect could be subject to further investigation. This triangular discoloration is 

displayed in Figure 7 at varying resolutions, as well as another low resolution (c=1) image containing 

scratches that also contains false positives. 
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Figure 5: 5a) to 5c) show the 3 different defects that were completely unsegmented by the algorithm. The defects may be difficult 

to spot by eye in this diagram, due to the low image resolution (c=1).  
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Figure 6: Three defects that are not localized during the LOOCV procedure with c=1 are displayed from a trial run at a higher 

image resolution (c=3). Although the defects are very faint, they can be segmented by the algorithm.  
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 

 

a)          b) 
 

 

 

 

 

 

 

c)       d) 

 
 

 
 
 

 

 
 

Figure 7: Two examples of false positives are shown in 6a) and 6b), respectively. These are taken after the LOOCV (leave-one-

out cross-validation) procedure was used and 100 features were randomly selected in each run. 6a) shows a small bright spot 
(upper right) and a slight discoloration (center right) that were predicted as anomalous. 6b) shows a lighter triangular 

discoloration in the lower right corner, which was not labeled as anomalous in the ground truth. 6c) shows the same discoloration 

as that in 6b), except it is taken from training the model at a higher resolution where the scaling factor c=3. 5d) shows the same 

discoloration at c=5. As resolution increases, more random bright spots become incorrectly predicted as anomalous. 

 

Overall, as c increases, smaller, fainter defects can be localized at the expense of more false 

positives, which likely explains the slight increase in pixel-level ROC-AUC as c increases. However, the 

image-level ROC-AUC appears to decrease as the scaling factor c increases. This is probably because as c 

increases, the entire membrane image is divided into smaller sub-images, and more defects are cut-off and 

spread out among multiple sub-images. Some sub-images may contain a very small portion of a defect 

that becomes unrecognizable from the original defect, which may confuse the model when trying to 

classify the image as a whole. An example is shown in Figure 8, which is a sub-image created from 

splitting the membrane image with c=3, which shows a small sliver of a scratch defect.  

 

 

 

 

 

 

 

 

 

 



 
Figure 8: A very small part of a scratch appears in the bottom right side of the image, but it is almost unrecognizable and may 

make the image difficult to predict correctly. The original image is shown, with the ground truth highlighting the area as 

anomalous; a heat map of pixel anomaly scores, where higher anomaly scores are colored in red and yellow; and the predicted 
mask which segments areas that have an anomaly score greater than the chosen anomaly threshold. The mask shows that the 

model does not localize any defects in the sample. 

 

The outer threshold PRO-scores of the scratches and scuffs dataset are lower than those of the 

pinholes and there is more variation in performance. A histogram of threshold PRO scores for each image 

evaluated in the outer loop during LOOCV with dimensionality reduction is shown in Figure 9—3 defects 

have a value of 0 (were missed entirely).  

 
 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 9: A histogram distribution of PRO scores for each image of scratches or scuffs is shown. 3 scratches/scuffs images had a 

value of 0, but the rest have nonzero PRO scores. Scores are obtained in trials where 100 random features were selected (d=100). 

 

As is evident from a comparison of Tables 1 and 3, the outer LOOCV threshold PRO score is 

higher than both the inner LOOCV threshold PRO score and the threshold PRO score from the standard 

procedure for the scratches and scuffs dataset. This is caused by differences in calculating the different 

scores. As described in Bergmann et al. [59], the threshold PRO score is calculated for a dataset by 

looping through all the connected components in the ground truth masks and calculating the relative area 

of each connected component that is segmented by the model at a chosen threshold. Then, the relative 

areas are averaged over all the connected components. In this study, the outer threshold PRO score is 

found by calculating an individual threshold PRO score for each defective image and then averaging over 

all the defective images’ PRO scores uniformly. Thus, each defect has equal impact on the final score. 

contrast, the inner and standard threshold PRO scores are calculated by averaging the relative areas of all 

the connected components in all the defect images at once. Because each connected component is 

weighted equally, defects with many connected components have a greater impact on the final score. 

Here, the scuffs, consisting of a cluster of small scratches and discolorations, have far more connected 

components than the scratches, so if the model performs poorly on a scuff defect, the inner and standard 

threshold PRO as well as the PRO-AUC are lowered disproportionately compared to scratch defects. So 

far, there is no reason to use a score that gives the scuffs more weight when evaluating model 

performance, because although they have more connected components, the components are generally 

fainter and smaller than those of the scratches, so the scuffs are not necessarily more serious defects than 

the scratches. Thus, it can be argued that the outer threshold PRO score is a more useful indicator of 

performance than the threshold PRO score obtained in the standard procedure. It should be noted that his 

issue does not occur with the pinhole dataset, as noted in Tables 2 and 4 where all the threshold PRO 

scores are very close. This is because the ground truth mask for each defect only consists of one 

connected component so each defect has equal weight when calculating the inner and standard threshold 
PRO. 



The object detection metrics evaluated were AP, AP50, and AP75, which are calculated by 

finding the area under the precision-recall curve at a specified Intersection over Union (IoU) threshold 

[72]. Mean scores across the 30 repeated runs are recorded for pinholes in Table 5 and scratches and 

scuffs in Table 6 at a 95% confidence interval. All averages and confidence intervals were rounded to the 

nearest tenth. The inference time averaged over the 90 total trials is displayed in Figure 7 at a 95% 

confidence interval. Lastly, some success and failure cases are shown in Figure 10.  

 

Shot AP AP50 AP75 

5 

 

33.6 ± 2.8 

 

65.3 ± 5.1 

 

30.7 ± 3.6 

10 40.3 ± 1.3 72.1 ± 1.8 

 

40.3 ± 2.9 

 

Table 5: Performance metrics including AP, AP50, and AP75, obtained by fine-tuning a pre-trained 

Faster-RCNN model on the pinhole dataset, are displayed. 5-shot and 10-shot learning were implemented, 

and results are averaged at a 95% confidence interval over 30 different runs. 

 

Object AP AP50 AP75 

scratches 8.0 ± 0.9 

 

17.7 ± 1.7 

 

6.0 ± 1.3 

 

scuffs 3.9 ± 1.2 

 

22.2 ± 5.6 

 

2.0 ± 1.6 

 
Table 6: Performance metrics including AP, AP50, and AP75, obtained by fine-tuning a pre-trained Faster-RCNN model on the 

scratches and scuffs dataset, are displayed. Only 5-shot learning was implemented due to the small dataset size, and results are 

averaged at a 95% confidence interval over 30 different runs. 

 

Inference time (milliseconds) 

39.8 ± 4390  10-5  
Table 7: Inference time of the Faster-RCNN model, using 1 GPU, averaged over the recorded inference times from each of the 90 

trials. The inference time is recorded at a 95% confidence interval.  

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 
 

 
Figure 10: The top row shows success cases of training the Faster-RCNN. The first three images in each row show examples 
from the images of scratches and scuffs, while the last two show examples of pinholes. Failure cases include not predicting a 

bounding box with sufficiently high confidence and overlapping predictions. For example, a scratch can be predicted to be both a 

scratch and scuff.  



 

 
The confidence intervals are large when compared to the intervals seen in Wang et al. [70]. This is likely 

due to the small size of the test data. For example, 12 images of scuffs were available in total, so 7 images 

were used for testing in each run (as 5 images were used for training). Such a small number of images 

causes individual differences in each image to make a larger relative impact on the overall AP score, 

leading to higher variance. Furthermore, a different sample was taken from the images to serve as test 

data in each repeated run, so different test datasets also lead to higher variance. The mean AP scores also 

give mixed results. For the pinholes, they are relatively high, and in fact surpass the scores seen on the 

benchmarks seen in Wang et al. [70]. This is unexpected, because a rudimentary fine-tuning approach was 

used, keeping the backbone frozen the entire time without following the two-stage fine-tuning procedure 

described in Wang et al. [70] The source dataset used to train the model, which was the Pascal VOC 

training data containing color photographs, was largely dissimilar to the grayscale 2-D pinhole images, 

which could have also decreased the effectiveness of transfer learning. However, the high pinhole 

performance is unsurprising, as most of the pinholes look very similar, usually being either a large white 

dot or a large black/gray dot with a whiter border. Also, pinholes were the only object class, so there was 

less room for misclassification error.   
The models underperform on the scratches and scuffs datasets, where its strongest score is AP50, 

with lower AP and AP75. This likely indicates that the model struggles to predict bounding boxes that 

precisely overlap with the ground truth boxes. These AP scores are not too surprising, however, as the 

TFA method by Wang et al. achieves AP scores on the COCO dataset that also appear to be in the single 

digits [70].  

 

4. ANALYSIS  
Overall, the models trained on the pinhole dataset shows great promise, with very high ROC-

AUC and PRO-AUC scores, while the models trained on the scratches/scuffs dataset need much 

improvement. The main cause for this difference is the degree of uniformity in the baseline. Through 

visually inspecting the images qualitatively, the scratches/scuffs membranes were rougher and had more 

bright spots, which lead to more false positives. It is unlikely that these bright spots are real defects 

because in Rupnowski et al. [35], the they are postulated to be a result of specular reflection or scattering 

resulting from slight variations in surface roughness, and were not seriously treated as defects. Thus, it is 

possible that alternative methods for optical imaging of the membrane could reduce scattering and lead to 

fewer problematic bright spots. Using computer vision algorithms to remove them may be risky because 

they could accidentally remove small but real defects.  

Very similar issues arise for the object detection model, that also lead to worse performance on 

the scratches and scuffs when compared to the pinholes. As noted previously, the membrane images 

containing the artificially induced scratches and scuffs are ‘noisier’ with more bright spots in the 

background, many of which look like the artificially induced scratches and scuffs, which may confuse the 

model. Some of those spots may in fact be scratches and scuffs from other sources, but it is impossible to 

know the causes for all these bright spots. Following the convention outlined in the original study in 

Rupnowski et al. [35], most objects that resembled scratches and scuffs but whose nature were unknown 

and didn’t seem artificially created were not labeled--only artificially created defects were counted. 

Avoiding drawing a box arbitrarily around any object that resembled a defect minimized human bias 

during the labeling process. However, some defects’ origins were unknown so heuristic judgement had to 

be used. For example, there were long curved streaks on a membrane that were labeled as scratches. They 

were not grouped with other scratches and were shaped significantly different from the other scratches. 

They were also located near a scuff, so they may have been created accidentally when the scuff was being 

created. Nevertheless, they were still labeled as scratches because they greatly stood out in the image, 
even if they are unlikely to be significant according to Rupnowski et al. [35]. To avoid such confusion in 

future studies, it would be helpful to increase collaboration with experimentalists with domain expertise 



who could assist with labeling in the training data. The image containing these defects is shown in Figure 

11. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: A section of the membrane is shown with a scuff in the center that was artificially created. There are also 

white streaks that were labeled as scratches, but their origin is not fully known.  

 

Another obstacle is the overlap in the morphology of scuffs and scratches. Although the scratches 

and scuffs were created differently, many scuffs resemble a large, tight cluster of scratches, and a group 

of scratches may also be seen as a very small, sparse scuff. If the scratches inside the scuff defects are not 

labeled as scratches, the model is discouraged from being able to identify scratches based on appearance 

alone, and its performance degrades.  

Other obstacles include many scratches being carved close to each other, so that overlap between 

different bounding boxes around scratches likely degraded performance. Lastly, many scuffs, being a 

loose cluster of scratches, had ambiguous bordering such that drawing bounding boxes required heuristic 

judgement. This likely caused their low AP and AP75 scores as the model may predict a box that 

surrounds a large portion of a scuff, but does not intersect with the ground truth bounding box. 

Finally, detection times are estimated to help assess viability for real-time defect detection. For 

deep learning optical methods to be viable, they need to process large volumes of a membrane quickly: 

facilities may have a coating speed of 10 feet per minute [35], which need to be matched by the algorithm 

to find defects in real time. Without a manufacturing line to test our models, the detection time is roughly 

estimated using the time-complexity metrics for PaDiM and the inference times for Faster-RCNN as 

reported in the Results section.  

For PaDiM, we focus on the pinhole dataset, which should be more time-consuming to detect 

than the scratches as higher resolutions were needed. For the membranes with pinholes, each 8  11” 

membrane image was divided into 224 244 pixel sub-images for processing by the PaDiM algorithm. 

This corresponds to 3924 sub-images that need to be inspected to find defects on the four membrane 

specimens. However, this was after cropping the scanned image so that its height and width were a 

multiple of 224 pixels, so a small part of the membrane on the border was removed. If the border was 

included and the membrane was not cropped, then splitting the membranes into 224 224-sized sub-

images would result in 4181 sub-images total. This amount more realistically represents the number of 

tiles that need to be processed so that the entire membrane can be inspected. It should be noted that this is 

not an exact multiple of 4 because the different scanned membrane images had slightly different sizes. 

The time taken to extract features for all these images and create an anomaly map is roughly estimated 

using Equation 1: 

 

𝑇𝑡𝑜𝑡𝑎𝑙 ≈
𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑒𝑠𝑡𝑖𝑛𝑔
𝑇𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
 

 



 Here, 𝑇𝑡𝑜𝑡𝑎𝑙 represents the total amount of time taken to create an anomaly map for 𝑁𝑡𝑜𝑡𝑎𝑙  sub-

images, which is assumed to be 4181; 𝑁𝑡𝑒𝑠𝑡𝑖𝑛𝑔 is the number of images in the test dataset (75) and 

𝑇𝑡𝑒𝑠𝑡𝑖𝑛𝑔
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  is the processing time for the test dataset as described in the Results. This estimation assumes 

that the time duration is linear in the amount images to be processed. For the pinholes, the total 

processing time for the test dataset was 1.6 seconds with no dimensionality reduction. Thus, the amount 

of time 𝑇𝑡𝑜𝑡𝑎𝑙 to inspect the four membrane specimens is calculated as: 

 

𝑇𝑡𝑜𝑡𝑎𝑙 ≈
4181

75
1.6 ≈  89 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

89 seconds is a long time and does not account for other steps like image calibration; to reach the 

goal of 10 ft/minute, the four 11” long membranes in this study would need to be inspected in around 22 

seconds. The reactive excitative method developed by Ulsh et al. [26] can find pinholes in 7.5  7.5 cm 

samples in a little over 5 seconds. A direct comparison between the two methods is difficult because 

studies have not yet been performed on how time duration of the reactive excitative method would scale 

up as sample area increases to the sizes of the membranes used in this study. However, it can be estimated 

that a 7.5  7.5 cm portion of the pinhole membrane would correspond to approximately 104 sub-images, 

so the amount of time to inspect it would be approximately: 

 

𝑇𝑡𝑜𝑡𝑎𝑙 ≈
104

75
1.6 ≈  2.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

Thus, PaDiM’s inspection time seems comparable to some IR thermography methods.  

Several other measures can be taken to improve processing speed. Other more recent 

unsupervised anomaly detection algorithms like Fastflow [73] and CFLOW-AD [74] might yield 

improved accuracy and inference time over PaDiM. However, the parallelized PaDiM implementation in 

this study is also a magnitude faster than the original serial implementation in Defard et al. [60], so 

Fastflow and CFLOW-AD are not guaranteed to be faster. Future research could also investigate 

parallelizing the inspection process with multiple cameras and/or computers, which could divide the 

processing time by 2 or more. Minimizing the real-time image pre-processing needed by training the 

PaDiM models on raw un-processed images could also optimize processing time. For example, 

Rupnowski et al. [35] describes how sample images may need to be calibrated due to differences in light 

intensity at different angles from the light source. Training the models to on uncalibrated images instead 

may negate the need for calibration.  

 A similar calculation on processing time is made for object detection algorithms. In this study, 

Faster-RCNN has a reported inference time of 0.04 seconds for 1 image. The images used to train and test 

the model were created from dividing each of the four pinhole-containing membrane images into size 66 

 66 sub-images, which resulted in 46,219 66  66 pixel sub-images total. For the inference stage, it 

would take approximately 30.8 minutes to make a prediction for all the 46,219 sub-images, which is too 

slow to achieve real-time defect detection of pinholes. For the scratches and scuffs, however, each 

membrane was divided into 18 sub-images, so it would take approximately 7.2 seconds to perform 

inference on all the sub-images from one membrane. It is clear that increasing the image resolution 

greatly slows down the inspection time.  

 

5. CONCLUSION 

 The application of deep learning for in-line defect detection is a promising area overall. The 

anomaly detection model PaDiM shows more promise than the Faster-RCNN model, being orders of 

magnitude faster. PaDiM in this study could detect faint scratches, scuffs, and artificially induced 

pinholes, the same defects that are usually found using infrared thermography [26]. Furthermore, because 

feature selection was not used, PaDiM will likely generalize well to other types of visible defects besides 



pinholes, scratches, and scuffs. However, the utility of deep computer vision is limited to visible defects 

that can be seen on camera. Invisible defects, like catalyst layer thickness irregularities on gas diffusion 

electrodes [25], will be less straightforward to detect through deep computer vision. 

 The speed of PaDiM is within the magnitude of real-time detection speed, even when detecting 

pinholes near a microscopic scale. However, the Faster-RCNN models are too slow. In the future, object 

detection can be improved by investigating more recent object detection architectures like YOLOv7 with 

reported inference times as fast as 286 FPS [75]. Performance at lower resolutions could also be 

investigated. 

 The main obstacle for detecting visible defects is “noisy” baselines: sample images may have 

very bright spots which are not supposed to be defects and can cause false positives. Although they are 

not of interest as harmful defects, they are nevertheless “anomalous” in a sense that their location and 

occurrence can be unpredictable. It was found that even if training data contained random bright spots, 

other bright spots in the test data were still labeled as anomalous. A lower frequency of bright spots likely 

allowed the model to perform well on the pinhole-containing samples, and a high frequency caused the 

model to perform more poorly on the scratches/scuffs-containing samples. 

 It may be worthwhile investigating more hybrid approaches combining image preprocessing 

using computer vision algorithms and deep learning. For example, adjusting image contrast may assist in 
detecting faint defects, and smoothing algorithms may help remove background noise. However, 

researchers should be cautious to ensure that such preprocessing generalizes well and does not 

accidentally improve detection for some defects at the cost of obscuring other defects.  

 Further studies could do a more direct comparison between the optical methods used in this study 

and infrared thermography methods, such as analyzing the energy and resource consumption of the two. 

Infrared thermography methods need a steady supply of reactive gas like H2, energy to pump the gas 

through the material and purge it, as well an IR camera. On the other hand, optical detection methods in 

this study need a camera and light source to capture the images, and a computer with GPUs for the model 

to make calculations. While deep learning negates the need for reactive gas, the many calculations needed 

might be energy intensive.  

Finally, collaboration between machine learning engineers and experimentalists that have 
developed infrared thermography methods would be beneficial: expertise in the characterization and the 

effects of different defects would help create realistic, accurate datasets. Additionally, a tight feedback 

loop between experimentalists and programmers could greatly enable the rapid acquisition of new 

membrane samples to be used as training data. Overall, the application of deep learning for defect 

detection in PEMs will likely require more collaborative and interdisciplinary efforts. However, if 

successful, the applicability of optical methods for detecting defects could be greatly enhanced.  
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