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Abstract 7 

Wind observations near the ground are critical in assessing the impact of wind on structures. All wind 8 

climates comprise a mixture of several disjoint meteorological mechanisms that require separation before 9 

assessment. In this paper previous studies distinguishing between convective and non-convective gust 10 

events are reviewed. Classification by visual inspection of the gust speed timeseries is generally agreed to 11 

be easy and accurate, but it becomes impractical for very large datasets.  Recent automated approaches, 12 

using statistics, pattern recognition and neural networks, are calibrated against 4000 visually classified gust 13 

events from 20 locations across the USA over 22 years. The most promising method is developed to use 14 

only gust speed statistics to distinguish five classes of gust event: synoptic scale storms, deep convection, 15 

the forward flank and the rear flank of gust fronts, and downbursts from isolated thunderstorms.  A 6th class 16 

collects non-meteorological artefacts in the data. The ensemble-averaged timeseries of each class form a 17 

distinctive hierarchy. The misclassification error rate against the visual classification is 7.8%, with most 18 

errors between adjacent classes. When applied to >107 gust events 20kn from 450 locations across the 19 

USA, the class hierarchy remains stable. The method is implemented by open-source R scripts. 20 

Keywords: Thunderstorms, frontal downbursts, mesoscale gusts, synoptic-scale gusts, ASOS, kernel 21 

density estimation, k-means, neural network, shapelet transform, fuzzy membership.  22 

Acronyms 23 

ABL Atmospheric boundary layer 24 

ASOS Automated Surface Observing System of the US National Weather Service 25 

CM Confusion matrix 26 

CONUS Contiguous United States 27 

FN False negative 28 

FP False positive 29 

HKD Highest Kernel Density method 30 
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KDE Kernel Density Estimation 31 

METAR  Meteorological Aerodrome Report of current weather 32 

NCEI US National Center for Environmental Information 33 

NN Artificial Neural Network 34 

NOAA US National Oceanic and Atmospheric Administration 35 

QC Quality control 36 

T/NT Binary thunderstorm – non-thunderstorm classification 37 

UTC Coordinated Universal Time (“Zulu”) 38 

WMO World Meteorological Organisation  39 

 40 

1. Introduction 41 

Wind observations in the atmospheric boundary layer (ABL) near the ground surface form the critical first 42 

link in the Davenport Chain [1] for assessing the impact of wind on the built environment. A concept now 43 

generally accepted is that all wind climates are mixed in the sense that physically different wind 44 

mechanisms govern surface winds at different times in an exclusive, or disjoint, manner. Gomes and 45 

Vickery [2] were first to recognise the need to separate observations from the various mechanisms for 46 

analysis before assessing their joint contribution to extreme winds, especially from rare (e.g., hurricanes 47 

and tropical cyclones) or localised (e.g., thunderstorm, tornado) events. Now that analysis and prediction 48 

models for hurricanes and tropical cyclones are well established [3], the focus of attention has moved to 49 

thunderstorm and other convective downbursts. The transient, non-stationary, meso-scale nature of these 50 

convective gusts, mixed with the ABL gusts in synoptic-scale windstorms, makes their detection and study 51 

a particular challenge.    52 

The importance of thunderstorms to Wind Engineering is discussed by Lombardo et. al. [4] who report they 53 

are the cause of most of the damage to structures across the continental United States (CONUS).  In 54 

addition to the peak gust speed in a thunderstorm downburst, sudden off-axis changes in wind direction are 55 

a particular issue for horizontal-axis wind turbines [5][6][7]. Zhang et. al. [8] report thunderstorms as the 56 

cause of 20% of all turbine accidents. Downbursts are also a major hazard to aircraft on take-off and 57 

landing. 58 

An impressive number of full-scale field studies have used a variety of approaches: single and groups of 59 

anemometers [10] [11] [12], vertical arrays on single towers [13][14] and on groups of towers [15], by 60 

Doppler RADAR, SODAR or LiDAR soundings [10][11][16][17], and in various combinations. Most 61 

employ the classical directional decomposition method for synoptic observations, with adjustments for the 62 



transient nature of downbursts, as addressed by [12]. Key consensus findings are that the direction of the 63 

peak gust speed is invariant with height [10] [11] [14], and that the depth of the gust front increases with 64 

time [16]. Downbursts are reported to be “arranged either randomly, in squall-lines, or in mesoscale 65 

convective systems” [11].  66 

Identification and classification of gust events in a timeseries of observations are generally implemented 67 

either as two sequential processes in either order: a) identify all gust events, then classify each event; or b) 68 

pre-define classes, then identify events of that class. In chronological order of publication:  69 

• 1992, Twisdale and Vickery [18] classified thunderstorm gusts as the maximum gust observed on 70 

“thunderdays” – days where thunder is seen or heard. 71 

• 1999, Choi [19] identified thunderstorm gusts by visual search through 13 years of anemograph 72 

charts and other records. 73 

• 2002, Choi and Hidayat [20] identified thunderstorms in the 20 highest gusts per year as coinciding 74 

with “thunder and rain” to calibrate the difference in gust factor between thunderstorm and 75 

monsoon winds in Singapore. 76 

• 2002 Kasperski [21], for Germany, defined the three classes: depression, gust front, and 77 

thunderstorm, for gusts separated by 24h, identifying by the peak, mean and gust factor, but 78 

experienced difficulty in separating depressions from fronts.  79 

• 2009 Lombardo et. al. [22] used the thunderstorm flag in METAR to identify hourly maximum 80 

gusts from thunderstorms in CONUS. 81 

• 2014, De Gaetano et. al. [23] adopted a statistical approach, evaluating 12 parameters: peak 1s 82 

gust; 1-minute mean speed; 10-minute mean, and 1-hour mean: speed, direction, turbulence 83 

intensity, skewness, and kurtosis; of 2Hz-10Hz sonic anemometer data. They used various 84 

combinations of gust factor in a logic tree to identify the same three classes as Kasperski [21] but 85 

could not separate fronts and thunderstorms definitively – “classifying an event not attributable to 86 

a depression (D) as a thunderstorm (T) or a gust front (F) is the ratio G10/G60: when it is less 87 

than 0.90, the event is usually a thunderstorm (T); when it is greater than 0.90, the event is usually 88 

a gust front (F).”  89 

• 2019, Huang et. al. [24] used daily outliers in gust, mean temp and mean humidity: Gust >15m/s, 90 

plus outliers of temperature and humidity within 20 minutes of the peak gust, to identify 91 

“thermally-developed” wind. 92 

• 2019, Guerova et. al. [25] used instability indices and integrated water vapour to predict 93 

thunderstorm activity some minutes before observed lightning flashes. This is just one example of 94 

similar predictive methods using satellite data.  95 

• 2020, Samanta et.al. [26]: Detected thunderstorm days for pre-monsoon winds at Kolkata from 96 

cloud-base height and potential temperature at the 850hPa level. 97 



• 2020, Chen and Lombardo [27]:  Built a convolutional Neural Network (NN) that differentiated 98 

between thunderstorm and synoptic gusts in 1-minute interval wind observations from the US 99 

Automated Surface Observing System (ASOS). This was trained using 76480 records of 91-minute 100 

duration, centred on a maximum gust 40kn, and mutually separated by 45 minutes. The 101 

thunderstorms in the training set were automatically identified from the thunderstorm flag in the 102 

corresponding METAR, as in [22]. Training the NN took 161 CPU hours. They noted an issue of 103 

false positive (FP) spikes in the ASOS data that were classified as thunderstorm gusts.   104 

• 2022, Arul et al [9]: Used 240 non-stationary 1h-periods of wind speed to train a Stationary 105 

Shapelet Transform (SST) – a method originally developed [28] to find patterns in electro-106 

cardiograms. Here a “shapelet” is a short timeseries that is characteristic of an event class. From 107 

168 records of one-hour duration at 10Hz from sonic anemometers, and without presuming any 108 

class structure, an automatic process generated 35998 candidate shapelets which were winnowed 109 

down to 32 “mother shapelets” that best represented recurring shapes in the timeseries. On visually 110 

classifying these shapelets, 21 indicated thunderstorm gusts and 11 indicated synoptic gusts. 111 

Transforming the whole timeseries with each mother shapelet gave a set of coefficients containing 112 

peaks, each corresponding to a section of the timeseries matching a mother shapelet, so indicating a 113 

classified gust event. Although the classification is only binary, thunderstorm /non-thunderstorm 114 

(T/NT), multiple mother shapelets were required because of the high variability of thunderstorm 115 

shapes. 116 

2. Motivation for this study  117 

In each of the previous studies, summarised above, the methodology used one of three basic approaches: 118 

a) Conventional statistical moments of the wind speed timeseries [21][23]. 119 

b) Pattern recognition applied to the wind speed timeseries [9][27]. 120 

c) Non-anemometric meteorological parameters [18][20][24][25][26]. 121 

Each approach has its strengths and weaknesses. Methods using satellite data, e.g., [25], are principally for 122 

short-term forecasting and nowcasting, and cannot be applied to long-term historical records. Dependence 123 

on the METAR thunder flag is appropriate in selecting gust events for calibration or training, but as a 124 

general classification criterion it risks producing numerous false positives (FP) and false negatives (FN), 125 

because not all thunderstorms are flagged, and many do not produce downbursts at the anemometer. A 126 

potential weakness of [23] is that it used high-frequency observations to evaluate the statistical moments 127 

and it is not immediately clear whether the method will operate successfully with sparser observations, e.g., 128 

the 1-minute interval in [27]. A strength of SST in [9] is as a “white box” method where all workings are 129 

transparent and monitorable by the user. The convolutional NN in [27] is a “black box” with all its 130 

workings hidden. A linear NN lies somewhere between these, since the output of each node is the simple 131 



weighted sum of its inputs, but the process of training these weights is generally hidden, so it could be said 132 

to be “grey”. 133 

Although some of the above studies share the same source observations, each stands on its own in the 134 

literature. These methods deserve a considered and fair intercomparison for their effectiveness. There is 135 

also the prospect of releasing some hidden synergy between the methods, to capitalise on their respective 136 

strengths. The binary T/NT classification in all the methods distributes downbursts in gust fronts between 137 

the two classes with, as reported, [21] [27] biased to NT and [9][23] biased to T. Thus, each class remains a 138 

mixture, rather than the intended exclusive class. De Gaetano et al [23] called for a method that definitively 139 

identifies gust front downbursts and deep-convection downdrafts. This curiosity-driven study examines 140 

whether this aim is possible using only anemometric data. 141 

3. Data 142 

This study uses the 1-minute interval weather observations from some of the almost 1000 Automated 143 

Surface Observation System (ASOS) stations across the contiguous USA (CONUS). These data are 144 

available in the NCEI TD6405 database for bulk download from ftp://ftp.ncdc.noaa.gov/pub/data/asos-145 

onemin/ by year and station. Each file gives the 2-minute mean and 1-minute maximum 3s gust wind speed 146 

and direction at a resolution of 1kn and 1°. Initially from 2000 Belfort cup/vane anemometers with a 5s 147 

gust response were used, most at 10m above ground, but some at 26 feet (7.9m). Between 2005 and 2010 148 

these were replaced by Vaisala sonic anemometers averaged to give the WMO standard 3s gust. The 149 

progress of the ASOS implementation and upgrade programme is documented in a series of NOAA reports 150 

currently available at https://weather,gov/asos/ASOSImplementation. 151 

TD6405 is a most valuable resource for Wind Engineering because it allows study of mesoscale events over 152 

much longer observational periods than is possible with targeted measurement campaigns. Although 153 

presented [29] as a homogeneous set of data in fixed format text files, it is neither of these things owing to 154 

incremental changes in instrumentation, acquisition, and quality control (QC) procedures, as well as errors 155 

in transmission and archiving. In addition to the typical artefacts found in long-term wind records [30], 156 

which can be detected automatically [31], there are two recurring artefacts particular to TD6405:  157 

1. Occasionally, data between 00:00 and 12:00 UTC on one day are archived as having occurred on 158 

the previous day in addition to the valid data for that day. This is correctable by exploiting serial 159 

continuity to determine which of each pair of observations at the same time belongs to which day. 160 

2. Having no moving parts and heated in the winter to prevent icing, the sonic anemometers provide 161 

ideal perches for birds which block the acoustic path and generate spurious large “spikes” of gust 162 

speed on landing and take-off. These spikes are difficult to distinguish from instrumentation 163 

glitches and localised thermal events (e.g., dust devils) lasting less than one minute. Although not 164 

correctable, they can be detected and removed.  165 

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/
https://weather,gov/asos/ASOSImplementation


At the end of 2013, NOAA implemented a new QC test – “Test 10” – to the ASOS data to detect and 166 

remove spurious bird-generated gust values [32]. A curation of the ASOS data [33] reveals that Test 10 167 

produces four times as many false positives (FP) than true positives (TP), and each FP unnecessarily culls 168 

the following 5 minutes of valid data.  Although the proportion of lost data is small, less than 0.03% [32] 169 

and insignificant for the overall dataset, these false positives are strongly biased towards thunderstorm 170 

downbursts and gusts in otherwise calm periods [33]. The deleterious effects of this test became apparent in 171 

[33] and affect this study. 172 

The automated procedures used here to identify and correct artefacts in the TD6405 data are fully described 173 

in [33]. They are principally intended to produce corrected synoptic-scale homogeneous datasets. Applied 174 

to this study, the automatic thresholds for a valid change in wind direction were found to cull some 175 

thunderstorm downbursts in light winds where direction changes are very large and can reverse. The wind 176 

direction artefact detection was disabled by setting an unreachably high threshold. 177 

 178 

Figure 1. Locations of ASOS stations in the development set. Crosses: Development set of 20 stations. 179 

Circles: Analysis set of 450 stations.  180 

A set of twenty ASOS stations, each with a nominal observational record from 1st January 2000 to 31st 181 

December 2021, were chosen for this study. Indicated by the crosses in Figure 1, they are distributed across 182 

CONUS, except for two stations serving Dallas, TX, and three stations serving Washington, DC, intended 183 

to expose any non-geographical disparities. Also shown by grey circles in Figure 1 are the locations of 450 184 

ASOS stations with WMO Class 1 or 2 exposures [34], selected for fuller geographic cover. Table 1 lists 185 

relevant metadata for the 20 development stations.  186 

Table 1. Parameters of the ASOS stations used in this study. 187 

ICAO 

code 

UTC 

(hours) 

Elevation 

(feet) 

Sonic, date 

installed 

Latitude 

(degrees) 

Longitude 

(degrees) 

Station 

name 

KABQ -7 1618.5 22/05/2007 35.04191 -106.61545 AlbuquerqueNM 

KBUF -5 218.2 04/06/2009 42.94001 -78.73608 BuffaloNiagaraNY 



KBWI -5 47.5 20/09/2006 39.17332 -76.68414 BaltimoreWashingtonMD 

KDAL -6 134.1 28/05/2009 32.83838 -96.83584 DallasLoveFieldTX 

KDCA -5 3 26/09/2006 38.8472 -77.03454 WashingtonReaganDC 

KDEN -7 1650.2 12/09/2005 39.84661 -104.65624 DenverIntCO 

KDFW -6 170.7 27/05/2009 32.89744 -97.02196 DallasFtWorthTX 

KGFK -6 256.6 17/10/2002 47.94272 -97.18293 GrandForksND 

KGTF -7 1116.8 26/03/2007 47.4733 -111.3828 GreatFallsMT 

KIAD -5 88.4 03/10/2006 38.93487 -77.44728 WashingtonDullesVA 

KICT -6 402.6 06/10/2005 37.64754 -97.43 WichitaEisenhowerKS 

KJAN -6 100.6 22/05/2007 32.31986 -90.07778 JacksonIntlMS 

KLAS -8 664.5 25/04/2007 36.0719 -115.16344 LasVegasMcCarranNV 

KLAX -8 29.6 27/10/2006 33.9382 -118.3866 LosAngelesIntlCA 

KPNS -6 34.1 27/03/2007 30.478 -87.18686 PensacolaFL 

KRFD -6 222.5 22/05/2007 42.19325 -89.09335 RockfordIL 

KSEA -8 112.8 17/05/2007 47.44468 -122.31441 SeattleTacomaWA 

KSUX -6 333.8 30/04/2009 42.39171 -96.37949 SiouxCityIA 

KTPA -5 5.8 27/01/2009 27.96334 -82.54001 TampaFL 

KWMC -8 1309.4 17/11/2005 40.90179 -117.80811 WinnemuccaNV 

4. Independent gust events 188 

For this study, an “independent gust event” is defined as a one-hour period centred on the maximum gust 189 

and separated from other gust events by at least 30 minutes. The consensus from the earlier studies is that 190 

thunderstorm downbursts generally last less than 10 minutes, so this dead-time between events complies 191 

with the common Wind Engineering rule-of-thumb of 3timescale for effective statistical independence. 192 

This rule is not sufficient for independence of non-convective gusts in synoptic-scale windstorms, which 193 

require a longer separation.  194 

Following the approach of Lombardo and Zickar [35] and earlier studies, any observations that might have 195 

come from hurricanes were removed over the three-day period centred on the arrival of the hurricane eye 196 

into the relevant State. Owing to their rarity, hurricanes are assessed differently from the frequent synoptic 197 

and convective wind mechanisms [3]. This was relevant only to the coastal US States along the Gulf and 198 

Eastern Seaboard. 199 

The 200 highest gust events at each development station were extracted to give the “Development set” of 200 

4000 gust events – a number that was not too onerous to classify by visual inspection. The minimum 201 



(200th) peak gust, averaged across all stations, was 38kn which is comparable to the 40kn threshold of Chen 202 

and Lombardo [27]. The initial method was a recursive search of the whole record from each station for the 203 

next highest gust event, which was simple to implement and validate, but very slow to execute. The 204 

execution time was shortened by a factor of 60 by first extracting the much smaller set of local maxima and 205 

their times of occurrence and searching this. By excluding the period of each gust event from future 206 

searches, the recursion cycle became progressively shorter. A “Demonstration set” of all gust events above 207 

20kn was extracted by this optimised search, yielding >51 000 gust events. Finally, an “Analysis set” of 208 

all gust events above 20kn were extracted from each of the 450 stations in Figure 1, comprising >107 209 

events. 210 

5. Datum classification by visual inspection 211 

5.1 Gust event Classes 212 

There is consensus in earlier studies, e.g., [10][19], that downbursts from thunderstorms and gust fronts are 213 

easily identifiable by visual inspection of the anemograph, and this also applies to charted digital timeseries 214 

with a fast-enough acquisition rate. The 2Hz – 10Hz rates of from sonic anemometers, as used in the 215 

current European “Wind and Ports” project [9][10][11][12][23], are more than sufficient and require 216 

application of a running-mean filter. The current state-of-the-art in windowed filtering is reported by 217 

Tubino and Solari [36]. The ASOS 1-minute interval 3s gust data permits resolution of gust events 218 

persisting for ~5 minutes, or longer. This includes downbursts from isolated thunderstorms, from 219 

downbursts on the forward and rear flanks of gust fronts, and microbursts able to penetrate through the 220 

ABL to the surface from deep convection in moderately strong and steady winds. The aim here is to 221 

identify classes corresponding to these physical mechanisms. 222 

 Visual inspection was therefore expected to distinguish between five Classes of valid gust event, plus a 6th 223 

to collect spike artefacts, designated here as: 224 

1) Synoptic – comprising non-convective gusts generated by the ABL in synoptic-scale weather 225 

systems and near-neutral atmospheric stability. 226 

2) Microburst – comprising downdrafts from deep convection in steady winds. 227 

3) Front-down – comprising convective downdrafts in the rear flank of gust fronts, where the mean 228 

wind speed is decreasing from a higher steady value. 229 

4) Front-up – comprising convective downdrafts in the forward flank of gust fronts, where the mean 230 

wind speed is increasing to a higher steady value. Often, but not always, associated with a change 231 

in mean wind direction. 232 

5) Thunderstorm – comprising downbursts from isolated thunderstorms in relatively light winds, 233 

where the initial wind speed and direction are restored after the event. 234 

6) Spike – comprising isolated instrumentation/transmission spikes, also including some very short-235 

duration surface-generated thermal events like dust-devils. Owing to the ASOS acquisition and QC 236 



protocol [32], a single instrumentation spike may affect two consecutive values if it occurs in the 237 

three seconds spanning a change in UTC minute (~1:20 chance).  Bird-generated gusts will also be 238 

included if the acoustic path of the sonics is blocked for less than 30s [32], which register as single 239 

spikes with no loss of data. 240 
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Figure 2.  Typical (left) and averaged (centre) visually classified gust events of the development set, and 241 

(right) of all gust events >20kn at 450 stations classified by the Highest Kernel Density method. 242 

5.2 Timeseries of classified gust events 243 

The 4000 gust events of the Development set were classified by visual inspection into sub-sets, comprising:  244 

Class 1: 2278 (57%); 2: 622 (16%); 3: 134 (3.4%); 4: 331 (8.3%); 5: 311 (7.8%); 6: 144 (3.6%). 245 

with 180 (4.5%) events unclassifiable due to missing observations. 246 

In Figure 2, the left-hand column shows examples of typical gust events in each Class. Each example in 247 

Class 1-5 is the largest valid gust recorded at that station, illustrating that any one of the 5 valid classes may 248 

dominate the extremes. The middle column presents the ensemble average of each Class in the 249 



Development set and indicates a consistent trend of increasing sharpness with Class index. The frontal 250 

Class 3 & 4 are distinctly skewed in opposing sense, as expected. The right-hand column presents the 251 

ensemble average of each Class of all >107 gusts in the Analysis set, as identified by the “Highest Kernel 252 

Density” (HKD) method described later. Comparison of the two sets of averaged traces confirms that the 253 

distinctive ensemble-averaged shape of each Class persists when the population increases from 4000 to 254 

>107, although the value at the peak is reduced by the inclusion of many lower values – an encouraging 255 

result for pattern-recognition methods.  Note that the peak gust of Synoptic will always emerge above the 256 

steady incident wind speed because the averaged variation in the other values is always less. 257 

The shapes of each averaged Class, normalised to unity peak value, are shown together in Figure 3 for 258 

direct comparison and from a clear hierarchy. The principal difference from previous studies is the 259 

inclusion of the frontal and downburst classes between the binary T/NT classes. The distinctive 260 

characteristics of these new classes are: 261 

• Microburst emerges from a steady wind speed with a sharpness intermediate between Synoptic and 262 

Thunderstorm. 263 

• The ramp-up of Front-up is like Thunderstorm and the ramp-down is like Microburst. 264 

• The ramp-up of Front-down is like Microburst and the ramp-down is like Thunderstorm. 265 

 266 

Figure 3. Normalised averaged gust events of the Development set for each visually identified class. 267 



5.3 Statistical metrics of visually classified gust events 268 

5.3.1 Conventional candidates 269 

In addition to the mean, statistical metrics for timeseries include standard deviation, and the higher 270 

moments, normally expressed in non-dimensional form as intensity, skewness, and kurtosis. Peak values 271 

are expressed by gust factor = peak/mean, or peak factor = (peak − mean)/standard deviation. With only 272 

4000 events in the Development set, unevenly divided between the six classes, it is impractical to evaluate 273 

their probability distributions by conventional binning methods, so Kernel Density Estimation (KDE) was 274 

used. 275 

  

  

  

Figure 4. Kernel Density Estimates of conventional statistical metrics.  276 

Figure 4 presents the KDEs of some of the candidate metrics assessed for their ability to discriminate 277 

between classes.  278 

• In the top row “gust intensity” (the standard deviation of the 3s gust divided by its mean) is 279 

presented for 10-minute and 1h datum means. While there is a left-right trend in the mode with 280 

Class, Classes 4 and 5 coincide and there is considerable overlap between distributions. 281 



• Gust factor is presented in the middle row for the same datum means. Now Class 1, 5 and 6 are 282 

reasonably separated, but Class 2, 3 and 4 are not. This is the reason [23] can classify T/NT, but not 283 

identify the frontal classes. 284 

• The bottom row shows two metrics for the gust wind direction: “veer” – the difference between the 285 

peak and the incident mean; and “trend” – the change in 30-minute mean from before to after the 286 

event. These KDEs are clustered around the origin and provide no useful discrimination. Gomes 287 

and Vickery [2] commented in 1997/8 that the average peak thunderstorm gust direction remains 288 

consistent with the approach mean direction, so this negative result was expected. Both Class 4: 289 

Front-up and Class 5: Thunderstorm direction trends show a slight bias to veer which is too small 290 

to be useful. 291 

 

(a) 3s gust speed trend. 

 

(b) 3s peak gust emergence. 

Figure 5. Kernel density estimates of proposed statistical metrics: gust “trend” and “emergence”. 292 

5.3.2 Proposed candidates  293 

Other metrics for the 3s gust timeseries were examined to find the best discriminator. The two new metrics 294 

proposed as “best” are: 295 

1. Speed trend – This is the change from the mean over the 30 minutes before the peak to the 30 296 

minutes after the peak, divided by the mean for the hour centred on the peak. The KDE, Figure 297 

5(a), shows a good separation between Class 3: Front-down and Class 4: Front-up, with the other 298 

classes clustered together in between.  299 

2. Peak gust emergence – This is defined as the peak gust divided by the mean of the 10 next-highest 300 

local peaks in the event. Like gust factor, it is a measure of sharpness of the central peak. In gust 301 

factor, the datum mean for Front-down and Front-up lies somewhere between the high/low value 302 

before the central peak and the low/high value afterwards, so is representative of neither. Gust 303 

factor tends to suppress Front-down events and to exaggerate Front-up events. The proposed new 304 

emergence metric indicates how far the peak emerges above the envelope of its peers, so treats all 305 

the event classes fairly.  The KDE, Figure 5(b), shows a good separation between 1: Synoptic, 5: 306 

Thunderstorm and 6: Spike, with the frontal classes clustered together. 307 



When used jointly, these two proposed metrics can discriminate between the six classes, as demonstrated 308 

by the next section. 309 

6. Comparison of automated classification methods 310 

Following the motivation for this study, this section compares the performance of the more successful 311 

current methodologies that use only anemographic data, then develops and assesses improvements. Here, 312 

each method is compared with the visual classification by a confusion matrix (CM) [9][27] in which 313 

correctly classified events lie on the diagonal and misclassified events lie off-diagonal. The overall error is 314 

indicated by the proportion of events that are misclassified. 315 

6.1 Statistical methods 316 

6.1.1 De Gaetano et. al. method 317 

The principal parameters of the De Gaetano et. al. [23] method are the gust factors normalised by the 1-318 

minute, 10-minute and the 60-minute mean. They are compared against datum threshold values 319 

sequentially in a logic tree to achieve a binary T/NT choice. The method was applied to the Development 320 

set exactly as specified in [23] to produce the CMs of Table 2. 321 

Table 2. Confusion matrices for the De Gaetano method. 322 

(a) De Gaetano  (b) De Gaetano  

Class NT T  Class NT T Error 

1 & 2 2774 136  1 2264 14 0.6% 

3 - 5 282 494  2 510 122 19% 

Error 11.3%  3 89 45 66% 

    4 172 159 52% 

    5 21 290 6.7% 

Table 2(a) represents the binary T/NT classification with Classes 3-5 combined into T and Class 1 and 2 323 

into NT as described in [23] and gives a classification error of 11%. Around 1/3 of Class 3 to 5 that should 324 

have been assigned to T are in NT and around ¼ of T are Class 1 and 2. Table 2(b) reveals the 325 

misclassifications of the individual classes. The classifications of Class 1 as NT and Class 5 as T are 326 

reasonably good, with only ~7% of Thunderstorm missed. As expected, the method fails to discriminate the 327 

intermediate classes – but the errors are biased towards NT and not as predicted by [23]. 328 

6.1.2 Bivariate k-means method 329 

The classical k-means method is a way of clustering data into k similar sets and assigning membership of 330 

any observed value to the set with the closest mean value. Here, k = 6 and are already sorted by visual 331 



inspection, so only the assignment of membership is required. The grey dots in Figure 6(a) indicate the 332 

distribution of the Development set across the two-dimensional emergence-trend field. The ellipses 333 

represent the one standard deviation boundary around the mean of each Class and are reasonably well 334 

separated. Assignment of each event to the closest mean of each Class produces the CM in Table 3(a) and a 335 

classification error of 12.4%. 336 

 

(a) k-means cluster ellipses 

 

(b) KDE contours 

Figure 6. Bivariate k-means clusters and kernel density contours of gust “trend” and “emergence” metrics. 337 

Table 3. Confusion matrices for emergence-trend methods 338 

(a) Bivariate k-means class  (b) Highest Kernel Density class 

Class 1 2 3 4 5 6 
 Class 1 2 3 4 5 6  

1 2123 189 7 1 0 0  1 2202 75 31 12 0 0 

2 27 563 22 5 6 0  2 28 565 15 15 0 0 

3 14 0 123 0 0 0  3 2 1 134 0 0 0 

4 23 44 0 263 2 0  4 0 17 0 319 0 0 

5 0 38 37 35 200 2  5 0 40 25 29 209 9 

6 0 0 0 2 25 117  6 0 0 0 0 4 140 

Error 12.4%  Error 7.8% 

 339 

6.1.3 Highest Kernel Density method 340 

The two-dimensional KDEs, evaluated1 for each Class, are shown in Figure 6(b) as contours on the 341 

emergence-trend plane. For each event the HKD method selects the Class with the highest KDE. The 342 

selection was tuned by optimising the kernel bandwidths to give the lowest overall error, 7.8%, in the CM, 343 

 
1 By kde2d() in the “MASS” package for R, using axis-aligned bivariate Normal kernels. Based on Venables WN and 

Ripley BD (2002) Modern Applied Statistics with S, Springer, pp510. 



Table 3(b). Implementation of the method was simplified by evaluating a look-up table in small increments 344 

(0.01) of emergence and trend, shown as a chart in Figure 7.  Events in the tail of a KDE will be 345 

misclassified and leak into a neighbouring Class when its value falls below that of the neighbour. The 346 

method can be viewed as making a sharp cut along the boundary curves of equal KDE value in Figure 7. 347 

 348 

Figure 7. Look-up table for Highest Kernel Density method 349 

As an incidental by-product of the method, the membership probability, Fi, of Class i for each event, e, may 350 

be obtained from the KDE, p, by: 351 

Equation 1.   𝐹𝑖{𝑒} = 𝑝𝑖{𝑒}/ ∑ 𝑝𝑗{𝑒}6
𝑗=1   352 

Membership probability may be used as a weighting factor in any statistic that implements fuzzy logic, e.g., 353 

weighted moments, allowing events that fall outside the sharp boundaries to contribute partially to their 354 

parent Class.  355 

6.1.4 Neural Network method 356 

The NN in the “neuralnet” package for R was trained to predict the Class from the emergence and trend, 357 

using resilient backpropagation with weight backtracking, and disjoint training/testing data. The 358 

Development set was split in half by latitude/longitude in two ways: north/south halves, and east/west 359 

halves. Training used one half, then testing used the disjoint other half. The critical quality metric was the 360 

average prediction accuracy all disjoint combinations of the training/testing sets. 361 

It can be assumed that each set consists of the coherent Class components, which are to be classified, plus 362 

an incoherent random “noise” component that differs between sets. Optimisation of the NN configuration 363 

started by increasing the number of neurons in a single-layer network, analogous to increasing the number 364 

of free parameters in a parametric fit, which eventually leads to overfitting by including the random 365 

component. Testing accuracy increases with increasing numbers of neurons up to the point where 366 



overfitting begins, after which it starts to fall. The overall error was minimised with 50 neurons at 11.4%. 367 

Extending to two- and three-layer networks produced only a marginal reduction in error, but with 368 

significantly shorter training times. The optimal NN was found to be three layers of 4 neurons (64 d.f.). 369 

Applied to the full development set, this NN produced the CM of Table 4 and an error of 11.1%. 370 

Table 4.  Confusion matrix for emergence-trend neural network 371 

 Neural network class 

Class 1 2 3 4 5 6 
 

1 2236 40 6 1 0 0 

2 14 538 60 10 0 0 

3 1 13 121 0 0 0 

4 2 12 18 297 2 0 

5 0 17 35 21 231 8 

6 0 0 0 0 9 135 

Error 11.1% 

6.2 Pattern recognition methods 372 

6.2.1 Nearest Normalised Trace method 373 

This is essentially the shapelet method of Arul et al [9], but it uses the normalised averaged gust events in 374 

Figure 3 for the whole 1-hour period as the mother shapelets. Training was much faster, however, as the 375 

shapelet search was not required, and the comparison was made with the events of the Development set and 376 

not the whole record. The timeseries of each event, normalised to unity at the peak, was compared with 377 

each of the timeseries in Figure 3 and the Class with the minimum squared Euclidean distance was 378 

selected. The CM is in Table 5(a) and the error is 17.9%. 379 

Table 5. Confusion matrices for pattern recognition methods 380 

(a) Nearest normalised trace class  (b) Optimised neural network class 

Class 1 2 3 4 5 6  Class 1 2 3 4 5 6 

1 2120 173 17 4 6 0  1 2193 89 1 0 0 0 

2 109 395 45 41 326 1  2 84 517 16 2 3 0 

3 25 16 70 0 24 2  3 7 30 98 0 0 0 

4 8 42 0 241 40 1  4 0 3 0 322 6 0 

5 0 6 17 18 218 53  5 0 1 6 42 258 0 

6 0 0 0 2 14 130  6 0 0 0 0 8 136 

 Error 17.9%   Error 11.9% 

6.2.2 Optimised Neural Network method 381 

This method inputs all 61 gust speed values of a gust event directly into the “neuralnet” NN, whittling them 382 

down to the single output class through a series of neuron layers. As before, the configuration was 383 

optimised using disjoint training/testing sets to minimise the testing error. The optimal network 384 



configuration was found to be two layers: the first with 5 neurons and the second with 3 neurons; and 385 

produced the CM in Table 5(b) and an error of 11.9%.  386 

6.2 Optimal method 387 

The five methods tested in this study are compared in Table 6 for effectiveness based on minimum overall 388 

classification error. The worst performer is the Nearest Normalised Trace method which is the shapelet 389 

transform method of Arul et. al. [9] operating with only one mother shapelet for each class. As each 390 

individual event trace differs in shape from the ensemble average, Arul et. al. [9] required 32 mother 391 

shapelets to make the binary T/TN choice, so this result comes as no surprise. 392 

Table 6. Comparison of method overall error 393 

Input data  Method Error 

Emergence and trend Bivariate k-means method 12.4% 

Highest Kernel Density 7.8% 

Optimised neural network  11.1% 

Directly from traces Nearest normalised trace 17.9% 

Optimised neural network  11.9% 

The Highest Kernel Density method of §6.1.3 stands out as the clear winner, and its application is further 394 

simplified by means of a look-up table, Figure 7. The HKD method has the additional benefit of providing 395 

the class membership probabilities to implement fuzzy logic.  396 

7. Applying the optimal Highest Kernel Density classification method 397 

R scripts were coded to automate the download of the TD6405 observations from any ASOS site, the 398 

detection and correction/removal of artefacts, the extraction of all independent gust events above a 399 

specified threshold speed, and classification by each of the above methods. These scripts follow four key 400 

principles:  401 

1. A central database keeps track of the ASOS stations to be processed and their status. 402 

2. Processing runs fully automatically, in stages, under the control of a master script. 403 

3. Processing may be interrupted and re-started at any time without loss of completed stages. 404 

4. Multiple instances of R can be run on the same PC, or on multiple PCs with network access to the 405 

central database. 406 

Principle 3 will allow incremental updating as future observations are added to the TD6405 database.  407 

The scripts were validated by extracting and classifying the Demonstration set of gust events and 408 

comparing the top 200 events for each station with the earlier Development set.  The scripts were then run 409 



to extract and classify the Analysis set for the 450 ASOS stations indicated in Figure 1. The ensemble 410 

averaged traces of these were presented earlier in Figure 2.  411 

Brabson and Palutikof [37] demonstrate that wind observations may be represented as a mixture of disjoint 412 

Poisson processes when P{t}, the inter-arrival time t between events of each process, is exponentially 413 

distributed. The standard test for this is to plot −ln(1−P{t}) against t, when a mixed distribution forms 414 

straight-line segments of different slopes, each slope indicating the corresponding Poisson rate parameter  415 

= 1/T, where T is the timescale, but a single Poisson process forms a single straight line. Independence 416 

between successive events in a correlated timeseries may be obtained by declustering [38]. The most 417 

common approaches are: 418 

a) Removing all events below a suitable value threshold (peak-over-threshold).  419 

b) Selecting the maximum value event within equal periods of time (epoch maxima). 420 

c) Taking the maximum value between successive up-crossings of the mean (Davenport-Rice) 421 

[39][40].  422 

d) Selecting the larger of any pair of events within a suitable period (Simiu-Heckert) [41].  423 

Approach b) does not result in a Poisson point process, because of the fixed time intervals, but the other 424 

three approaches converge asymptotically. The issue with a) is that the threshold may need to be so high 425 

that insufficient data remain to be analysed. Approach c) retains the maximum population of independent 426 

events if the time constant of the running mean is optimised [38], but it is not compatible with the event 427 

extraction/classification processes of this and the earlier studies. Approach d), introduced by Simiu and 428 

Heckert [41], is completely compatible with this study. A Poisson process is desirable because it forms the 429 

basis of extreme-value theory and it assists in the analysis of extremes by ensuring compatibility with the 430 

Harris [43] XIMIS plotting positions and fitting weights. 431 

   

Figure 8. Example tests for Poisson process at m = 2 days minimum separation. 432 

Adopting d), the gust events were subjected to a further screening process that enforced a minimum m-day 433 

separation period. The same top-down search procedure as in §4, was applied with a minimum separation 434 

of m = 2 days, and this reduced the total population of events by a factor ~15. The value m = 2 days was 435 



expected to enclose the longest Synoptic timescale and all the shorter timescales of the other classes, but 436 

not the very long timescales associated with substantial gaps in the observational record. Figure 8 shows 437 

typical standard independence test plots for three of the Development stations after removing the data gaps 438 

in the top 5% of the distribution, confirming that m = 2 days provides convergence to a Poisson process and 439 

statistical independence at Synoptic scales. 440 

            30-minute minimum separation              2-day minimum separation 

  

  

  



  

  

  

Figure 9. Annual rate of occurrence of gust events 20kn in each Class 441 

In Figure 9 the geographical distribution of the annual rate of gust events 20kn in each Class is mapped 442 

for minimum separations of 30 minutes and 2 days. These maps show that: 443 

• The highest rate of Synoptic gust events occurs in a north-south band through the Great Plains, and 444 

the lowest across the Southeast Region. The 2-day separation reduces the Class 1 rate by a factor of 445 

30. 446 

• A concentration of Microburst events in the valley of the North Platte in southern Wyoming 447 

corresponds to a westward-protruding arm in the Synoptic distribution. This does not appear in the 448 

2-day events, indicating that these are localised events occurring in short, correlated bursts. The 449 

highest rates of 2-day events occur in the NV/UT/AZ tristate area in the Southwest, the Northeast 450 

region, and around the Great Lakes.  451 



• The two frontal classes show similar distributions, with the maximum frequency in the north-south 452 

band in the High Plains along the eastern flank of the Rockies. The high concentration in southern 453 

Wyoming moves southwards into northern Colorado when the 2-day separation is imposed.  454 

• If the single concentration of 814 Thunderstorm events in 22 years at KORD Chicago O’Hare, IL, 455 

were valid, Chicago would be the thunderstorm capital of the USA, but nearby KMDW Chicago 456 

Midway indicates only 102 Thunderstorm events. Visual inspection of the timeseries shows that the 457 

majority at KORD are probably low-valued instrumentation spikes that have avoided the Spike 458 

classification. Discounting KORD, the Thunderstorm rate is highest in an east-west band across 459 

Colorado, Utah, and Nevada, with isolated pockets across the Great Plains and the Southeast 460 

Region. Owing to their relative rarity, imposition of the 2-day separation reduces the Class 5 rate 461 

by only half. 462 

• Spike is so rare that there is very little difference in the rate upon imposition of the 2-day 463 

separation. The single concentration centred on KPRB, Paso Robles, CA, shows that this ASOS 464 

station joins KORD in being particularly prone to instrumentation glitches. 465 

Detailed analysis of these data will be made in a separate study that builds on the foundations laid by 466 

Lombardo and Zickar [35]. The opportunity is taken here, in Figure 10, to examine the effects of the 467 

change in anemometer from cup to sonic and the introduction of QC Test 10. Bear in mind, from §3 and 468 

[33], that Test 10 creates four times as many FP than TP and imposes a 5-minute gap in data after each, and 469 

that these FP are biased towards calms and thunderstorms in light winds, i.e., to Class 5. The observational 470 

period in Figure 10 is sub-divided into three periods: from 2000-2006 for the cup anemometers2; 2007-471 

2013 for the sonic anemometers without QC Test 10; and 2014-onwards for sonic with Test 10. 472 

Figure 10(a) shows the total count of bird gusts in each year found by the new algorithm in [33] which 473 

registers a bird-generated gust only when a spike in value immediately precedes or succeeds a loss of data. 474 

This also includes spikes immediately preceding an instrumentation failure, mimicking the characteristics 475 

of bird gusts, and accounts for all counts in the initial cup period. The counts start to drop before the 476 

average installation date of the sonics, suggesting that the most unreliable stations were prioritised. All bird 477 

gusts after the start of 2014 should have been eliminated by Test10, but the count doubles. These are all FP 478 

created by Test 10 which the new algorithm [33] interprets as additional bird-perching events when 479 

preceded/succeeded by a spike, particularly after culling valid Thunderstorm events. 480 

Figure 10(b) shows there were more gust calms recorded by the cup anemometers than by the sonics, 481 

presumably due to friction in the bearings, but that virtually no gust calms are recorded after introduction of 482 

Test 10. Values in years 2000 and 2004 appear to be outliers. 483 

 
2 After a slow start, the cup-sonic change was phased in quickly at all ASOS stations. 14 February 2017 represents the 

mean installation date. Not all stations contribute to earlier years and the results are weighted accordingly. 
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Figure 10. Effect of instrumentation and quality control changes through the observation period.  484 

The ensemble-averaged annual rates for Classes 1 to 4 in Figure 10(c)-(f) all show very little variation 485 

between the three sub-periods, and between years, except that 2000 and 2004 again appear to be outliers. 486 

These gusts all occur in moderate to strong winds, so are insensitive to Test 10 which is triggered only in 487 

lighter winds [33]. 488 

Figure 10(g) shows the annual rate of Class 5 Thunderstorm rises slightly after installation of the sonics, 489 

but almost halves when QC Test 10 is imposed. Curation of the data [33] revealed a bias towards culling 490 

the strongest Class 5 events, due to their rapid ramp-up in speed. This limits the usefulness of the TD6405 491 

data for assessing extreme thunderstorm events from 2014 onwards. 492 



Figure 10(h) shows that Class 5 Spike is a rare occurrence. On average there was only one Spike per year 493 

through the cup period, because spikes typically occurring immediately before an instrument failure were 494 

culled by the new bird-gust procedure in (a). Spike rate quadruples after installation of the sonics, but it is 495 

impossible to be sure of the cause: instrumentation/transmission/bird/etc. Introduction of Test 10 removes 496 

nearly all the Spike events, and this is its only perceived virtue. 497 

 

(a) Probability density, 20kn 

 

(b) Probability density, 30kn 

 

(c) Probability density, 40kn 

 

(d) Mean above threshold  

Figure 11. Ratio of the mean sonic and cup observations for peak gusts over thresholds, ensemble averaged 498 

for all analysis stations. 499 

The Belfort cup anemometers were quoted as having an 5s response time, but cup anemometers have a 500 

fixed run-of-wind response length, so that the response time reduces with increasing mean wind speed [42]. 501 

The superior response of the Vaisala sonic anemometers was restricted by a running 3s-mean to give the 502 

standard WMO response, irrespective of wind speed. The sonic/cup gust ratio represents the factor that 503 

could be applied to correct the cup gust speeds to the 3s standard. This was estimated by ensemble 504 

averaging all peak gust speeds in the Analysis set exceeding various thresholds over the cup and the sonic 505 

periods and assuming that the wind climate remained constant. Figure 11(a)-(c) show the distribution of the 506 

3s/5s ratio for three thresholds.  Figure 11(d) shows that the mean ratio varies in a consistent manner with 507 

threshold: initially falling as expected, but reaching a minimum at a threshold of 35kn, before rising again 508 

at higher thresholds. Perturbation theory [42] predicts that the response to a gust depends not just on the 509 

current mean wind speed but also on the change in speed, i.e., also on the gust factor. Figure 11(d) shows 510 

that the mean gust factor rises rapidly for thresholds above 35kn, and this is the reason that the 3s/5s ratio 511 

rises again. The parabolic trend of the 3s/5s ratio is well fitted in the range 20kn to 50kn by the expression: 512 



3s 5s⁄ ratio = 5 × 10−5𝐺∗
2 − 0.0037𝐺∗ + 1.0806 513 

where 𝐺∗ is the gust factor based on the hourly-mean of the 1-minute maximum gust, as provided by the 514 

TD6405 database. Lombardo et.al [22] report using the factor 1.02 for extremes at the design risk, a value 515 

which lies in the middle of this observed range. 516 

8. Conclusions 517 

In response to the call by De Gaetano et al [23] for an automated method that definitively discriminates 518 

gust front downbursts and deep-convection downdrafts, this study examined whether this was possible 519 

using only anemometric data. A datum set of 4000 gust events from 20 stations were selected for training 520 

and assessing the various approaches to classification. Six characteristic classes proved easy to identify by 521 

visual inspection, as demonstrated by earlier studies, e.g., [10][19]. The distinct visual disparity in 522 

characteristic shape of the six Classes, and the subsequent persistence of these shapes after ensemble-523 

averaging a huge population (>107) from 450 ASOS stations, support the view that they successfully 524 

discriminate between disjoint physical mechanisms. The disparity in geographic distribution of their annual 525 

rates adds further support to this view.  526 

The ensemble-averaged shapes of each Class form a stepped hierarchy, but shapes of individual events fall 527 

between these steps. Similarly, there is overlap in the distributions of the statistical metrics of each Class. It 528 

follows that no zero-error classification method can ever exist. The study shows the typical error rate of 529 

current methods to be ~10%, with the errors lying close to the diagonal of their confusion matrices.  530 

Manual classification by visual inspection relies on the remarkable pattern-recognition of the human brain. 531 

Replicating this in software is particularly difficult, but major advances have been made in recent years 532 

using artificial neural networks. These methods performed poorly in this study due to the presence of 533 

secondary transient events in the 30 minutes before and after the principal gust which introduce distortions 534 

from the characteristic datum patterns. The human brain has no difficulty in coping with these distortions.  535 

The best performing “Highest Kernel Density” method, with an error rate of 7.8%, evolved directly from 536 

the statistical method of De Gaetano et. al. [23] based on gust factor, but the proposed new “emergence” 537 

and “trend” gust speed metrics proved to be more effective discriminators in classifying 1-minute interval 538 

observations. This enabled the complex logic tree of [23] to be replaced by a simple bivariate choice. The 539 

potential usefulness of the additional fuzzy membership probabilities that this method provides is in 540 

weighting the contributions of events that lie close to the Class boundaries, and their effectiveness will be 541 

assessed in a future study. The directional metrics provided no practical advantage and so the method relies 542 

solely on the gust speed timeseries. The HKD method also has the advantage of simplicity and 543 

transparency over the poorer performing and more complex pattern-recognition methods that were tested. 544 

This represents a practical example of the fine balance between Occam’s Razor: “entities should not be 545 



multiplied beyond necessity” (William of Occam, circa 1287–1347) and Menger’s Law: “entities must not 546 

be reduced to the point of inadequacy” (Karl Menger, 1902-1985). 547 

Application of the HKD method to the 450 Analysis stations confirmed the consistent flaws in the TD6405 548 

data found by [33] caused by instrumentation and QC changes during the observational period 2000-2021. 549 

The introduction of QC Test 10, which affects all observations after the end of 2013, is of particular 550 

concern as it continues to cull valid thunderstorms in light winds. The strongest Class 5 3s gust recorded at 551 

KIAD: Washington Dulles, VA, 115kn at 23:02 UTC on 26th August 2007, would have been culled by Test 552 

10 had it occurred after 2013. The effect on extreme values will be investigated. In reviewing the statistical 553 

metrics, the years 2000 and 2004 consistently appear as outliers and this warrants further investigation. 554 

That the maximum gust at KIAD: Washington Dulles, VA, is Class 5 Thunderstorm, while the maximum 555 

gust nearby at KDCA: Washington Reagan, DC, is Class 1: Synoptic, illustrates the “hit-and-miss” nature 556 

of Class 5. Further, the example of KORD Chicago O’Hare shows that the automated differentiation of 557 

Classes 5 & 6 is fallible. 558 

Culling the classified gust events 20kn by selecting the highest local peaks separated by a minimum of m 559 

= 2 days produces a Poisson Point Process that meets the standard test of exponentially distributed inter-560 

arrival times [37]. This validates using the Harris [43] XIMIS plotting positions and fitting weights in 561 

extreme value analysis of the individual Class events. 562 

NOAA have been informed that the ongoing negative impact of QC Test 10 greatly outweighs any 563 

marginal benefits. Its poor performance stems from its real-time operation: it is unable to anticipate a few 564 

minutes into the future, so it cannot distinguish the fast ramp-up caused by a bird (followed by data loss) 565 

from that caused by a thunderstorm (followed by ramp-down). The ASOS observations should be archived 566 

in their original raw state so that better QC procedures can be applied, retrospectively, as they are 567 

developed.    568 

Supplementary information 569 

The R scripts and instructions to extract gust events classified by the three emergence-trend classification 570 

methods from any ASOS station in the TD6405 database are available from Mendeley at URL: 571 

https://doi.org/10.17632/88jp3swkn6.1. An Rdata file of gust events 20kn at the 450 ASOS stations of the 572 

Analysis set, classified by the three methods, is also provided (826Mb). 573 

Note to Editor and Reviewers: The above URL is reserved and will not be activated until publication. In 574 

the meantime, the supplementary information is available for download at:  575 

https://data.mendeley.com/datasets/88jp3swkn6/draft?a=4fdfc188-d390-4765-bf63-655360c54811.  576 
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