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Abstract— The use of relative attribute (e.g., beautiful, safe,
convenient) -based image embeddings in visual place recogni-
tion, as a domain-adaptive compact image descriptor that is
orthogonal to the typical approach of absolute attribute (e.g.,
color, shape, texture) -based image embeddings, is explored in
this paper.

I. INTRODUCTION

Most current state-of-the-art visual place recognition
(VPR) algorithms employ absolute attribute (e.g., color,
shape, texture) -based image embedding for image feature
description [1]–[3] and image similarity search [4]. In this
study, we are interested in relative attributes (e.g., beautiful,
safe, convenient) [5]–[7]-based image embedding, as it pro-
vides a domain-adaptive ranking-based image description [8]
and it is orthogonal to typical approach of absolute attributes-
based embeddings. Specifically, we present two different
solutions based on binary and real-valued relative attribute
strength and experimentally evaluate them via cross-season
VPR experiments [9].

II. APPROACH

VPR is formulated as a problem of similar image retrieval
[10]–[12]. The objective is to search for the image most
relevant to a given query image over an image database.
The database is constructed as a collection of viewpoint-
annotated view images from visual experiences in the train-
ing domain via structure-from-motion [13] or SLAM [14].
Specifically, the procedure for construction consists of two
steps (Fig. 1): (1) extracting a feature descriptor from the
image, and (2) evaluating the descriptor similarity between
the query and each database images. Either step is detailed
in the following.

A. Feature Descriptor

An input query/database image is described by measuring
the relative attribute strength in R, with respect to a prede-
fined prototype image [8]. If the strength value is negative, it
means that the input image has stronger relative attribute than
the prototype image, otherwise it means that it is weaker. (1)
Specifically, the processing begins by evaluating the relative
attribute strength pattr

i of each i-th prototype image pi with
respect to the input image q for each j-th relative attribute
model A j, which yields a length (N + 1) list of relative
attribute strength

L = (qattr
j , pattr

j1 , · · · , pattr
jN ) (1)
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Fig. 1. Relative attribute-based embedding and its application to VPR.

with a boundary condition

qattr
j = 0. (2)

(2) Then, the list is sorted in the descending order of relative
attribute strength, which yields an ordered list L′. (3) Then,
each image is ranked based on the ranking L′, which yields
a 1×(N +1) matrix R j of rank:

(qrank
j , prank

j1 , · · · , prank
jN ). (3)

(4) By performing the above processes for a predefined set
of M relative attributes, we obtain an M×(N +1) matrix R
as the final output of the feature descriptor step.

B. Descriptor Similarity

Next, descriptor similarity is evaluated between the input
descriptor R and each database descriptor R′, for which we
have developed two different kinds of evaluation methods.
The first method, called binary relative strength (BRS), treats
the descriptor as a binary relative attribute (stronger or
weaker), and evaluates the similarity by

BRS = ∑
j
|R j1 −R′

j1|. (4)

The second method, called ranked relative strength (RRS),
utilizes the real-valued strength from the descriptor, and
evaluates the similarity by

RRS = ∑
i

∑
j
|R ji −R′

ji|. (5)

III. EXPERIMENTS

The experimental settings follow the procedure in [15].
The NCLT dataset used is a large scale, long-term auton-
omy dataset collected by a Segway robot in a university
campus. Specifically, view images from the on-board front-
facing camera (Ladybug camera) in the sessions 2012/03/31
and 2012/08/04 were used as training and test image sets,
respectively. We considered a place classification task with
a set of 8 place classes. Specifically, the entire workspace



Fig. 2. The robot workspace and place classes.

Fig. 3. Prototype images.

of the range [−740,130]×[−330,120] was divided via grid-
based place partitioning into a 10×10 grid of 100 place
classes (Fig. 2), from which the 8 classes are randomly
sampled. We simply sample N = 8 prototype images from
each of the 8 place classes (Fig. 3). The relative attribute
models were trained using the OSR dataset as in [16] (Fig.
4) on the M = 6 different attribute classes: natural, open, per-
spective, large-objects, diagonal-plane and close-depth. The
training, testing and performance evaluation were iterated
for 100 sets of randomly sampled 8 place classes. The mAP
performance was 0.341±0.071 and 0.364±0.079 for the BRS
and RRS methods, respectively. For comparison, absolute
attribute counterparts of BRS and RRS were also developed
using the 1-hot semantic histogram as the absolute attribute
feature as in [15], and tested with results of 0.147±0.068
and 0.310±0.090, respectively. One can see that the RRS
method outperforms the BRS method in the current experi-
ments. Specifically, the real-valued relative attribute strength
provided rich information, and the information loss was
significant when it was binarized (i.e., the BRS method).

IV. CONCLUSIONS AND FUTURE WORKDS

The use of relative attribute (e.g., beautiful, safe, conve-
nient) -based image embeddings in visual place recognition,
as a domain-adaptive compact image descriptor that is or-
thogonal to the typical approach of absolute attribute (e.g.,
color, shape, texture) -based image embeddings, is explored
in this paper. In the future, we plan to integrate the proposed
highly-efficient VPR method to train a visual navigation

Fig. 4. Example images of 8 different categories in the OSR dataset.

system as in [15]. During the training phase, the VPR module
must be repeated a very large number of times. That is, the
robot needs to experience a large number of (e.g., tens of
thousands of) training episodes, and each training episode
involves performing VPR at many (e.g., 10) viewpoints.
Towards that goal, further acceleration of the VPR module
while retraining the discriminative power is desired.
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