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Abstract – Estuaries are wetlands where freshwater
from streams mixes with salt water from sea. Also
known as “kidneys of our planet”- they are extremely
productive environments that filter pollutants, absorb
floods from sea level rise, and shelter unique ecosystems.
However, eutrophication and loss of native species are
ailing California wetlands. There is a lack of uniform
data collection and sparse research on correlations
between satellite data and in situ measurements. Remote
sensing (RS) has shown great promise in environmental
monitoring. This study proposes using satellite data by
correlating metrics with in situ observations, collected at
five West Coast estuaries. Images for satellite data were
processed to calculate 7 bands (SIs) using Python. Average
SI values were calculated per month for 23 years. Publicly
available data, from sites at each estuary, was used to
obtain 10 parameters (OPs). Average OP values were
calculated per month for 23 years. Linear correlations
between the 7 SIs and 10 OPs were made and found to be
inadequate (correlation = 1 to 64%). Fourier transform
analysis on 7 SIs was performed. Dominant frequencies
and amplitudes were extracted for 7 SIs and a machine
learning (ML) model was trained, validated, and tested
for 10 OPs. Better correlations were observed between SIs
and OPs, with certain time delays (0, 3, 4, 6 month delay)
and ML was again performed. The OPs saw improved R2

values in the range of 0.2 to 0.93. This approach can be
used to obtain the periodic analysis of an overall wetland
health with satellite indices. The research proposes that
remote sensing can be used to develop correlations with
critical parameters that measure eutrophication in situ
data and can be used by practitioners to easily monitor
wetland health.

NOMENCLATURE

SI Satellite Index
OP In Situ parameter Parameter
DFT Discrete Fourier Transform
WH Wetland Health
ML Machine Learning
CRAM California Rapid Assessment Method
i Image
p Pixel
d Datapoint
s Station

I. INTRODUCTION

Estuaries are wetlands where freshwater from streams
mixes with salt water from sea. They are extremely productive

environments that create the most organic matter annually, and
shelter a unique ecosystem [1].

Coastal watersheds provide clean, clear water by filtering
nutrients, and pollutants. Estuaries also absorb flood water
and dissipate storms, protecting uplands [1].

Estuaries face 3 main threats: habitat loss from human
expansion, eutrophication from farms and rising sea levels.
Since the 1700s, 91% of our wetlands have been lost [2].

While efforts are being made to minimize human
expansion, and thereby manage wetland extent, according to
the EPA, there remains a gap in measuring wetland health
(WH) and little is known about their actual ecological health.

In the United States, there is well documented, publicly
available data for monitoring and reporting water quality
and nutrient levels. All in situ data is publicly available
through the Centralized Data Management Office (CDMO)
[3]. The conservation and restoration of estuaries are a major
priority in California, because salt marshes are among the
most threatened in the state, having suffered an 80% loss since
industrialization [4].

Remote sensing (RS) is a great tool for monitoring wetland
health and progress from restoration efforts. RS offers
continuous, low cost, large spatial, spectral and temporal
coverage over point sampling methods. As a result, they can
be used reliably and efficiently for environmental monitoring,
protection, and sustainability.

A. Current Methods
The National Wetland Condition Assessment (NWCA)

conducts a field sampling every five years [5]. The U.S Fish
and Wildlife Service (FWS) measures changes in wetland
acreage [6] [7]. The California Rapid Assessment Method
(CRAM) uses data from flora and fauna to assess WH, but is
cost and labor intensive, and thus conducted infrequently [8]
[9]. In the west coast, stations are sampled monthly and in situ
data is collected from stations using sondes daily.

B. Research on using Remote Sensing to monitor Wetland
Health
Research by scientists at NCCOS combine observations

from different satellites and found some correlations between
NDVI and 2 sample months. Other research by Guo and Li
compares sensors for wetland classification [10]. A correlative
analysis between satellite indices and in situ data using Fourier
transform is not yet available.

II. LITERATURE PRECEDENT

A. Water Quality and Nutrients
Phosphorous (P) and Nitrogen (N) are essential nutrients

for the aquatic food web [11]. However, even modest changes
in P and N can set of a domino effect of algal blooms, low



dissolved oxygen, and loss of flora and fauna. The chemistry
of eutrophication can be described by [12]:

Fig. 1. Chemistry of Eutrophication

Wetlands help solve eutrophication, by transforming
nitrates to free nitrogen and phosphates to phosphorus for
plant adsorption. However, excessive nutrient levels contribute
to wetland destruction and marsh dieback. The health of
a wetland can be measured by monitoring nutrient levels,
chlorophyll-A, dissolved oxygen, turbidity, pH, temperature,
specific conductivity and salinity.

B. Discrete Fourier Transform
DFT decomposes a waveform, which is a function of time,

into frequencies, enabling us to find the spectrum of the signal.
DFT is often used in wireless technologies to disentangle
transmissions from different users [13].

DFT is also used in data compression. A few samples of
the entire data can be used to represent the weighted sum.
Frequencies with low weights are discarded, allowing the data
to be represented with fewer bits, and with minimal loss of
fidelity [13].

III. HYPOTHESIS

This research proposes that if satellite indices such as
vegetation, temperature, and dissolved oxygen are suitably
correlated with in situ data, then the health of a wetland can
be predicted [14].

IV. MATERIALS AND METHODOLOGY

In Situ Data Units
Temperature C◦

Specific Conductivity mS/cm
Salinity psu
Dissolved Oxygen mg/L
pH
Turbidity FNU/NTU
NO23 mg/L
PO4 mg/L
Chlorophyll-A mg/L
NH4 mg/L

Bands Pixel Size Wavelength Description
Band 1 30 0.45 - 0.52 µ m Blue
Band 2 30 0.52 - 0.60 µ m Green
Band 3 30 0.63 - 0.69 µ m Red
Band 4 30 0.77 - 0.90 µ m Near Infrared
Band 5 30 1.55 - 1.75 µ m SW Infrared 1
Band 6 60 10.40 - 12.50 µ m Th Infrared 1
Band 7 30 2.08 - 2.35 µ m SW Infrared 2

Bands 1-7 (SIs) were obtained from Landsat 7 using Google
Earth Engine(GEE). The sample band data for all 7 bands was
obtained. The five, largest west coast estuaries were analyzed.
Pixelwise SI data were obtained using shapefiles. In situ data

(OPs) for 10 critical parameters were obtained from publicly
available datasets provided by CDMO. About 10 million in
situ records and 2 million images were processed using Python
code.

Over a million images were obtained for the 5 west coast
estuaries using Google Earth Engine and Colab. A shapefile
of each estuary was applied to the images to obtain pixel-
wise band data for each image. Cloud masks used to remove
cloudy data from images. Pixel-wise averages were computed
for every month. Similarly, in situ data was obtained from
publicly available datasets from CDMO for the 5 estuaries.
Monthly averages were for 271 months for the last 23 years,
since 1999. Figure 4 shows the image preprocessing done.
Equations 1-4 show the methods used to obtain monthly data.
In situ data are hereafter referred to as OPs, while the satellite
bands are referred to as SIs.

Fig. 2. Image preprocessing for each Satellite Index (SI)- Elkhorn
Slough, as an example

A. Methods Used For Image, Pixel, and Datapoint Processing
The following equations were used for data processing of

the SIs and OPs.

[SIm,y]image =
1

Ni
×∑

Ni
i=1 SIi,m,y

[SIm,y]overall =
1

Np
×∑

Np
p=1 SIp,m,y

[OPm,y]stations =
1

Nd
×∑

Nd
d=1 OPd,m,y

[OPm,y]overall =
1

Ns
×∑

Nd
s=1 OPm,y

B. Padilla Bay
Padilla Bay is right in the heart of the Salish Sea, with a

massive eelgrass meadow. It totally measures 8,000 acres,
making it the second largest estuary on North America’s
Pacific Coast. Padilla Bay is one of the many estuaries,
identified by the National Estuarine Research Reserve,
established to protect coastal land for long-term research.

Fig. 3. Padilla Bay, Washington

C. South Slough
The South Slough National Estuarine Research Reserve

measures nearly 7,000 acres of natural areas along the
coast of Oregon. The NERRS’s main environmental goals
are to protect and enhance water quality in the estuary,



improve habitat through restoration, improve research and
understanding of coastal issues, and conserve land for flood
reduction and improve surrounding ecological resilience for
landowners.

Fig. 4. South Slough, Oregon

D. San Francisco Estuary
Currently the largest west coast estuary, the San Francisco

Estuary is an extremely diverse system ? [15]. Measuring
400,000 acres, the San Francisco Bay accounts for 77 percent
of California’s remaining estuaries. However, in recent years,
several portions have been diked off to increase agricultural
territory and urban development. Since the estuary has a low
elevation, there is an increased risk of flooding. Sea level rise
and increased rainfall exacerbate this problem.

Fig. 5. San Francisco, CA

E. Elkhorn Slough
Elkhorn Slough provides habitats for a variety of species,

ranging from raptors to milkweed. Elkhorn Slough
Foundation researchers stress the importance of water quality
monitoring. Poor water quality has reduced wildlife diversity
in Elkhorn Slough wetlands. Research shows that increased
tidal flow improves water quality grades.

Fig. 6. Watsonville, CA

F. Tijuana Bay

Fig. 7. San Diego, CA

The Tijuana estuary, a shallow water habitat, is termed as
an "intermittent estuary". Intermittent estuaries are subjected

to vast changes in stream flow [16]. For example, due to the
California drought crisis, several parts of the estuary are left
dry, but flooding continues to innundate other parts. Sewage
from Mexico continue to pollute Tijuana Bay water.

V. RESULTS - LINEAR CORRELATION

Fig. 8. Poor Linear Correlation Between SIs and OPs in the Range of
0 to 44 %

Fig. 9. Observed wave-like periodic trends for all SIs

Fig. 10. Observed wave-like periodic trends for all OPs

SI parameters were modelled with equations with dominant



frequencies and corresponding amplitudes. These equations
are used for further analysis and machine learning (ML).

Wave-like periodic trends were observed for all seven bands
(SIs) and 10 in situ parameters (OPs).

VI. RESULTS - FOURIER TRANSFORMATION
EXTRACTED EQUATIONS

The equation for the Fourier series in terms of sines and
cosines is:

x(t) = ∑
N/2
n=0 ancos(2πnt / N∆t)+bnsin(2πnt / N∆t)

SI parameters are modeled with equations with dominant
frequencies and corresponding amplitudes. These equations
are used for further analysis and ML.

Fig. 11. 7 SIs set to Fourier Transform

SI parameters were modeled with equations with dominant
frequencies and corresponding amplitudes. These equations
were used for further analysis and machine learning (ML).

The sample equations for each of the SIs after Fourier
Transformation were

Band 1: 0.00517605 × cos( 2×π×19×t
233 ) − 0.015231553 ×

sin( 2×π×19×t
233 ) + 0.0048606412 × cos( 2×π×39×t

233 ) +

0.023020227× sin( 2×π×39×t
233 )

Band 2: 0.019250147 × cos( 2×π×19×t
233 ) − 0.026618878 ×

sin( 2×π×19×t
233 ) + 0.010267703 × cos( 2×π×39×t

233 ) +

0.018949636× sin( 2×π×39×t
233 )

Band 3: 0.019566245 × cos( 2×π×19×t
233 ) − 0.028545021 ×

sin( 2×π×19×t
233 ) − 0.010427037 × cos( 2×π×39×t

233 ) −
0.01930217× sin( 2×π×39×t

233 )

Band 4: 0.016815123 × cos( 2×π×19×t
233 ) − 0.052004476 ×

sin( 2×π×19×t
233 ) − 0.0043411076 × cos( 2×π×39×t

233 ) +

0.027178362× sin( 2×π×39×t
233 )

Band 5: 0.025196353 × cos( 2×π×19×t
233 ) − 0.048089676 ×

sin( 2×π×19×t
233 ) − 0.0014710099 × cos( 2×π×39×t

233 ) +

0.023377723× sin( 2×π×39×t
233 )

Band 6: 3.8920651 × cos( 2×π×19×t
233 ) − 2.8288747 ×

sin( 2×π×19×t
233 )

Band 7: 0.011137073 × cos( 2×π×19×t
233 ) − 0.038350374 ×

sin( 2×π×19×t
233 ) + 0.0036044988 × cos( 2×π×39×t

233 ) −
0.015166007× sin( 2×π×39×t

233 )

SI parameters are modelled with equations with dominant
frequencies and corresponding amplitudes. These equations
are used for further analysis and machine learning (ML).

VII. RESULTS - MACHINE LEARNING WITH
EXTRACTED SIs

OPs KNN Rand Forest D. Tree Auto ML
Temp 91.16% 96.66% 97.68% 99.0%
SP Cond 49.55% 89.43% 97.03% 98.2%
SAL 63.58% 89.98% 96.89% 98.1%
DO 79.23% 91.22% 90.95% 99.1%
pH 20.83% 77.36% 85.35% 96.6%
TURB 48.07% 80.99% 92.51% 96.1%
PHOS 63.65% 87.54% 91.05% 97.7%
NH4 44.08% 58.37% 60.42% 98.1%
NO23 72.25% 87.58% 92.2% 96.4%
CHLA 20.74% 82.58% 92.67% 98.9%

Fig. 12. Feature Importance for 10 OPs for 7 SI bands

The extracted equations for each SI and the raw data for
each of the ten OPs were trained, validated, and tested using
ML ? [17]. The results above show the feature importance for
each OP, and the Root Mean Square Error (RMSE) [18] and R2

value for each OP parameter. Four regression based machine
learning algorithms were used to analyze the relationships
between the 7 SIs and each of the 10 OPs (Table 4). While all



algorithms yielded good results, the results for Auto-ML were
the best. They showed a drastic improvement with R2 values
in the range of 96.1% to 99% for all 10 critical parameters
necessary to track eutrophication.

Especially strong R2 values were found for temperature
(99%), dissolved oxygen (99%), salinity (98.1%), and specific
conductivity (98.2%). Crucial parameters for eutrophication
showed very strong results - Dissolved Oxygen (99.1%),
chlorophyll-A (98.9%), Ammonium (98.1%), Phosphates
(97.7%), pH (96.6%), and Nitrites Nitrates (96.4%). Strong
correlations were also found for optically insensitive OPs such
as pH, PO4, and NO23.

The extracted equations for each SI and the raw data
for each of the ten OPs were trained, validated, and tested
using ML. The results above show the feature importance for
each OP, and the Root Mean Square Error (RMSE) and R2

value for each OP parameter. Four regression based machine
learning algorithms were used to analyze the relationships
between the 7 SIs and each of the 10 OPs (Table 4). While
all algorithms yielded good results, the results for Auto-ML
were the best. They showed a drastic improvement with
R2 values in the range of 96.1% to 99% for all 10 critical
parameters necessary to track eutrophication. Especially
strong R2 values were found for temperature (99%), dissolved
oxygen (99%), salinity (98.1%), and specific conductivity
(98.2%). Crucial parameters for eutrophication showed very
strong results - Dissolved Oxygen (99.1%), chlorophyll-A
(98.9%), Ammonium (98.1%), Phosphates (97.7%), pH (96.6
%), and Nitrites Nitrates (96.4%). Strong correlations were
also found for optically insensitive OPs such as pH, PO4, and
NO23.

Fig. 13. Multivariate Regression for 10 OPs

VIII. DISCUSSION

GEE combined with Landsat 7 images allowed pixel wise
sampling for the region of interest for all West coast estuaries

Fig. 14. Predicted vs. Actual values for 10 OPs (using Decision Tree
Rg ML) with slopes close to 1

for 23 years. After experimenting with 21 SIs, raw band data
1-7 yielded the best results. Overall, the project supports the
hypothesis that correlations can be established between SIs
and OPs.

Applying Discrete Fourier Transform (DFT) to the seven
SIs and extracting frequencies yields drastic improvements to
correlations. Periodic 6-month and annual cycles observed
in time series charts (Figs 7, 8) led to DFT analysis being
performed on the 7 SIs (Fig 10). Dominant frequencies and
amplitudes were extracted for SIs and used for the machine
learning model (Eq 5) (Table 3).

Four regression based machine learning algorithms were
used to analyze the relationships between the 7 SIs and
each of the 10 OPs (Table 4). While all algorithms
yielded good results, the results for Auto-ML were the
best. They showed a drastic improvement with R2 values
in the range of 96.1% to 99% for all 10 critical parameters
necessary to track eutrophication. Especially strong R2

values were found for temperature (99%), dissolved oxygen
(99%), salinity (98.1%), and specific conductivity (98.2%).
Crucial parameters for eutrophication showed very strong
results - Dissolved Oxygen (99.1%), chlorophyll-A (98.9%),
Ammonium (98.1%), Phosphates (97.7%), pH (96.6%), and
Nitrites Nitrates (96.4%). Strong correlations were also found
for optically insensitive OPs such as pH, PO4, and NO23.

This research proposes that using raw band data, with
extracted DFT frequencies coupled with time delay and
machine learning was developed. Additionally, the feature
importance for OPs can be used to develop models for other
estuaries.

This research proposes that combining in situ data with
satellite data, offers a powerful tool compared to using in situ
data alone, because it allows for monitoring recovery efforts,
historic perspectives and causes and effects.



IX. CONCLUSION

This project was successful in several areas:
• It supports the hypothesis that remote sensing can be

used to develop correlations with in situ data for all west
coast estuaries.

• Employed 7 unique satellite bands, without overlap.
• Data from 5 West coast estuaries over 23 years and 271

months were analyzed.
• SI data considers the entire region of interest, instead of

individual sampling stations.
• In the absence of strong Linear correlation, a novel

method of Fourier transform analysis was performed.
• A low cost, powerful tool that offers ability to analyze

actual raster images.
• The ML Model with delay improves to R2 between 0.961

to 0.99 for all critical parameters.
• It is fast and delivers predictive analysis within 5 minutes

once trained.

X. FUTURE WORK

This present study combines in situ data with satellite
data, offering a powerful tool that allows for monitoring,
remediation efforts, historic perspectives, and a better
understanding of wetland processes.

Future work aims to build an app that correlates data
between Satellite Indices and in situ data of any wetland using
anomalies and climatologies.

A further step is to analyze correlations between band data
and in situ data to provide insight into how climate change is
affecting wetlands.
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