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Abstract  
Pumped subsurface energy storage entails pumping fluid into fluid-filled lenses in subterranean rock 

formations during times of peak power production, and then later producing the fluid back to the surface 

to drive a turbine. A new mechanical model is developed for lens behavior during flowback (production), 

shut-in, and inflation (storage) stages. The model couples elastic deformation of the lens with Darcy-

Weisbach fluid flow spanning the laminar to turbulent regimes. It includes an energy-based inlet 

boundary condition governing fluid flowing rate out of the lens and up to the Earth’s surface. It also 

introduces pressure-dependent leakoff of fluid to the surrounding rock and the impact of intact rock 

bridges, which can arise from the lens having multiple petals or lobes, on lens compliance. The model is 

then used to illustrate the transition from early-time gradual decline in wellhead pressure and flowing rate 

to eventual pinching of the lens width at the wellbore, leading to rapid decline of pressure and flowing 

rate. The model demonstrates the feasibility of efficient storage cycles that generate a desired amount of 

power over a desired time while avoiding pinching. Maximizing efficiency is shown to have at least two 

contrasting regimes depending on whether the fluid leakoff rate to the host rock is dependent on the fluid 

pressure. The development of this model is therefore an essential step in deployment of subsurface energy 

storage by providing a mechanical basis for storage lens design. 

1. Introduction 
Cost-effective energy storage and recovery is essential for the deployment of intermittent renewable 

energy resources, most notably wind and solar. Traditional pumped hydro storage is typically 

economically advantageous compared to existing battery technologies, but it is limited in scope due to 

dependency on terrain with suitable elevation changes. On the other hand, a novel approach of pumped 

energy storage in the subsurface provides the potential to leverage the ubiquitous difference between the 

density of water and the density of rock to store and recover energy from manufactured fluid-filled lenses 

in the subsurface. However, there is no published mechanical model by which subsurface pumped energy 
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storage can be examined, planned, and designed. Providing such a mechanical model comprises the main 

goal of this paper. 

The principle of subsurface pumped energy storage is conceptually straightforward. During construction, 

a well is drilled, then hydraulic pressure and engineered fluids are used to create and seal a storage lens in 

the subsurface. After forming the sealed lens, energy can be stored by using a pump to inject water into 

the storage lens (charge). To recover the stored energy (discharge), pressurized water in the lens is flowed 

back to surface to drive a  a hydropower turbine. This process is illustrated in Figure 1. Grid load leveling 

is one of many commercial applications of this technology whereby electricity is drawn from the power 

grid during periods of excess generation to charge the storage lens. The stored energy is then discharged 

back to the grid during periods of high electricity demand.  

The pressure and flowing rate during the time of discharge scales with the difference between the rock 

density and the fluid density as well as the depth of the lens. Hence, the method bears conceptual 

similarities to above-ground pumped hydrological energy storage. However, instead of relying on positive 

elevation and the density of water for storing recoverable gravitational potential energy, it instead relies 

on subsurface elevation (depth) and the high stresses found in rocks at depth due to their density in order 

to store recoverable elastic potential energy. 

While the concept is relatively straightforward, a mechanical model is essential in order to resolve a wide 

range of design, planning, and data interpretation issues that arise and/or are expected to arise as this 

technology is developed, tested, and deployed. These include setting targets on depth, radius, initial 

volume, and initial width of the lens in order to produce a desired power level over a desired time frame 

at optimal efficiency. A model is also important as it can allow interpretation of field data in order to 

characterize rock properties and volume losses during charge and discharge cycles. 

Thus motivated, this paper sets out to define a basic model for lens behavior including periods of 

inflation, shut-in, and flowback. Although vertically oriented lenses are certainly possible and could be of 

use in the future, the present work is limited to the case of a horizontal lens that can be approximated to 

have a circular geometry. The paper is organized to firstly present the governing equations embodying the 

mechanical model, after which some general behaviors are explored with a focus on the individual 

impacts of mechanisms that are involved in the lens compliance and fluid loss from the lens. Finally, 

some generic cases are presented to illustrate principles of efficient lens design that minimizes both fluid 

losses and energy dissipation.  



 

Figure 1: Geomechanical pumped storage concept, illustrating lens charge (1), storage (2), and discharge (3). 

2. Lens Model 

2.1 Principles 
The lens model seeks to predict the wellhead pressure and flowing rate as a function of depth, rock 

properties, and engineering parameters such as volumetric pumping rate during inflation, choke size used 

to regulate flowback rate, lens radius, and lens volume. The specific model presented here considers a 

circular, horizontal planar lens modelled as a fluid-filled crack with initially uniform internal pressure 

(Figure 2). Because the lens could have a radius that is similar to the depth, the model includes the impact 

of the Earth’s surface. The model considers three potential states of the lens, which will be implemented 

in detail via the boundary conditions imposed at the wellbore. These are: 

• Inflation or charging, where Newtonian, incompressible fluid is injected at a constant rate. It is 

assumed that a lens of a given radius already was created by a previous injection, and so inflation 

involves refilling this lens without inducing changes to the lens radius. 

• Flowback or discharging, where Newtonian, incompressible fluid is allowed to flow back to the 

surface where it turns a turbine and/or passes through a choke that limits its volumetric flow rate 

according to the choke size and the pressure drop across the choke. 

• Shut-in, where no fluid is allowed to travel in or out of the lens via its inlet. During this time the 

pressure in the lens will become spatially uniform, if it has become non-uniform due to a previous 

injection or flowback phase. At the beginning of time, the lens is taken to be at shut-in with some 

initial volume, although that volume could be very small if no inflation has yet taken place. 

Besides the assumptions mentioned to this point, the model additionally assumes elastic (recoverable) 

rock deformation and negligible friction loss through fracture inlet and/or wellbore. The model does, 

however, consider the potential impact on the lens compliance that is imparted by intact rock bridges 



and/or contact on asperities, as will be detailed in the description to follow. The model also considers 

fluid friction within the lens and fluid loss to the rock both via linear diffusion and via a non-linear fluid 

loss law that corresponds to pressure-dependent leakoff rate to natural fractures in the host rock. The 

model that embodies these considerations and assumptions is detailed in the next subsection. 

 

 

Figure 2: Illustration of mechanical model. 

2.2. Governing Equations 
The governing equations begin with an elasticity relationship relating the fluid pressure inside the lens, pf, 

to the lens width w for a lens of radius R. One approach to solving the radially-symmetric elasticity 

equation entails superposition of the singular solution for a displacement discontinuity loop in a half-

space (Korsunsky 1994, Hills et al. 1996). In this approach, two integral equations can be established (e.g. 

Zhang et al. 2002, Bunger 2005, Bunger et al. 2013) 
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Here E’ is the plane strain elastic modulus given in terms of Young’s modulus E and Poisson’s ratio  as 
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Additionally, Ds is the shear component of the displacement discontinuity, which is zero in the case where 

the lens radius is much smaller than the lens depth (R<<H). Also, the symbolically-intensive elasticity 

kernels G are available in the literature (Gordeliy and Detournay 2011) and will not be reproduced here. 

Finally, the term s is a novel addition to the model. It represents a traction applied to the faces of lens 

according to a bridge connection law that accounts for elastic deformation of bridge followed by 

softening due to bridge breakage, with details described by Appendix A and with behavior illustrated by 

Figure 3. The expression is given by 
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where wT is the width at which the bridges break, and wmax is the largest width experienced by each 

location along the lens throughout its inflation history. The Heaviside function ˆ ( )H  is used to impose 

zero bridge traction once the breaking width wT is exceeded at a given location at some time in the lens 

history. Additionally, aT is an exponent describing the shape of the bridge softening curve. Finally, T is 

the proportion of the lens surface area that connects to a bridge. Note that there are also expected to be 

asperity contacts. However, as discussed in Appendix A, except at the smallest apertures it suffices to 

consider bridge connections only. 

 

Figure 3: Illustration of bridge traction versus lens width model, showing a) sketch of two idealized bridges connecting faces of a 
lens separated by width, w. b) Example of bridge traction versus width. 

The fluid flow part of the model begins with the continuity equation for an incompressible fluid 
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where v  is the mean velocity of the fluid across a cross-section of the lens. The leakoff velocity to the 

surrounding rock is expressed by 
,mfv  and has a part that follows the classical Carter law and a part that 

considers pressure dependent fluid loss to compliant natural fractures, hence 

, , ,mf m fv v v= +                                                           (4) 

where the Carter part is (Howard and Fast 1957) 
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Here m is the permeability of the rock, m is the porosity of the rock, cr is the compressibility of the pore 

fluid, po is the virgin pore pressure, and tc is the time of first contact of the fluid with the lens. The 

pressure dependent part is 
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This relationship introduces f, the closure stress acting on the natural fractures that are accommodating 

the pressure-dependent leakoff. It also introduces f and Lx, which are the porosity and the nominal length 

of these natural fractures. Finally, the exponent f is introduced to relate the rate of change of the aperture 

to the fluid pressure in the natural fractures, noting that the Heaviside function ˆ ( )H  is used to impose that 

the permeability of the natural fractures is taken to zero when the pressure drops below closure pressure 

(leaving only Carter leakoff according to Eq. (5)). Details of the development of the pressure dependent 

leakoff model are given by Appendix B. 

Describing fluid flow also requires a relationship between flux (q) and the pressure gradient, given here 

by 
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Here  is a roughness height of the surfaces of the lens and f is the fluid density. In this relationship 
Df  

is a friction factor that depends on Reynold’s number (Re). When Re is in a lower range (less than 

transition value, Retrans), 1Df → and the classical Poiseuille equation for laminar flow is recovered. The 

specific form of 
Df is provided by an adaptation of Churchill (1977) to hydraulic fracturing by Dontsov 

and Peirce (2017), and is given by 
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This completes the description of the field equations. Boundary conditions begin with zero width and flux 

at the lens tip (after Detournay and Peirce 2014), that is 

( , ) 0, ( , ) 0w R t q R t= =
                                                       (9) 

The inlet boundary condition requires the fluid flux inside the lens to balance the flow into or out of the 

well, that is 

lim 2
wr R BHrq Q→ = −                                                        (10) 

where Rw is the wellbore radius and volumetric flowing rate QBH is defined as positive for flowback (lens 

discharging) and negative for injection (lens charging). Specifically, during lens charging, the volumetric 

inflow rate to the lens (i.e. injection rate from the pump driving the inflation) is prescribed as Qinj so that 

 
BH injQ Q= −                                                                    (11) 

During flowback, there is a mixed-type boundary condition at the inlet whereby volumetric rate is 

obtained by writing the classical energy equation of fluid mechanics between a point in the lens and a 

point just after the choke (Figure 2), resulting in  
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Here Cd is the choke shape factor, do is choke diameter, g is gravitational acceleration, and hs is the shaft 

head associated with the work done by the fluid on the turbine. See Appendix C for details. 

Finally, under conditions of shut-in the volumetric rate is taken as zero, that is 

 0BHQ =                                                                           (13) 

Governing equations are completed by initial conditions for uniformly pressurized lens with a given (user 

prescribed) initial volume Vi and corresponding internal pressure pinit (which is a part of the solution, not 

prescribed by the user). That is 
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2.3 Solution Method 
The solution method follows in the spirit of the implicit time marching method described by Gordeliy and 

Detournay (2011) and using the discretization scheme detailed in Bunger (2005). It entails firstly 



discretizing the elasticity equation (Eq. (1)) with m constant displacement discontinuity elements and 

thereby relating the width and pressure according to a displacement discontinuity-type Boundary Element 

Method (after Crouch and Starfield 1983). The fluid flux equation (Eq. (7)) and continuity equation (Eq. 

(3)) are then discretized using central differences. Substituting the resulting discretized equations into one 

another and linearizing the result for a small relative width change at each time step allows for solution by 

inversion of a matrix. Again, this approach follows after Bunger (2005), but with the important difference 

that the location of the lens tip is fixed and so there is no need for an iteration loop that solves for the lens 

radius at each time step.   

Because of a lack of analytical solutions for benchmarking, the mathematical validation of the model was 

limited to ensuring a match between the initial solution and the relevant elastic solution for a pressurized 

crack in cases of a deep and shallow lens for which limiting solutions are given in Bunger and Detournay 

(2005). Accuracy within ~1% is obtained using a discretization of  ~100 nodes for R<H. More nodes are 

needed for larger R/H, similar to what is described in Bunger and Detournay (2005). For example, with 

R=10H, ~800 nodes are needed for a similar level of accuracy. While details of the full validation are 

omitted here for brevity, comparison with some relevant analytical approximations are shown in the 

following section. 

Typical computation times, of course, depend strongly on number of elements, length of each time step, 

and type of computer. For most practical cases with ~50-200 nodes and ~1000-4000 timesteps, a 

simulation requires around 10-100 seconds to complete on a personal computer with 16 GB RAM and, 

for these examples, an AMD Ryzen 5 3500U processor. These computation times are to obtain the 

solution only and do not include time required to write data to file and generate graphical outputs. 

3 Behavior of the Model 

3.1 Deep, Zero Leakoff, Bridge-Free Illustrative Case 
During flowback stages, the model predicts the flowback rate with accompanying pressure and lens width 

distributions. Neglecting the friction losses in the wellbore (as already discussed), the wellhead pressure 

can be obtained from the predicted pressure at the wellbore wall according to 

 ( , )WH f w fp R t H gP = −                                                               (15) 

Recognize, then, that the pressure in the lens can be decomposed as 

 ( , ) ( , )f w net w op R t p R t = +                                                            (16) 

where the so-called “net pressure” pnet is the transient pressure over and above that which is required to 

cause first opening of the lens by overcoming the overburden stress so. Furthermore, let 

 
o gf H =                                                                       (17) 

where fg is the closure stress gradient. Bringing these together gives 

 ( )( , )WH net w g fp R t H f gp = + −                                                      (18) 

This shows that the wellhead pressure will be comprised of a constant part that is related to depth. The 

magnitude of the constant part of the wellhead pressure is also determined by the difference between the 



closure stress gradient (which comes from the rock density) and the hydrostatic gradient of the fluid 

column in the wellbore. In comparison to the constant part, the transient net pressure is often small so that 

( )WH g fH f gp  −                                                            (19) 

Consider an example case with input parameters given by Table 1. The computed wellhead pressure for 

this case is indeed observed (Figure 4a) to be initially slightly larger than the approximation of Eq. (19), 

with the difference being equal to the net pressure. 

It is instructive to observe the net pressure in a bit more detail, considering here an illustrative case in the 

limit with no rock bridges, large depth, and where prior inflation is assumed to have taken place 

sufficiently long ago that the internal pressure distribution has become spatially uniform prior to 

commencement of flowback. In this case with uniform internal pressure and moderately large depth 

(about 2 times the lens radius), the initial net pressure is readily predicted from the initial volume (Vi) via 

the classical LEFM solution (Sneddon 1946 as reproduced by Tada et al. 2000) 
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Indeed, Figure 4a shows the wellhead pressure beginning from a value that is consistent with this initial 

net pressure. The corresponding initial width profile, shown in Figure 4b, is similarly consistent with 

Sneddon’s solution, that is 
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In actuality, the initial solution for the width slightly exceeds Sneddon’s solution. This is because the 

radius is roughly half of the depth, and so while the impact of the Earth’s surface is small, it is not 

negligible. It can be easily shown (though rather trivially, so omitted here for brevity) that the solution 

converges to Sneddon as depth is increased. Besides the impact of the surface of the Earth, the initial 

solution will not match Sneddon’s solution if there are bridge connections and/or if the fluid pressure 

does not achieve spatial uniformity. Also note that in this case, the rebound solution after shut-in (i.e. 

after 132 minutes in Figure 4a) returns to Sneddon’s solution, just with a smaller volume owing to 

volume which has been allowed to flow back out of the lens (recalling that in the present example leakoff 

is set at zero). The period of pressure increase commencing at the start of shut in is therefore associated 

with pressure inside the lens returning to spatial uniformity after flow ceases. 

This example (moderately deep lens, no bridges) is therefore shown to begin (and end) with Sneddon’s 

solution for a uniformly pressurized crack, albeit not quite matching Sneddon due to the small but non-

negligible impact of the Earth’s surface. Once flowback commences, the volumetric flow rate, QBH, 

evolves throughout the flowback period. Substituting the approximation of the wellhead pressure (Eq. 

(19)) into the inlet boundary condition (Eq. (12)) and solving for QBH gives an approximation of the 

flowback rate 
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This approximation is valid as long as net pressure is small compared to the closure stress o. For the 

current example, there is no shaft work performed on a turbine and hence hs=0. The resulting 

approximation of QBH is shown along with the evolving flowing rate in Figure 4c. 

During flowback, the pressure is drawn down and with it the flowing rate also decreases. The flowing rate 

decrease is not as strong as the decrease of the pressure due to the square root dependence of QBH on the 

wellhead pressure. The pressure drawdown is due to a combination of fluid friction developed as fluid 

flows through the lens and overall reduction in net pressure due to reduction of lens volume. In the 

current example most of the drawdown is due to fluid friction, evidenced by the fact that the total 

drawdown substantially exceeds the reduction in pressure between the pre- and post- flowback shut-in 

periods, which give indication of the magnitude of total drawdown due to reduction in lens volume. After 

an initial sharp drawdown as flow establishes, a quasi-steady period ensues where both pressure and 

flowback rate reduce gradually and nearly linearly with time. This continues for a while, until eventually 

the width becomes small enough that a pinching-type instability occurs. This is an instability in the sense 

that the pressure drawdown leads to decreased width which further draws down the pressure, and so forth. 

Once this pinching instability commences, the pressure and flowing rate rapidly fall off until the width 

eventually approaches zero at the inlet. Note that for much of the flowback period in this example, the net 

pressure is negative near the wellbore even when the lens remains open. This negative net pressure with 

an open lens is possible owing to the non-locality of the elasticity equations (Eq. (1)). That is, positive net 

pressure in the outer part of the lens can still hold it open everywhere even when there is a localized 

region where net pressure is negative (Figure 4d). 

 

Figure 4:Illustrative case (example 1) with no bridges. a) Pressure evolution including overburden (blue dash-dot) and Sneddon 
(red dash) reference lines, b) Evolution of width profile, showing progression that begins at Sneddon reference (red dash), where 
slightly larger width compared to Sneddon is due to non-negligible impact of Earth’s surface with R~0.5H. Green line indicates 

return to ellipsoidal crack but with smaller volume after shut-in. c) Volumetric flowing rate evolution including approximation 

from Eq. (22) (red dash). d) Pressure distributions plotted at various times, including overburden (blue dash-dot) and Sneddon 

(red dash) reference lines. The green line indicates return to uniformly pressurized crack but with smaller volume after shut-in. 



Table 1: Input parameter values Input parameter values for illustrative example 1 with no leakoff and no bridge connections 

(Figure 4). 

Rock Properties    

Young’s Modulus, E 15 GPa (2.2 

Mpsi) 
Poisson’s Ratio,  0.33 

Closure Stress Gradient, fg 0.0242 MPa/m  

(1.07 psi/ft) 

  

Bridges    

None    

Leakoff    

None    

Lens Geometry    

Depth, H 420 m (1378 ft) Radius, R 200 m (656 ft) 

Initial Volume, Vi 127 m3 (800 bbl) Roughness Height,  1 mm 

Fluid Properties    

Viscosity 0.001 Pa s Density, f 1023 kg/m3 

Algorithm    

Number of Elements, m 100 Number of Timesteps, nt 3000 

Transition Reynolds Number 800   

Schedule Start Time (min) Description End Time (min) 

Stage 1 0 Shut-in 10 

Stage 2 10 Flowback on do=1 cm choke 

with shape factor Cd=0.74 

132 

Stage 3 132 Shut-in 160 

 

3.2 Role of Bridges 
The model allows for existence of bridges that are accounted for as in Eq. (2) and detailed in Appendix A. 

The role of the bridges, in broad terms, is to decrease the lens compliance (i.e. changing the pressure 

versus volume relationship). The consequences are as follows. Firstly, Figure 5 contrasts two cases, 

identical in all ways except in the second case bridges are include with area ratio T=0.001 (see Table 1). 

Because the initial volume is the same in both cases, there is not a large difference in the lens width 

overall. However, the case with bridges has a smaller wellbore width and much more uniform width over 

the lens compared to the initially ellipsoidal width distribution for the case without bridges. In spite of the 

lenses having the same volume and radius, the pressure for the case with bridges is significantly larger, 

indicating smaller elastic compliance. The pressure also falls off significantly more strongly compared to 

the case with no bridges owing to the larger fluid friction associated with the smaller width near the inlet. 

Additionally, the time of pinching can occur somewhat earlier for the case with bridges, although in the 

present examples the pinching times with and without bridges are not significantly dissimilar. From this 

illustration it is clear that the role of bridges cannot be ignored because, if present, they will impact the 

leading order behavior of the lens. 



 

Figure 5: Illustrative case with bridge connections. a) Pressure evolution including overburden (blue dash-dot) and Sneddon (red 
dash) reference lines, b) Evolution of width profile, (Sneddon reference deleted because it substantially exceeds width for this net 
pressure with bridges). Green line indicates return to uniformly pressurized solution but with smaller volume after shut-in. c) 

Volumetric flowing rate evolution including approximation from Eq. (22) (red dash). d) Pressure distributions plotted at various 

times, including overburden (blue dash-dot) and Sneddon (red dash) reference lines. The green line indicates return to uniformly 

pressurized crack but with smaller volume after shut-in. 

Table 2: Input parameter values for illustrative example 2 including bridge connections and with zero leakoff (Figure 5). 

Rock Properties    

Young’s Modulus, E 15 GPa (2.2 

Mpsi) 
Poisson’s Ratio,  0.33 

Closure Stress Gradient, fg 0.0242 MPa/m 

(1.07 psi/ft) 

  

Bridges    

Connected area ratio, t 2.7e-4 Breaking width, wT 6 mm 

Separation exponent, t 1.5   

Leakoff    

None    

Lens Geometry    

Depth, H 420 m (1378 ft) Radius, R 200 m (656 ft) 

Initial Volume, Vi 127 m3 (800 bbl) Roughness Height,  1 mm 

Fluid Properties    

Viscosity 0.001 Pa s Density, f 1023 kg/m3 

Algorithm    

Number of Elements, m 100 Number of Timesteps, nt 3000 

Transition Reynolds Number 800   

Schedule Start Time (min) Description End Time (min) 



Stage 1 0 Shut-in 10 

Stage 2 10 Flowback on do=1 cm choke 

with shape factor Cd=0.74 

132 

Stage 3 132 Shut-in 160 

 

3.3 Role of Leakoff 
The examples so far have considered the limit with zero leakoff. The contribution of leakoff is generally 

straightforward; it imposes a fluid loss term where the rate of fluid loss decreases with increasing time 

since pressurized fluid first contacted the lens. While this mechanism acts throughout the life of the lens 

(at least while it is inflated with an internal pressure above the surrounding pore pressure), it is most 

clearly observable as pressure decline during the shut-in stages. In this regard there is a superposition of 

pressure changes associated with equilibration of pressure during early stages of shut-in along with both 

Carter-type and pressure dependent leakoff.  

To visualize these contributions independently, consider an example with parameter values as in Table 3. 

Pressure evolution for three cases based on these parameters are shown in Figure 6. In all three cases, the 

lens begins with an initial volume of about 32 m3 (200 bbl) and is inflated by injection of 240 m3 (1500 

bbl) of fluid at a rate of 0.0265 m3/s (10 bbl/min) for 150 minutes. This inflation is followed by 150 

minutes of shut-in (t=150-300 min), 100 minutes of flowback with a 1 cm (0.39 in) choke (t=300-400 

min), and a final 100-minute period of shut-in.  

The difference among these cases is in the role of leakoff. In the first case, Figure 16a, the rock is taken to 

be impermeable. Here we see the brief transient period of the pressure between injection and shut-in 

(t=150 min) and between flowback and shut-in (t=400 min), evidencing equilibration of the pressure 

within the lens from the non-uniform values developed due to fluid friction during both injection and 

flowback. In this case, however, there is no additional change in the pressure once the internal pressure is 

equilibrated to a uniform value. 

In the second case, Carter leakoff is included (Figure 6b). The impact of the leakoff is firstly evidenced by 

the smaller lens volume, which is in spite of injecting exactly the same volume of fluid. Along with this 

smaller lens volume, there is impact of the leakoff in the form of an additional pressure decline during all 

stages but most obviously during shut-in stages. Note also that the pressure drawdown during flowback is 

larger and the steady-state rebound pressure during the second shut-in period is smaller. Both of these are 

impacts of the lens having smaller volume overall due to the leakoff, which increases fluid friction during 

flowback and lowers the elastic equilibrium pressure during shut-in.  

In the third case (Figure 6c), both Carter and pressure-dependent leakoff are included. The pressure 

decline is observed to be considerably larger during the period of initial shut-in where the pressure 

exceeds the closure stress associated with the natural fractures that accommodate the pressure dependent 

leakoff. This increased pressure decline is a consequence of more rapid fluid volume loss. The result is 

much greater pressure drawdown during flowback owing to the smaller volume, hence smaller lens width, 

hence larger fluid friction.   

Note that it is possible, in principle, for the fluid entering the natural fractures to return to the lens during 

flowback. However, the current version of the model does not allow this, assuming instead that all fluid 

that enters the natural fractures is lost to the formation. 



 

Figure 6: Illustration of the role of leakoff for a case with injection, shut-in, flowback, and a final period of shut-in. Showing cases 
with: a) no leakoff, b) Carter leakoff only, with NF closure for reference in the dashed red line, which helps with comparison of 

pressure values but is relevant only to pressure-dependent leakoff, c) Pressure dependent and Carter leakoff. In all cases the dot-

dash black line is the wellhead pressure associated with lens closure, for reference. 

Table 3: Input parameter values for illustrative examples showing impact of Carter and pressure dependent leakoff. 

Rock Properties    

Young’s Modulus, E 15 GPa (2.2 

Mpsi) 
Poisson’s Ratio,  0.33 

Closure Stress Gradient, fg 0.0242 MPa/m 

(1.07 psi/ft) 

  

Bridges    

Connected area ratio, t 2.7e-4 Breaking width, wT 6 mm 

Separation exponent, t 1.5   

Leakoff – Case a    

None    

Leakoff – Case b    

Permeability, m 1e-5 Darcy Porosity, m 0.10 

Fluid Compressibility, cr 0.0001 1/MPa Pore Pressure Gradient, 

fp=po/H 

0.0113 MPa/m 

(0.5 psi/ft) 

Contact time, tc 1 min   

No Pressure Dependent 

Leakoff 

   

Leakoff – Case c    

Permeability, m 1e-5 Darcy Porosity, m 0.10 

Fluid Compressibility, cr 0.0001 1/MPa Pore Pressure Gradient, 

fp=po/H 

0.0113 MPa/m 

(0.5 psi/ft) 

Contact time, tc 1 min NF Closure Gradient, ff 0.0254 MPa/m  

(1.135 psi/ft) 



NF Volume Fraction, f 3e-7 NF Nominal Length, Lx 1 m 

NF Compliance Exponent, f 1   

Lens Geometry    

Depth, H 420 m (1378 ft) Radius, R 200 m (656 ft) 

Initial Volume, Vi 31.8 m3 (200 bbl) Roughness Height,  1 mm 

Fluid Properties    

Viscosity 0.001 Pa s Density, f 1023 kg/m3 

Algorithm    

Number of Elements, m 100 Number of Timesteps, nt 3000 

Transition Reynolds Number 800   

Schedule Start Time (min) Description End Time (min) 

Stage 1 0 Inject at 0.0265 m3/s (10 

bbl/min) 

150 

Stage 2 150 Shut-in 300 

Stage 3 300 Flowback on do=1 cm choke 

with shape factor Cd=0.74 

400 

Stage 4 400 Shut-in 500 

 

3.4 Visualizing Circulation 
Additional insights can be gained by visualizing the movement of fluid in and out of the lens during 

cycling. Here an example is chosen with five cycles of flowback followed by reinflation that restores the 

lens to its original volume. Each of these flowback and inflation stages is separated by a five-minute shut-

in stage. Figure 7a shows the volumetric injection rate (flowback positive) and wellhead pressure during 

these cycles. Parameters used to generate this example are given in Table 4. 

Then, to visualize the flow, we track the location of tracer packets of fluid. Some of these are distributed 

uniformly along the lens initially. Additional tracer packets are introduced periodically during inflation. 

The location of the packets are tracked explicitly as time progresses, assuming the tracer packets move at 

the mean velocity of the fluid. Specifically, at each timestep (t), the fluid mean velocity ( v  ) is 

computed based on the model solution for the flux (q) and width (w), recalling /v q w  = . Then the 

change in location of each packet updated by a distance given by v t  . The resulting virtual streaklines 

(Figure 7) are color coded as: 

• Black indicates tracer packets that start in the lens and never leave the lens.  

• Blue indicates tracer packets that flow into the lens during inflation stages but never flow back to 

the well. 

• Red shows tracer packets that are produced back to the well. 

Hence, for this case, the circulating portion of the fluid occupies the inner ~80 m of the lens. Outside of 

this region, the fluid is important as it holds the lens open (via the non-locality of the elasticity equations), 

but it does not circulate in and out of the well. It is also interesting to note the evolution of the blue lines, 

which is material that is not produced back to the well.  Because of the fluid leakoff (about 5 bbl is lost 

out of the 160 bbl circulated in each cycle), there is always a first portion of fluid injected in each cycle 

that is not produced back to the well. Instead, it forms a slowly advancing rim of fluid that, in principle, 

could advance to the tip of the lens over many cycles.  



 

Figure 7: Example case of cycling where injection rate and time are chosen so as to reinflate the lens to the same volume at then 

of each cycle. a) Volumetric rate and wellhead pressure versus time for 5 cycles of flowback and reinflation, noting that positive 

volumetric rate is flowback and negative is injection. Here the higher dotted line indicates the closure stress of the natural 

fractures in the pressure-dependent leakoff law, and the lower dashed line indicates the wellhead pressure corresponding to the 

lens closure stress. b) Visualization of flow in and out of the lens, where each line tracks a fluid packet during the cycling. The 

color code of black indicates the tracer packet started in the lens and never left the lens. Blue shows packets that flowed into the 

lens but never flowed back, and red shows packets that are produced back to the well. 

Table 4: Parameters used in the cycling example (Figure 7). 

Rock Properties    

Young’s Modulus, E 15 GPa (2.2 

Mpsi) 
Poisson’s Ratio,  0.33 

Closure Stress Gradient, fg 0.0242 MPa/m 

(1.07 psi/ft) 

  

Bridges    

Connected area ratio, t 2.7e-4 Breaking width, wT 6 mm 

Separation exponent, t 1.5   

Leakoff – Pressure 

Dependent Only 

   

Permeability, m 1e-5 Darcy Porosity, m 0 

Fluid Compressibility, cr 0.0001 1/MPa Pore Pressure Gradient, 

fp=po/H 

0.0113 MPa/m 

(0.5 psi/ft) 



Contact time, tc 100 min NF Closure Gradient, ff 0.0254 MPa/m  

(1.135 psi/ft) 

NF Volume Fraction, f 3e-7 NF Nominal Length, Lx 1 m 

NF Compliance Exponent, f 1   

Lens Geometry    

Depth, H 420 m (1378 ft) Radius, R 200 m (656 ft) 

Initial Volume, Vi 127 m3 (800 bbl) Roughness Height,  1 mm 

Fluid Properties    

Viscosity 0.001 Pa s Density, f 1023 kg/m3 

Algorithm    

Number of Elements, m 100 Number of Timesteps, nt 5000 

Transition Reynolds Number 800   

Schedule Start Time (min) Description End Time (min) 

Stage 0 0 Shut-in 5 

Stage 1 5 Flowback on do=1 cm choke 

with shape factor Cd=0.74 

65 

Stage 2 65 Shut-in 70 

Stage 3 70 Inject at 0.005 m3/s (2 

bbl/min) 

150 

Repeat 4 times    

4 Factors Determining Fluid and Energy Efficiencies 
The primary goal of subsurface energy storage is to efficiently store and produce energy at desired rates 

(i.e. power levels) over desired durations. It remains, then, to examine the of proposed flowback-injection 

cycles. Efficiency can be considered in at least two senses. The first is fluid efficiency, , which for a 

given cycle is defined as the ratio of the fluid produced to the fluid that must be injected to restore the 

lens to the original volume. Hence 
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The second useful definition of efficiency is related to the ratio of energy produced to the energy 

associated with lens inflation (charging and storage). Eventually the energy produced will need to 

consider details of turbine performance and the ability of the system to keep a given turbine near its most 

efficient operating point. However, it is instructive at this point to define a round trip efficiency (RTE) in 

the absence of a turbine, based only on time integration of the hydraulic rate of work associated with 

flowback and injection. That is  
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We reiterate that both of these definitions (Eqs. (23) and (24)) assume a perfectly restoring injection, that 

is, returning the lens to the initial volume it had at the commencement of the flowback stage. 

For the example previously presented in Figure 7, the fluid efficiency for each cycle is readily computed 

by integrating the volumetric flowback and injection rates. By this, it is found that each cycle involves 

injection of 160 bbl and production of 155 bbl, with loss of about 5 bbl per cycle. Hence, Eq. (23) gives a 

fluid efficiency of  = 0.97. Note that roughly 640 bbl is non-circulating in this example. 



Similarly, the power for this example can be computed as the product of the wellhead pressure and 

flowing rate, as shown in Figure 8. By integration of these curves, it is found that each flowback stage 

returns 42.5 kWh, and that restoring to the original volume involves input of 46 kWh. Hence, in this 

example, according to Eq. (24) the round trip efficiency RTE = 0.92. 

This example is chosen because it provides a high fluid and energy efficiency for the desired 40 kWh 

capacity. Lower efficiency designs are possible, and in this regard, the present example is able to provide 

some additional insights regarding the nature of optimal cycle designs. As a starting point of this 

discussion, note that in each of these cycles the pressure is running to what essentially looks like the 

beginning of pinching, that is, it starts to sharply decrease (Figure 7a). One would think that the fluid 

friction associated with this drop in pressure would be detrimental to the RTE, and indeed it is. From the 

perspective of limiting fluid friction, it would be better to use a larger initial volume (assuming the same 

lens radius) in order to have a larger lens width and hence less fluid friction. However, higher volume for 

a given radius requires larger pressure. In this example, those larger pressures exceed the critical pressure 

at which pressure-dependent leakoff begins to sharply increase as natural fractures are opened. Hence, an 

optimal design involves generating as much width as possible but without greatly exceeding the critical 

pressure for pressure-dependent leakoff.  

The other key factor in design optimization is the injection rate Qinj. Large injection rates lead to smaller 

efficiencies because of the increase they cause in fluid friction. Also, larger injection rates lead to larger 

pressures, which can exceed the critical value for pressure-dependent leakoff, also to the detriment of 

both fluid efficiency and RTE. However, while slower rates reduce fluid friction and pressure-dependent 

leakoff, they draw out the inflation stage and can allow for more fluid leakoff generally (especially non-

pressure-dependent Carter-type leakoff) – and this fluid must be replaced in the next cycle and that 

replacement requires additional energy. So, for an impermeable rock, the most efficient design will entail 

injecting as slowly as practical. However, for a permeable rock, optimal efficiency will result from an 

intermediate value of the injection rate. 

These principles of design in terms of optimal initial lens volume and injection rate are illustrated in 

Figure 9. On the one hand, for a case with Carter leakoff only and no pressure-dependent leakoff, the 

most efficient designs involve the largest possible volume for a given radius (hence the largest width), as 

shown by Figure 9a. Furthermore, the maximum RTE for each value of the width is obtained for an 

intermediate value of injection rate that simultaneously minimizes both fluid friction and pumping time 

(noting that in this case fluid loss during the cycle simply scales with cycle duration). 

On the other hand, when there is pressure dependent leakoff, the approach to optimizing is fundamentally 

different. Figure 9b shows such a case (with inputs from Table 4). Here the maximum RTE occurs for 

values of the width that are large enough to minimize fluid friction and small enough so that the 

accompanying pressure is only a small amount above the critical value for natural fracture opening. 

Furthermore, the optimal values of injection rate are near the bottom of the range considered in these 

simulations, because taking larger values increases the pressure and hence the leakoff rate. 



 

Figure 8: Example of power input (negative) and output (positive) along with lens volume. 



 

Figure 9: Efficiency of 40 kWh designs as a function of mean width (<w>) and injection rate during inflation (Qinj). Note that 
mean width is modified via changing initial volume and/or the lens radius. a) Example with Carter leakoff only, and b) Example 
with pressure-dependent leakoff. 

As a final point, it is important to comment briefly on scale up of results from the examples presented 

here. The examples here are for small, demonstration-scale lenses, remaining in step with development of 

small-scale demonstration lenses at early stages of technology development. Eventually, commercial-

scale lenses are desired that are able to store in the orders of 1-10 MWh of energy. The path to scale up is 

heavily dependent on the details of a given scenario including target depth, stress gradient, and rock 

properties. It is also important to realize that simple linear scaling from small to large scale should not be 



assumed. This is clear from the form of the governing equations, which are non-linear. Notably, 

increasing initial width has a non-linear impact on reducing the friction related fluid pressure drop via Eq. 

(7). For example, doubling the width decreases the pressure gradient associated with a given fluid flux by 

a factor of 8 in the laminar regime (due to the w3 relationship) and a factor of ~3 in the fully turbulent 

regime (due to a w5/3 relationship, as described by e.g. Zolfaghari et al. 2018). For this reason, scale up is 

a nuanced and rich topic for ongoing research and not something that can be approached with simple 

linear extrapolations from results presented in this paper.  

5 Conclusions 
A model for flowback, shut-in, and reinflation of subsurface energy storage lenses builds on a classical 

model of hydraulic fracturing in elastic rocks but with a number of important modifications. Most 

notably, under conditions of flowback the fluid pressure and flowing rate at the wellbore are coupled 

together into a mixed boundary condition that is based on the classical energy equation of fluid mechanics 

specified for a case with a circular choke and/or a turbine operating at the same elevation as the wellhead. 

In the current manifestation of the model, there is also a simplifying assumption that the lens radius is 

fixed, hence the typical issue of tracking a moving boundary in hydraulic fracture growth (or recession) is 

avoided. Besides these, the model also includes not only Carter-type leakoff (linear diffusion model) but 

also non-linear pressure dependent leakoff. Finally, the model includes distributed tension springs with 

certain breaking behavior, representing the impact of intact rock bridges that can have substantial 

influence of the lens compliance. 

The behavior of the model under flowback indicates early-time gradual decline of pressure and even more 

gradual decline of flowing rate. As time goes on, the fluid friction in the lens coupled with elastic 

deformation of the lens generates a pinching behavior near the wellbore that is associated with rapid 

decline of the pressure and rate. The timing of this pinching is heavily dependent on the lens radius and 

volume, which both stem from the dependence of the fluid friction on the lens width. Details of fluid 

pressure evolution, width profiles, and volume loss are strongly impacted by presence (or not) of rock 

bridges and/or pressure dependent leakoff. 

By computing round trip efficiency, it can be shown that highly efficient cycles are possible. However, 

such high efficiency requires careful design in terms of initial volume and radius that includes both 

impacts on lens width (which reduces the fluid friction) and initial fluid pressure (which increases 

pressure-dependent leakoff). Furthermore, the reinflation rate strongly impacts cycle efficiency, with 

higher rates leading to higher fluid friction and fluid pressures (and hence higher propensity for pressure-

dependent leakoff), while at the same time reducing the fluid loss to non pressure-dependent leakoff. 

Hence, optimization is shown to be both feasible and nuanced owing to the non-linear dependence of 

efficiency on governing parameters and the strikingly different considerations that arise in cases with and 

without pressure dependent leakoff.  

Taken together, the illustrative cases using the new model show how the development of this model 

marks a foundational first step in design of subsurface energy storage lenses by providing an essential 

mechanical basis for predicting lens behavior. Such a model is necessary so that lenses can be designed to 

generate a desired power over a desired duration, without pinching, and in such a manner that the cycle 

efficiency is maximized. 
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Appendix A: Bridge Model 
While a lens could initially be mechanically idealized as a fully open circular crack following the classical 

Linear Elastic Fracture Mechanics solution of Sneddon (1946), laboratory and field evidence converge on 

two notable deviations from this idealization. The first is that the lens should be expected to have rough 

surfaces and will therefore close firstly on the largest asperities, as illustrated by laboratory experiments 

in Figure A. 1. 

 

 

Figure A. 1: Laboratory observations of non-uniform contact as an initially-open fracture closes. Here: a) and b) show and open 
and partially closed hydraulic fracture in PMMA, respectively, from Wu (2006), and c ) Shows regions of closure of a hydraulic 
fracture in granite, from Hampton et al (2014, used with permission).  

To model asperity contact, consider an asperity contact with a uniform cross sectional area (a). The force 

this asperity exerts on the inside of the lens, according to linear elasticity, is 
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where wC is a neutral displacement at which the asperity exerts no force and w is the width of the lens. For 

an element (i.e. region) of the lens with area A, the total stress is 
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Here N is the number of asperity contacts in the area of the element. By substitution 
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Introducing the contact area ratio 
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The behavior of the area contact ratio is constrained to be 
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where ˆ ( )H   is the Heaviside step function. Hence compression traction from contact on asperities is 

given by 
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Recall that E is Young’s modulus. Also wC is the initial asperity height, C is the proportion of the lens 

area that is in contact on asperities, and C accounts for the change in asperity cross section with closure. 

For asperities with constant cross section, C =0. Hence (wC -w)/ wC gives axial strain of the asperity, and 

the Heaviside function ˆ ( )H   is used to enforce that the contact traction goes to zero when width exceeds 

the asperity height. Taking E=20 GPa, C=10-4, wC=0.003 m, and C=1, an example of the contact 

traction as a function of width w is shown in Figure A. 2b. The asperity contacts therefore provide a 



positive traction inside the lens, mechanically equivalent to an additional internal pressure that varies with 

the width and therefore is prescribed at each node in the discretized lens.  

 

Figure A. 2: Illustration of contact model and behavior, where (a) shows a conceptual model of contact on asperities with non-
constant cross-sectional area, and (b) shows an example of the internal traction exerted on lens faces as a function of lens width 
w. 

The second deviation from an idealized open lens is that both laboratory and field observations suggest 

remnant rock bridges are common (see selected examples in Figure A. 3) and are therefore anticipated to 

exert a non-negligible impact on the pressure-width relationship for a lens. These will be modeled as 

tension springs. Derivation of a traction-width law for these bridges proceeds in the same manner as for 

the contacts on asperities. So, consider a bridge connection with a uniform cross-sectional area (a, see 

Figure 3a). The force this bridge exerts on the inside of the lens, according to linear elasticity, is 
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where w is the width of the lens and wB is a reference width for which the elongation ratio of the bridge is 

1. For an element (i.e. region) of the lens with area A, the total stress is 

 

i

Bridges

T

NF AF
A

A A
s = =


                                                         (33) 

Here N is the number of bridges in the area of the element. By substitution 
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Introducing the bridge area ratio 
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we then obtain  
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The behavior of the bridge area ratio is proposed to decrease in accordance with a comparison between 

the maximum width ever experienced at each location of the lens, wmax, and a maximum width at which 

the bridge with break, wT. Hence  
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where again ˆ ( )H   is the Heaviside step function. Additionally 0 is the area of the lens initially covered 

by bridges and the exponent T allows for generalized non-linear softening as the bridges fail. Then let us 

take 

 T Bw w=                                                               (38) 

Meaning that  is the elongation ratio at which the bridge fails. For simplicity, let 0T = , the product 

of the maximum elongation ratio and the initial area of the lens covered by bridges. Taken together, the 

bridge model becomes 
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Hence the behavior is characterized by linear increase in tensile traction as the width increases from zero, 

followed by softening and eventual loss of bridge traction (e.g. Figure A. 3c). Taking E=20 GPa, 

T=0.001, wT=0.01 m, and T=1, an example of the bridge-induced traction as a function of width w is 

shown in Figure 3b. 



 

Figure A. 3:Examples and illustrations of bridge connections in fluid-driven cracks, showing: a) Segmented lens in PMMA (Wu 
2006), b) MicroCT images of bridges caused by crack front segmentation in hydraulic fracture experiments in mortar (He et al. 
2017, 2020, used with permission, and noting similar bridges observed in these references in rock materials). c) Conceptual 

model of bridge formation and breakage based on observations of magma-driven sills (Eide et al. 2017, Fig 3). 

The total traction exerted by the combination of contact on asperities and bridges is comprised of the 

superposition of both traction-width laws, Eqs. (31) and (39). This superposition is illustrated in Figure A. 

4. This illustration shows that for practically-relevant cases, the bridge only criterion can be nearly same 



as the combined criterion except for very small width. Furthermore, there is a modeling challenge with 

the contact criterion that special consideration is needed in order to avoid spurious initial contact traction 

prior to initial inflation (i.e. it does not naturally satisfy an initial condition of total initial internal traction 

equaling o when the lens is initially closed). Taken together, it is found to be both effective and 

convenient to use bridge criterion only for the current manifestation of the model. However, this 

simplification could impact ability to track full pressure drawdown when there is a case with hard 

pinching behavior that takes the width to zero. 

 

Figure A. 4:Superposition of contact and bridge law into combined traction-width relationship. 

Appendix B: Pressure Dependent Leakoff Model 
Presence of pressure dependent leakoff will manifest itself as rapid loss-related pressure decline when 

pressure is above a certain threshold and slower decline when pressure is below a certain pressure threshold. 

As a practical means of capturing pressure dependent leakoff, begin by assuming that the fluid that enters 

natural fractures is lost to the formation and that it leaks off according to a 1D diffusion law with the 

transient part of the pressure in the lens negligible compared to the constant part of the pressure (i.e. pressure 

in the lens is comprised of a relatively large constant pressure plus a relatively small transient pressure). 

These are the classical assumption of Carter (Howard and Fast 1957). Recognizing that the following 

approach is not formally correct as it takes Carter’s leakoff and forces pressure dependence back in without 

re-solving the original governing equations, it is nonetheless of potential usefulness to express the fluid loss 

to natural fractures as 
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Here f and f, are the natural fracture (NF) permeability and volume fraction, respectively. Then let the 

permeability be related to the NF hydraulic aperture, wf, according to 
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f fw =                                                                       (41) 

In turn, let the NF aperture depend upon the pressure as 

( )f f f x xw p C L= −                                                                   (42) 

Here Cx and Lx are the fissure compliance and characteristic length, respectively, and f is the closure stress 

on the dominant NF set(s). This is a linear compliance law, but it is not hard and therefore might be useful 

to generalize at this point to a non-linear fissure compliance law as 
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By keeping the compliance exponent f the same on both the pressure and compliance part of this 

relationship, it remains dimensionally consistent for any chosen value of f. Then by substitution the 

pressure-dependent NF leakoff law is given by 
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For most cases the NF length, compliance, and volume fraction will all be poorly constrained. They also 

appear only as grouped together in Eq. (44). Hence, there are an unnecessary number of free parameters in 

the current form of Eq. (44). So let the compliance be given by 1/E, where E is the Young’s modulus of the 

rock, and let the characteristic length Lx be fixed and hard wired to some nominal value (i.e. 1 m). Neither 

of these assumptions has to be correct, because NF volume fraction will have to be calibrated and will lump 

together corrections needed. So a simplified model is 
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One remaining modification is that the NFs are assumed to close when pf=f and their permeability is 

assumed to go to zero (or at least to match the rock matrix permeability), thus leaving behind only the 

Carter-type leakoff to the rock matrix. Hence the final form of the pressure-dependent leakoff to the NFs 

includes a Heaviside step function and is expressed as 
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Appendix C: Inlet Boundary Condition  
The inlet boundary condition is derived from the classical energy equation of fluid mechanics for fluid 

flowing from a point just inside the wellbore near the inlet to the lens, point B, up to point C at the 

discharge of the fluid to surface fluid storage (see Figure 2). Conservation of energy requires that 

 B CL sh h h h− − =                                                           (47) 

Here hB and hC are the total head at points B and E, respectively, Lh is the sum of all head losses, and 

hs is the shaft head associated with the work done by the fluid on the turbine. Using the definition of total 

head (e.g. Hibbeler 2017) and setting the datum at the elevation of the surface equipment (which is 

assumed to all be at the same elevation), and further assuming no head loss between the fracture inlet and 

the inside of the wellbore, hB can be expressed as 
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Note that one could include perforation or near wellbore friction losses by moving point B to just inside 

the lens, but Quidnet’s completion technique makes it appropriate to neglect these. Then, using the fact 

that point C is a free jet and therefore at zero pressure (relative to atmospheric), the total head hE is given 

by 
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With the further assumption that the pipe at C is the same diameter as the pipe at B and that the fluid is 

incompressible, continuity of fluid flow requires that VB=VC. Additionally, if head losses due to pipe flow 

are negligible compared to head loss through the choke, it can be taken that  
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Which comes from the classical expression for head loss through an orifice (e.g. Miller 1996), and where 

QBH is the volumetric flowing rate, Cd is the choke shape factor, d0 is choke diameter, and g is 

gravitational acceleration.  

The shaft head is readily obtained from classical fluid mechanics (e.g. Hibbeler 2017) as 
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where PT is the power generated by the turbine and e is the turbine efficiency. 

Bringing all of these equations together leads to the following, which provides the mixed boundary 

condition relating volumetric flow rate and fluid pressure at the fracture inlet 
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