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Abbreviations 
Abbreviation Definition 

ACNF Advisory committee on novel foods 

ANVISA Brazilian Health Regulatory Agency 

CF Conversion efficiency 

CFR Code of federal regulations 

CO2 Carbon dioxide 

DM Dry mass 

DW Dry weight 

EFSA European food safety authority 

DMEU European Union Dry mass 

FCR Food conversion ratio 

FDA Food and drug administration 

FRESH Future ready food safety hub 

FSA Food standards agency 

FSANZ Food standards Australia and New Zealand 

FSSAI Food safety and standards authority India 

FW Fresh weight 

GRAS Generally recognized as safe 

GWP100 Global warming potential, 100 years 

iTOL Interactive tree of life 

LC Lignocellulosic content 

LCA Life cycle assessment 

MSWST Municipal Solid Waste Supplementary Table 

NCBI National Center for Biotechnology Information 

NPV Net profit value 

OFAS Office of food additive safety  

OFMSW Organic Fraction of Municipal Solid Waste 

PC Protein content 

PCD Protein content dry weight 

PDCAAS Protein digestibility corrected amino acid score 

R&D Research and development 

RPR Residue to product ratio 

SCoPAFF Standing committee on plants, animals, food and feed 

SFA Singapore food agency 

SI Supplementary information 

ST Supplementary Table 

TEA Techno-economic analysis 

U.S.C. United States code 

US United states  

USD United States Dollar 

 

  



 
 

Supplementary Information 1 

Protein potential of the organic fraction of municipal solid waste (OFMSW). Corresponding 

database Supplementary Table ST1. 

SI-1.1 Detailed Municipal Solid Waste (MSW) by country  

213 countries were clustered into 11 regions: Africa, Caribbean, Central & West Asia, East 

Asia, Europe, Latin America, North America, Pacific, South Asia, South East Asia. Region, 

country, MSW collection rate (%), year of record, population, MSW generation (kg/year and 

kg/capita/day) were derived from online databases and papers and are detailed in 

Supplementary Table ST1.1 1-4. OFMSW (kg/capita/day) was derived from online databases 

(kg OFMSW/kg MSW) 1,4. OFMSW chemical components were estimated including lipid, 

carbohydrate, and protein content (g/kg OFMSW), where the average chemical composition 

were derived from previous published studies for summer and winter 5. Average annual lipid, 

carbohydrate and protein content (g/capita/day) were estimated from the mean average of the 

summer and winter lipid, carbohydrate and protein contents (g/capita/day). Corresponding 

database Supplementary Table ST1.1 

SI-1.2 Average MSW by country  

The average, standard deviation, maximum and minimum values for MSW generation 

(kg/capita/day), OFMSW generation (kg/capita/day), and lipid, carbohydrate and protein 

content (g/capita/day) were estimated from data collected for each country 1-5. Corresponding 

database Supplementary Table ST1.2. 

SI-1.3 Average MSW by region 

213 countries were clustered into 11 regions. Region, number of countries included in region, 

2016 population, average MSW generation (g/capita/day), average OFMSW generation 

(g/capita/day), and average summer, winter and annual lipid, carbohydrate and protein content 



 
 

were derived from data collected in ST-1.1 1-5. The standard deviation is also presented for 

each average estimation. Corresponding database Supplementary Table ST1.3.  

SI-1.4 OFMSW composition  

Regional OFMSW conversion factors (g OFMSW/g MSW) were derived from Kaza et al., 

(2018). Summer and winter lipid, carbohydrate, and protein contents (g/kg OFMSW) were 

derived from Esteves and Devlin (2010). Corresponding database Supplementary Table ST1.4 



 
 

 

Supplementary Information Figure 1 | Average Organic Fraction Municipal Solid 
Waste (OFMSW) generation (kg/capita/day) and OFMSW macronutrient composition 
(g/capita/day) was calculated for each country using data from literature 1-4. a OFMSW 
generation was plotted according to a colour gradient scale ranging from low 
(minimum 0.08 kg/capita/day) to high (maximum 2.56 kg/capita/day). b OFMSW lipid 
content was plotted according to a colour gradient scale ranging from low (minimum 
6.37 g/capita/day) to high (maximum 218.87 g/capita/day). c OFMSW carbohydrate 
content was plotted according to a colour gradient scale ranging from low (minimum 
14.69 g/capita/day) to high (maximum 504.76 g/capita/day). d OFMSW protein content 
was plotted according to a colour gradient scale ranging from low (minimum 7.16 
g/capita/day) to high (maximum 246.00 g/capita/day). 

 

Supplementary Information 2 

SI-2 Biochemical analysis of agricultural lignocellulosic residues 

Crop products were classified into 11 product categories: brewing, cereal grains, fiber crops, 

fruits & berries, oil crops, pulses, roots & tubers, seeds & nuts, sugar crops, tobacco, vegetables 

based on biochemical analysis grouping and product type 6,7. Annual yields (megatonnes/year) 

for each crop were analysed by country. Agricultural residue yields (megatonnes/year) were 

estimated based on the residue to product ratio (𝑅𝑃𝑅𝑟,𝑐) 6 and crop production 𝑌𝑖𝑒𝑙𝑑𝑐,𝑗 

(Eq.(S1)). Average cellulose, hemi-cellulose and lignin contents (% dry weight) of agricultural 

residues were collected from Phyllis database 7  to derive lignocellulosic resource potential for 

each region 𝐿𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑗 (Eq.(S1)). 

d 



 
 

𝐿𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑗 = ∑ 𝛼𝑥,𝑟𝑥,𝑟 𝑅𝑃𝑅𝑟,𝑐𝑌𝑖𝑒𝑙𝑑𝑐,𝑗       (S1) 

Where 𝑅𝑃𝑅𝑟,𝑐 denotes the ratio of residue 𝑟 to crop 𝑐,. 𝐿𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑗 is the lignocellulosic 

resource potential for region 𝑗, measured in megatonnes/year. 𝛼𝑥,𝑟represents the biochemical 

content (% dry weight) of lignocellulosic components 𝑥 (lignin, hemicelluloses or cellulose) 

of residue 𝑟. Corresponding database Supplementary Table ST2. 

 

Supplementary Information 3 

SI-3 Microbial Protein 

Reported microbial protein kingdom, genus and species, alternative names, national centre for 

biotechnology information (NCBI) number, reported protein production (% dry mass), trophic 

mechanism, and reported substrate were collected from literature. Reported substrates were 

catagorised into 7 classes: food-grade carbon source, food industry solid waste, food industry 

wastewater, lignocellulosic resource, petrochemical wastewater, waste gas CO2, and waste gas 

methane. 

A Newick tree was constructed from taxonomic classifications of species according to NCBI 

taxonomy database 8 and was uploaded to the interactive tree of life (iTOL) programme 9. 

Average protein contents and substrate category were from values compiled from previous 

studies. Where a range of protein production values was obtained for a microbial species, 

average protein contents were calculated 10-51. Corresponding database Supplementary Table 

ST3. 

 

 



 
 

Supplementary Information 4  

SI-4.1 Amino acid detailed 

Amino acid content is presented for different waste-to-protein sources and benchmark 

comparison protein sources. Waste-to-protein sources include 7 orders of feed-grade insect: 

Diptera (true flies), Hemiptera (true bugs), Lepidoptera (butterflies and moths), Blattodea 

(cockroaches, termite), Coleoptera (beetles), Hymenoptera (sawflies, wasps, bees, ants), and 

Orthoptera (locusts, crickets and grasshoppers). Hermetia illucens and Tenebrio molitor were 

selected as subcategories of Diptera and Coleoptera, respectively, due to their extensive recent 

literature. Waste-to-protein sources also include 5 genera of feed-grade mycoprotein: Pleurotus 

albidus, Spirulina sp., Auricularia fucosuccinea, Agaricus blazei and Fusarium sp.   

Bench mark comparison proteins included 4 feed- and food-grade plant-based proteins 

(Glycine max, Cannabis sativa, Pisum sativa, and Oryza sativa), feed- and food-grade Gallus 

gallus domesticus, food-grade egg (https://fdc.nal.usda.gov), food-grade mycoprotein 

(Fusarium venenatum) and the recommended 70kg adult daily intake.   

Feed-grade protein sources are highlighted in blue, and food-grade protein sources are 

highlighted in yellow. Food-certified protein sources are indicated with an asterisk ‘*’. 

Protein source, substrate, crude protein content (g/kg DM) and essential, conditionally 

essential, non-essential amino acid content for 18 amino acids, excluding aspartate and 

glutamate (g/kg protein) and protein digestibility-corrected amino acid score (PDCAAS, %) 

were collected from literature 52-116. Corresponding database Supplementary Table ST4.1. 

SI-4b.2 Amino acid average 

Average amino acid composition (g/kg protein) for 18 essential, conditionally essential, non-

essential amino acids (excluding aspartate and glutamate) and protein digestibility corrected 



 
 

amino acid score (PDCAAS) were calculated using data from ST-4.1 for each protein source. 

Standard deviations are also presented for each protein source, calculated using data from 

ST4.1. Corresponding database Supplementary Table ST4.2. 

 

 

Supplementary Information 5 

Protein recovery potential of a waste-to-protein system. Corresponding database 

Supplementary Table ST5. 

SI-5.1 OFMSW-to-insect 

The global potential of feed-grade OFMSW waste input (megatonnes/year) was estimated 

based on Eq.(S2). Outputs (megatonnes/year) were determined by waste-to-protein conversion 

efficiency for three different species of insect (Hermetia illucens, Archeta domesticus, and 

Tenebrio molitor), Eq.(S5). Conversion efficiency (g protein/g input) was based on feed 

conversion ratio (g insect biomass/g OFMSW) and protein contents of insect outputs (g 

protein/g insect biomass) reported from literature 117.Corresponding database Supplementary 

Table ST5.1. 

SI-5.2 Lignocellulosic-to-microbial protein  

The global potential of food-grade lignocellulosic waste (megatonnes/year) was estimated 

based on Eq.(S3). Output protein (megatonnes/year) was estimated based average cellulose 

content (g cellulose/g lignocellulosic content), sugar extraction efficiency (g glucose/g 

cellulose) and microbial protein content (g protein/g microbial biomass) for three different 

microbial protein species (Fusarium venenatum, Candida utilis, and Kluvymyces marxianus) 

for glucose only and glucose and xylose, Eq.(S6) 118,119.  



 
 

Estimates for lignocellulosic waste glucose only, and glucose and xylose were based on sugar 

extraction coefficients derived from previous published research where glucose was extracted 

from rice straw using food-grade ionic liquid [Ch][HSO4] in combination with food-grade 

Celluclast 118. We assumed the same residues and same efficiency as rice straw glucose in our 

estimation. We assumed the same sugar extraction coefficient of xylose as lignocellulosic 

glucose i.e. 0.424 (g xylose/g hemicellulose). Conversion efficiency for lignocellulose-derived 

F.venenatum was based from previously published research 118. Corresponding database 

Supplementary Table ST5.2. 

SI-5.3 Food industry-to-biophysicochemical treatment 

The global potential input of food industry examples (brewery and fishing) were estimated 

using Eq.(S4), (megatonnes/year).  

Protein outputs (megatonnes/year) were estimated for three different biophysiochemical 

treatments (2% alcalase enzyme, hydrothermal treatment and sequential alkaline and dilute 

acid treatment). Conversion efficiencies obtained from literature were applied to estimate the 

protein contents of food industry waste (Eq.(S7)) 120-122. Corresponding database 

Supplementary Table ST5.3. 

SI-5.4 Input waste streams 

Regional waste stream inputs were collected for OFMSW (megatonnes/year) 1. Regional 

residue lignocellulosic content (megatonnes/year), lignocellulosic content, and holocellulosic 

content were derived from literature 6,7. Global food industry waste (megatonnes/year, 2018) 

and protein content (g protein/g waste input) for fishing and brewery were based on previously 

published literature 120-122.  Corresponding database Supplementary Table ST5.4. 

𝐼𝑛𝑂𝐹𝑀𝑆𝑊  =  ∑ 𝑂𝐹𝑀𝑆𝑊𝑗  𝑗         (S2) 



 
 

Where the variable 𝐼𝑛𝑂𝐹𝑀𝑆𝑊  denotes the total global OFMSW potential which is determined 

by the (megatonnes/year) regional OFMSW 𝑂𝐹𝑀𝑆𝑊𝑗  (megatonnes/year) (SI-1) 1,5.The set j 

 represents the different regions, defined as: Africa, Caribbean, Central and West Asia, East 

Asia, Europe, Latin America, North America, Pacific, South Asia, and South East Asia.  

𝐼𝑛 𝐿𝑖𝑔𝑛𝑜 =  ∑ 𝐿𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑗𝑗        (S3) 

Where the variable 𝐼𝑛 𝐿𝑖𝑔𝑛𝑜 denotes the global potential of lignocellulosic agriculture residues 

(megatonnes/year) which is dependent on the regional agricultural residue 𝐿𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑗  

(megatonnes/year) (SI-2) 6,123. The set 𝑗 represents the 11 different regions: Africa, Caribbean, 

Central and West Asia, East Asia, Europe, Latin America, North America, Pacific, South Asia, 

and South East Asia.  

𝐼𝑛𝐹𝐷  = ∑ 𝑊𝑗,𝐹𝐷𝑗,𝐹𝐷          (S4) 

Where the variable 𝐼𝑛𝐹𝐷 denotes the total input from global food and drink industry waste 

which is determined by the regional sector-specific waste 𝑊𝑗,𝐹𝐷 (megatonnes/year) ; set 𝐹𝐷 

and 𝑗 stand for specific food and drink sector and region, respectively; in Figure 5, 𝐹𝐷 includes 

fishing and aquaculture industry  124 and brewery industry 125.  

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 𝐼𝑛𝑂𝐹𝑀𝑆𝑊 (𝐹𝐶𝑅𝑠,  × 𝑃𝐶𝑠 )      (S5) 

The variable 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 represents the food-grade or feed-grade protein output of each insect 

species 𝑠 (megatonnes/year) by converting OFMSW; it is determined by the global OFMSW 

resource availability (𝐼𝑛𝑂𝐹𝑀𝑆𝑊), feed conversion ratio 𝐹𝐶𝑅𝑠, (g insect outputs/kg substrate) 

and  protein content (𝑃𝐶𝑠) for given species s (g protein/g biomass)  In Figure 5, the set 𝑠 refers 

to BSFL (Hermetia illucens), cricket (Acheta domesticus) or mealworm (Tenebrio molitor) 117. 

𝑂𝑢𝑡𝑝𝑢𝑡𝑀 = 𝐼𝑛 𝐿𝑖𝑔𝑛𝑜 (𝑆𝑢𝑔𝑎𝑟 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝐿𝐶𝑀  × 𝑃𝐶𝑀)    (S6) 



 
 

The variable 𝑂𝑢𝑡𝑝𝑢𝑡𝑀 represents the protein output (megatonnes/year) by converting 

lignocellulosic agriculture residues using different microbial species 𝑀 ;   𝑆𝑢𝑔𝑎𝑟 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

represents the conversion coefficient for sugar extraction from lignocellulosic resources 118, 

𝐿𝐶𝑀 represents  coefficient to convert lignocellulosic sugar to microbial biomass  (g 

biomass/kg substrate) and 𝑃𝐶𝑀  denotes protein content (g protein/g biomass) for given 

microbial species 𝑀.  In Figure 5, 𝑀 refers to Fusarium venenatum, Candida utilis,and 

Kluvymyces marxianus 118,119. 

𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝐶  = ∑ 𝑊𝑗,𝐹𝐷𝑗,𝐹𝐷 × 𝑃𝐶𝐹𝐷 ×  𝐶𝐹𝐵𝐶,𝐹𝐷      (S7) 

The variable 𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝐶 denotes the protein output (megatonnes/year) by converting food and 

drink industry waste using biophysiochemical technologies, which is determined by the 

regional waste availability 𝑊𝑗,𝐹𝐷 , protein content of regional waste (𝑃𝐶𝐹𝐷) and technology 

conversion efficiency (𝐶𝐹𝐵𝐶,𝐹𝐷). 𝐶𝐹𝐵𝐶,𝐹𝐷 is a technology dependent conversion efficiency, 

which is derived from previous published research 120,121;  set 𝐵𝐶 refers to specific 

biophysicochemical technology including 2% alcalase enzyme treatment, hydrothermal pre-

treatment, alkaline and dilute acid treatment to derive feed-grade protein from food-industrial 

waste streams. 

 

 

Supplementary information 6 

Growth cycle information from literature is presented for waste-to-protein holometabolous and 

hemimetabolous insect species, and Gallus domesticus (broiler chicken) and Bos taurus as a 

bench mark comparison. Corresponding database Supplementary Table ST6. 

 



 
 

SI-6.1 Holometabolous species growth cycles 

Species are sorted by order including: Diptera (true flies), Lepidoptera (butterflies and moths), 

Coleoptera (beetles) and Hymenoptera (sawflies, wasps, bees, ants). Number of larval instars, 

duration of egg incubation, larval, pupae and adult stages and total life span (days) are collected 

from literature. Data collected for species within an order were used to estimate a range for 

each order 126-157.  Corresponding database Supplementary Table ST6.1. 

SI-6.2 Hemimetabolous species growth cycles 

Species are sorted by order including: Hemiptera (true bugs), Blattodea (cockroaches, termite) 

and Orthoptera (locusts, crickets, grasshoppers). Number of larval instars, duration of egg 

incubation, nymphal, and adult stages and total life span (days) are collected from literature. 

Data collected for species within an order was used to estimate a range for each order 158-178.  

Corresponding database Supplementary Table ST6.2. 

SI-6.3 Animal-based protein growth cycles 

Life span (days) collected from literature are provided for Gallus domesticus, and Bos taurus 

(beef cattle) as a bench mark for comparison with waste-to-protein insect species 179-184. 

Corresponding database Supplementary Table ST6.3. 
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Supplementary Information Figure 6 | 
Growth cycles of 9 proposed waste-to-
protein insect orders including 
holometabolous a Diptera (including b 
Hermetia illucens), c Lepidoptera, d 
Coleoptera (including  e Tenebio molitor) 
and f Hymenoptera and hemimetabolous 
g Hemiptera, h Blattodea and i 
Orthoptera. j Gallus gallus domesticus 
(broiler chicken) and k Bos taurus (beef 
cattle) are included as benchmark 
comparisons of animal-based protein 
sources. Detailed data can be found in 
Supplementary Information 6 126-184. 
Created with BioRender.com. 
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SI-6.4 Insect protein organisations 
Insect protein organisations and businesses are listed in a database including: region and 

country of origin, insect species sold, feed- or food-grade, technology readiness level (TRL). 

TRL is catagorised as 1 to 3, 4 to 6 or 7 to 9, where 1 to 3 indicate research and development 

stage, 4 to 6 indicates pilot scale and 7 to 9 indicates commercial status. Notes are also 

included to indicate if organisations are non-governmental organisation (NGO) or utilising 

waste-to-protein. Corresponding database Supplementary Table ST6.4. 



 
 

Supplementary Information 7 

SI-7 Novel food and feed safety regulation 

Supplementary Information Table 7.1 | Comparison of novel food and feed regulation for 9 different countries and regions including: 
the European union (EU), Australia, New Zealand, Canada, China, United States (US), India, Brazil, Singapore. 

   

 

EU Australia/New Zealand Canada China 

Novel food definition Any food that was not used for 

human consumption to a 

significant degree within the 

Union before 15 May 1997185 

Any non-traditional food 

that requires an assessment 

of the public health and 

safety186 

A substance, including a 

microorganism that does not yet 

have a history of safe use as a food; 

A food that has been manufactured, 

prepared, preserved, or packaged by 

a process that has not been 

previously used for that food, and 

causes the food to undergo a major 

change; a major change; a food that 

is derived from a plant, animal or 

microorganism that has been 

genetically modified187 

Food that has not been consumed 

traditionally in China, including: 

Animals, plants, or microorganisms; 

Substances derived from animals, 

plants, or microorganisms; Food 

substances which structure has been 

altered; Other newly developed food 

materials, such materials resulting from 

high-tech production methods 

(traditional consumption refers to 

known production and consumption of 

food material in the last 30 years and 

mentioned in the Pharmacopoeia of the 

People's Republic of China)188 

History of Human Consumption 

Timeframe 

Before 15 May 1997 within the 

EU; at least 25 years in a third 

country185 

2-3 generations; 10-20 

years in AU/NZ 

(guideline)186 

“a number of generations”; 

evidence from other countries 

allowed187 

In the last 30 years in China188 

Legislation Regulation (EU) 2015/2283185 Food Standard 1.5.1.186 Food and Drug Regulations 

(B.28.002)187 

Food Safety Laws (2015); 

Administrative Measures for Safety 

Review of New Food Materials 

(2013)188 

Government Organisation for Pre-

Dossier Submission Consultancy 

Unknown Advisory Committee on 

Novel Foods (ACNF)189 

Unknown Unknown 

Recipient Authority for Dossier 

Submission 

European Commission 

(Member States informed)190 

Food Standards Australia 

New Zealand (FSANZ)189 

Health Canada’s Food 

Directorate191 

Hygiene Supervision Center of The 

Health Administration Under the State 

Council188 

Official Guidance Document 

Available? 

Yes190 Yes189 Yes191 Yes188 

Authority Responsible for Risk 

Assessment 

European Food Safety 

Authority (EFSA), open to 

public comments190 

Food Standards Australia 

New Zealand (FSANZ)189 

Health Canada’s Food 

Directorate191 

The Health Administration Under the 

State Council (Expert Assessment 

Committee on Novel Foods), open to 

public comments188 

Authority Responsible for Final 

Decision-Making 

European Commission, upon 

favourable vote from Member 

State representatives of the 

Standing Committee on Plants, 

Animals, Food and Feed 

(SCoPAFF)190 

Food Standards Australia 

New Zealand (FSANZ) 

 

Request for review can be 

given by Australia and New 

Zealand Ministerial Forum 

on Food Regulation as well 

as The New Zealand 

Government189 

Food Rulings Committee191 The Health Administration Under the 

State Council188 

Estimated Time from Application 

Submission to Final Decision 

7-24 months (within last two 

years)192 

6-18 months189 410 days, 90% of the time 

(Performance Standard)193  

2-3 years194 



 
 

 US India Brazil Singapore 

Novel food definition N/A Food that: May not have a history of consumption by 

humans, or may not have a history of consumption in 

the region/ country of interest; or may not have any 

history of consumption of any ingredient used in it or 

the source from which it is derived; or a food or 

ingredient that is obtained by using new technology 

and/or innovative engineering process. This procedure 

may change the size, composition, or structure of the 

food or its ingredients – which may in turn change its 

nutritional value, metabolism, properties/ behavior or 

level of undesirable substances.195 

Foods with no history of use in the 

country; foods containing novel 

ingredients with exceptions; foods 

containing substances already consumed 

that may be added or used at levels 

much higher than those currently 

observed in the foods that constitute part 

of a regular diet; and food offered in the 

form of capsules, pills, tablets and the 

like196 

Foods and food ingredients that do not 

have a history of safe use, where safe 

use is defined as consumption as an 

ongoing part of the diet by a significant 

human population (e.g., the population 

of a country), for a period of at least 20 

years and without reported adverse 

human health effects.197 

History of Human 

Consumption Timeframe 

Experience based on common use 

in food before 1958 for GRAS 

determination198 

More than 15 years in India or more than 30 years 

globally199 

Unknown At least 20 years197 

Legislation Food additives: 

21 U.S.C §342200 

GRAS: 

21 CFR §170.30(b)198; 21 CFR 

§170.30(c)201; 21 CFR 

§170.30(f)202; 

Food Safety and Standards (Approval of Non-

Specified Food and Food Ingredients) Regulations, 

2017.203 

Resolution 16/1999 and Resolution 

17/1999196 

Singapore Food Agency Act (2019); 

Sale of Food Act (1973)197 

Government Organisation 

for Pre-Dossier Submission 

Consultancy 

FDA’s Office of Food Additive 

Safety (OFAS)204 

Unknown Unknown Future Ready Food Safety Hub 

(FRESH) 

FSA via monthly Novel Food Virtual 

Clinics to engage companies at early 

stages of R&D197 

Recipient Authority for 

Dossier Submission 

FDA (for food additive petition)204 

Self-determined (for GRAS 

notification)205 

Food Safety and Standards Authority of India 

(FSSAI)199 

Brazilian Health Regulatory Agency 

(ANVISA)196 

Singapore Food Agency (SFA)197 

Official Guidance 

Document Available? 

Yes204,205 Yes199 Unknown Yes197 

Authority Responsible for 

Risk Assessment 

FDA (for food additive petition)204 

GRAS panel consisting of experts 

to review publicly available 

scientific evidence205 

Food Safety and Standards Authority of India 

(FSSAI)199 

The Brazilian Health Regulatory Agency 

(ANVISA)196 

Singapore Food Agency (SFA)197 

Authority Responsible for 

Final Decision-Making 

FDA (for food additive petition; 

voluntary GRAS notification can be 

made)204,205 

Food Safety and Standards Authority of India 

(FSSAI)199 

The Brazilian Health Regulatory Agency 

(ANVISA)196 

 

Singapore Food Agency (SFA)197 

Estimated Time from 

Application Submission to 

Acceptance 

Typically, FDA responds to GRAS 

notification within 180 days; 

Average of 24 months for food 

additive petition192 

Unknown Unknown 9-12 months197 



 
 

Supplementary Information 8 

SI-8.1 Life cycle assessment (LCA) and techno-economic analyses (TEA)  

Based on comprehensive review, data on life cycle assessment (LCA) and techno-economic 

analyses (TEA) have been collected for different waste-to-protein technologies and benchmark 

protein sources. Detailed data are presented in Supplementary Table ST-8.  

Waste-to-protein covered in Supplementary Table ST-8 include 4 feed-grade insects (Tenebrio 

molitor, Musca domestica, Hermetia illucens, and Protaetia brevitarsis seulensis), 7 feed-

grade microbial protein sources (Hydrogen-oxidising bacteria sp., Methane-oxidising bacteria 

sp., Tetraselmis suecica, Tisochrysis lutea, Arthrospira platensis, Chlorella sp., Ascochloris 

sp.) and 4 food-grade microbial protein technologies (Cupriavidus necator 206, Spirulina 

platensis 207, Fusarium venenatum A3/5 from lignocellulosic resource and hydrogen-oxidising 

bacteria sp. Solein® from Solar Foods). It is worth noting that the food-grade microbial 

proteins listed above are still at the research and development stages.  

Bench mark protein sources in Supplementary Table ST-8 cover commercialised or reported 

insect proteins and microbial proteins cultivated with non-waste substrates. These include 1 

feed-grade insect (Hermetia illucens), 2 feed-grade microbial proteins (FeedKind® from 

Calysta, and Chlorella vulgaris), and 5 food-grade insects (Tenebrio molitor, Hermetia 

illucens, Apis mellifera, Gryllus bimaculatus, and Acheta domesticus). Additionally, traditional 

plant- and animal-sourced proteins have been also taken into account, involving soybean meal 

and fish meal as feed-grade proteins, cultured meat, food-certified Quorn™ Mycoprotein, and 

10 food-grade plant-based proteins (soybean, tofu, bean, pea, nut, groundnut, other pulses, 

maize, rice, wheat), as well as 9 animal-based food proteins (chicken, egg, milk, cheese, beef, 

lamb, pork, fish, crustacean). 



 
 

Supplementary Table ST-8 presents data collected for protein contents on a dry weight (%DW) 

or fresh weight (%FW) basis, oven-dried weight on a %FW basis, LCA system boundary, 

quantitative LCA and TEA results. 9 life cycle impact categories have been considered i.e. 

acidification, freshwater eutrophication, marine eutrophication, global warming potential 

(GWP100), ozone depletion, fossil resource depletion, photochemical oxidant formation, 

agricultural land occupation, and water use/depletion. To facilitate comparisons, LCA data 

have been compiled and recalculated on the basis of per kg of protein 206-236. In economic 

analyses, capital cost, operational cost, total production cost, minimum selling price, and 

market price have been considered and compared based on per kg of protein 234,237-249. 

Minimum selling price is defined as selling price of the protein product for which the net 

present value (NPV) is zero, which has been used to assess the economic viability of the protein 

technologies 234. The total production cost (𝐸𝐾𝑃𝐼=𝑐𝑜𝑠𝑡,𝑠) is derived from Eq.(S8). 

𝐸𝐾𝑃𝐼=𝑐𝑜𝑠𝑡,𝑠 =  𝐶𝐴𝑃𝐸𝑋𝑠 + 𝑂𝑃𝐸𝑋𝑠        (S8) 

Where the set 𝑠 represents the protein species; the variable 𝐸𝐾𝑃𝐼=𝑐𝑜𝑠𝑡,𝑠 denotes the total 

production costs of a given protein species 𝑠 (USD/unit product), which is determined by of 

the capital cost, 𝐶𝐴𝑃𝐸𝑋𝑠 (USD/unit product) and operational cost, 𝑂𝑃𝐸𝑋𝑠 (USD/unit product).  

The LCA and TEA comparisons between different protein sources have been based on the 

equivalent units per kg protein, where the nutritional value (amino acid compositions) of 

different proteins were not considered. Thus, to facilitate comparison, LCA and TEA results 

collected from literatures were recalculated following the  Eq.(S9).  

𝐸𝐾𝑃𝐼,𝑠
∗ =

𝐸𝐾𝑃𝐼,𝑠

𝑃𝐶𝑠/𝐷𝑊𝑠
                         (S9) 

Where the variable 𝐸𝐾𝑃𝐼,𝑠
∗  denotes the comparable LCA or TEA results, based on per kg of 

protein for given protein species 𝑠, expressed as the key performance indicator 𝐾𝑃𝐼. The set 



 
 

𝐾𝑃𝐼 contains 9 LCA and 3 TEA elements, including acidification, freshwater eutrophication, 

marine eutrophication, GWP100/global warming, ozone depletion, fossil resource depletion, 

photochemical oxidant formation, agricultural land occupation, water use/depletion, total 

production cost, minimum selling price, and market price. 𝐸𝐾𝑃𝐼,𝑠 is the LCA or TEA data based 

on fresh weight. 𝑃𝐶𝑠 is defined as the protein contents of fresh weight for a given protein 

species 𝑠. 𝐷𝑊𝑠 stands for the oven-dried weight in % of fresh weight. The 𝑃𝐶𝑠, 𝐷𝑊𝑠, and other 

key assumptions are summarised in the Supplementary Information Table SI-T-8.1 



 
 

 
Supplementary Information Table 8.1| Summary of protein content (𝑃𝐶𝑠, % fresh weight; 𝑃𝐶𝐷𝑠, % dry weight), oven-dried weight (𝐷𝑊𝑠, % fresh weight), and key 

assumptions.  

Protein source 
𝑷𝑪𝒔 (% fresh weight) /  

𝑷𝑪𝑫𝒔 (% dry weight) a 

𝑫𝑾𝒔 b  

(% fresh weight) 
Data source and other key assumptions 

W
a

st
e
-t

o
-p

ro
te
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Insect protein 

Tenebrio molitor  𝑃𝐶𝑠: 18.84% 37.16%  221,232 

Musca domestica 𝑃𝐶𝐷𝑠: 47.90%. NA Substrate: mixture of poultry manure and house waste 236 

Musca domestica 𝑃𝐶𝐷𝑠: 63.65%.  NA 
Substrate: pig manure, chicken manure, or mixture of sheep waste and 

fresh ruminant blood 221,223,224,246 

Hermetia illucens  

(dried, defatted meal) 
𝑃𝐶𝐷𝑠: 100% NA 

Substrate: food wastes 

The protein content of dried, defatted meal is assumed to be 100%. 

Because this fresh meal mainly consists of water, fat, and protein. 228  

Hermetia illucens  

(protein concentrate) 
𝑃𝐶𝑠: 56.3% NA Substrate: by-products of food industry 230 

Hermetia illucens  

(fresh insect puree) 
𝑃𝐶𝑠: 17% NA Substrate: by-products of food industry 230 

Hermetia illucens 𝑃𝐶𝑠: 48% NA Substrate: food wastes 225 

Hermetia illucens 

 (prepupae) 
𝑃𝐶𝑠: 43.9% NA 245 

Hermetia illucens 𝑃𝐶𝑠: 65% NA 
Substrate: agricultural by-products from starch manufacture and food 

by-product 235 

Hermetia illucens  𝑃𝐶𝑠: 45.88%  NA 
Substrate: chicken manure, brewery grains, potato peel, or expired food 
213,221,223,246 

Hermetia illucens 𝑃𝐶𝐷𝑠: 52.80% NA Substrate: hen diet 208 

Hermetia illucens 𝑃𝐶𝐷𝑠: 53.40% NA Substrate: maize distillers 208 

Hermetia illucens 𝑃𝐶𝐷𝑠: 51.20% NA Substrate: okara 208 

Hermetia illucens 𝑃𝐶𝐷𝑠: 54.10% NA Substrate: brewery grains 208 

Microbial protein 



 
 

Hydrogen-oxidising bacteria sp. 𝑃𝐶𝑠: 65% NA 

The protein content of this hydrogen-based microbial protein ranges 

from 50-80%. Therefore, the mid-value (65%) is used as the protein 

content in fresh weight of this microbial protein. 242 

Methane-oxidising bacteria sp. 𝑃𝐶𝑠: 20% NA 215 

Arthrospira platensis  
𝑃𝐶𝑠: 52.8%  96%  229 

Chlorella sp. 

Ascochloris sp. ADW00  𝑃𝐶𝑠: 52.25%  95%  229,244 

Fusarium venenatum A3/5 𝑃𝐶𝑠: 12.59%  NA 234 

B
en

ch
 m

a
rk

 c
o

m
p

a
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Insect protein 

Tenebrio molitor 𝑃𝐶𝑠: 13.5% NA 227,228 

Apis mellifera  𝑃𝐶𝑠: 10%  NA 226 

Microbial protein 

Chlorella vulgaris  𝑃𝐶𝑠: 52.8%  96%  229 

Fusarium venenatum A3/5  

(Quorn™ Mycoprotein) 

𝑃𝐶𝑠: 11.7% 

𝑃𝐶𝐷𝑠: 44% 
25% 234 221 

Plant-based protein 

Glycine max (soybean meal) 𝑃𝐶𝑠: 45.55% 92.20% 245,246 

Glycine max (soybean) 𝑃𝐶𝑠: 36.49% 91.46% 221 

Phaseolus vulgaris (common bean) 𝑃𝐶𝑠: 23.58% 88.25% 221 

Zea mays (maize) 𝑃𝐶𝑠: 3.24% 24.00% 221 

Oryza sativa (rice) 𝑃𝐶𝑠: 6.75% 87.40% 221 

Triticum aestivum (wheat) 𝑃𝐶𝑠: 12.15% 89.06% 221 



 
 

Animal-based protein 

Fish meal 𝑃𝐶𝑠: 70% NA 235 

Fish meal 𝑃𝐶𝑠: 39.71% 93.00% 245,246 

Gallus domesticus (chicken) 𝑃𝐶𝑠: 17.45% 34.02% 221 

Egg protein concentrate 𝑃𝐶𝑠: 68% 85% 229 

Egg 𝑃𝐶𝑠: 12.56% 23.85% 221 

Milk 𝑃𝐶𝑠: 3.15% 11.87% 221 

Bos taurus (beef)  𝑃𝐶𝑠: 18.89% 36.65% 221 

Sus scrofa domesticus (pork) 𝑃𝐶𝑠: 16.31% 40.03% 221 

Oreochromis spp. (tilapia) 𝑃𝐶𝑠: 20.08% 21.92% 221 

Katsuwonus pelamis (skipjack tuna) 𝑃𝐶𝑠: 22.00% 29.42% 221 

 
 
Note:  

a. 𝑃𝐶𝑠 denotes the protein contents of fresh weight (% fresh weight) for a given protein species 𝑠; 𝑃𝐶𝐷𝑠 represents the protein content of dry 

weight (% dry weight) for a given protein species 𝑠. 

b. 𝐷𝑊𝑠 stands for the oven-dried weight (% fresh weight) for a given protein species 𝑠. 

NA: data not available
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SI-8.2 LCA and TEA of waste-to-protein 

Base on the comprehensive literature review and analyses presented in Supplementary Table 

ST-8, we have compared the environmental profiles and economic viability between different 

protein species based on per kg of protein. Regardless of protein grade (feed- or food-grade) 

and their nutritional values (amino acid compositions), we have drawn the following 

conclusions. 

LCA comparisons of waste-to-protein technologies and benchmark protein sources suggested 

that -  

1. The environmental impacts of different insect proteins derived from wastes vary. 

Among 4 insect proteins produced via ‘waste-to-protein’ pathways in Supplementary 

Table ST-8, Hermetia illucens has attracted increasing research attention and represent 

the most environmentally sustainable option across most of the impact categories 

(GWP100: -1.40E+01 – 2.42E+01 kg CO2 eq. per kg protein; Agricultural land 

occupation: -3.67E+01 – 1.78E+01 m2a per kg protein; Water use/depletion: -7.2E-02 

– 2.39E+00 m3 per kg protein). In contrast, Musca domestic demonstrated higher 

environmental burdens compared with other insects, especially in energy profile 

(1.10E+00 – 1.13E+03 MJ per kg protein), agricultural land utilisation (4.71E-02 – 

8.90E+01 m2a per kg protein) and water use (5.14E-02 – 2.19E+03 m3 per kg protein) 

categories. 

2. Insect proteins produced from wastes demonstrated competitive environmental 

footprints in acidification, eutrophication, land use, and water use, compared with 

traditional plant-sourced proteins. For instance, the environmental scores of waste 

derived Tenebrio molitor (Freshwater eutrophication: 2.30E-02 - 2.74E-02 kg P eq. per 
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kg protein; GWP100: 5.25E+00 – 5.77E+00 kg CO2 eq. per kg protein; Agricultural 

land occupation: 6.35E+00 – 8.49E+00 m2a per kg protein) is close to these of soybean 

(Freshwater eutrophication: 1.60E-02 kg P eq. per kg protein; GWP100: 8.90E-01 – 

3.74E+01 kg CO2 eq. per kg protein; Agricultural land occupation: 5.24E+00 – 

1.19E+01 m2a per kg protein);  while Hermetia illucens exhibits a better environmental 

performance than soybean in these categories. However, it should be noted that the 

energy consumption of waste-derived Hermetia illucens (mostly ranging from 

7.19E+00 to 1.50E+02 MJ per kg protein) is slightly higher than traditional plant-based 

proteins on market (ranging from 5.33E+00 to 1.56E+01 MJ per kg protein), but lower 

than traditional animal-sourced proteins (ranging from 3.53E+01 to 2.99E+02 MJ per 

kg protein). 

3. The sustainability of different microbial proteins also varies. Solein® (hydrogen-

oxidising bacteria sp.) from Solar Foods outperformed other microbial protein species 

in most environmental impact categories (GWP100: 3.91E-03 - 4.21E-02 kg CO2 eq. 

per kg protein; Agricultural land occupation: 5.22E-05 – 1.27E-03 m2a per kg protein; 

Water use/depletion: 2.34E-05 – 1.71E-04 m3 per kg protein). Furthermore, Solein®  

from Solar Foods is generally recognised as food-grade 250, although more work should 

be undertaken to confirm its food safety produced via ‘waste-to-protein’ pathways. 

Additionally, microbial proteins produced via electricity from grid showed higher 

GWP100 burdens, ranging from 1.29E+01 to 4.64E+02 kg CO2 eq. per kg protein, in 

comparison with that utilising renewable energy (solar, wind), ranging from 3.91E-03 

to 4.26E+00 kg CO2 eq. per kg protein, indicating that the environmental burdens 

derived from fossil fuel consumption for energy input cannot be neglected.  

4. The environmental credits derived from carbon capture and utilisation e.g. waste gas 

CO2 as substrate for microbial proteins cultivation can benefit the sustainability of 
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protein sources. Based on the LCA profile for Tetraselmis suecica and Tisochrysis lutea 

218, the assumed ‘zero-burden’ substrate - flue gas (a recycled waste-product obtained 

from the burning of used vegetable oils) demonstrates superior environmental 

performance (GWP100: 3.84E+01 - 4.84E+01 kg CO2 eq. per kg protein; Fossil 

resources depletion: 3.65E+02 – 5.94E+02 MJ per kg protein; Water use/depletion: 

1.31E+01 – 2.09E+01 m3 per kg protein) to pure CO2 from cylinder (GWP100: 

5.96E+01 – 6.61E+01 kg CO2 eq. per kg protein; Fossil resources depletion: 5.96E+02 

– 8.15E+02 MJ per kg protein; Water use/depletion: 1.65E+01 – 2.42E+01 m3 per kg 

protein). This result suggests the significant environmental advantages of ‘waste-to-

protein’ technologies. However, the previous research followed an economic allocation 

approach to partition the environmental impacts between co-products which led to 

‘zero-burden’ flue gas but underestimate the potential environmental benefits of waste-

to-protein. If following a carbon counting approach to track the carbon captured, utilised 

and sequestered in microbial fermentation, a negative environmental ‘credit’ could be 

allocated to microbial protein, which would significantly enhance the environmental 

sustainability profiles. 

5. Microbial proteins derived from wastes represent environmentally superior systems to 

plant- and animal-sourced proteins across almost all impact categories, except for the 

fossil resources depletion/energy use. The energy use for microbial proteins ranges from 

2.11E+01 to 6.32E+03 MJ per kg protein, which is higher than both traditional plant-

based protein (ranging from 5.33E+00 to 1.56E+01 MJ per kg protein) and animal 

protein (ranging from 3.53E+01 to 2.99E+02 MJ per kg protein). Quorn™ mycoprotein 

derived from Fusarium venenatum A3/5 is a commercially produced food-grade 

microbial protein; Fusarium venenatum A3/5 cultivated through fermentation of 

lignocellulosic sugar sources was reported to deliver sustainable footprint 234 including 
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impacts on GWP100 (2.37E+01 kg CO2 eq. per kg protein), acidification (1.65E-01 kg 

SO2 eq. per kg protein), freshwater eutrophication (1.30E-02 kg P eq. per kg protein), 

agricultural land occupation (4.39E+00 m2a per kg protein) and water use/depletion 

(2.23E+00 m3 per kg protein). This microbial protein has similar environmental impacts 

of organic broiler in GWP100 (2.66E+01 kg CO2 eq. per kg protein) and freshwater 

eutrophication (1.16E-02 kg P eq. per kg protein), but much lower scores in other 

categories, indicating its high potential as a protein alternative. 

Techno-economic analyses results indicated that - 

1. Insect proteins produced from waste demonstrate great competitiveness from the 

economic perspective. For example, the market price of Hermetia illucens (1.94-2.41 

USD per kg protein) is cheaper than that of rice (6.02 USD per kg protein) and is close 

to soybean and wheat (1.33 and 2.27 USD per kg protein, respectively). It is obvious 

that this insect market price range is lower than that of animal-based proteins (15.4-76.3 

USD per kg protein). Nevertheless, it should be noted that the food safety of waste 

derived insect protein is still under certification. Therefore, the final market price of 

commercialised waste derived insect protein might increase to some extent, due to the 

requirement for additional processes to ensure the food safety.  

2. The price of different microbial proteins varies significantly. According to 

Supplementary Table ST-8, it can be difficult for microbial proteins to compete with 

both plant and animal-sourced proteins due to a relatively high selling price. The feed-

grade hydrogen-based microbial protein in García ‘s work 242 (5.69-25 USD per kg 

protein) has shown to be less economically beneficial than soybean meal (0.754-1.98 

USD per kg protein) and fishmeal (3.02-4.01 USD per kg protein). Food-grade QuornTM 

mycoprotein product (Fusarium venenatum A3/5) derived from lignocellulosic sugar 
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sources 234 is predicted with a minimum selling price of 173.02 USD per kg protein, 

which is twice the market price of beef (76.3 USD per kg protein) and six times more 

than chicken (27.7 USD per kg protein). 

 

The following research gaps have merged from the literature review on LCA and TEA studies 

of ‘waste-to-protein’ systems - 

1. Further research efforts could be devoted on holistic yet robust analyses of 

environmental profiles of novel protein sources, in particular on insect and microbial 

proteins, which represent a clear knowledge gap. Most of the LCA studies published 

thus far focused on global warming (GWP100), arable land use, and water use impact 

categories; whereas less research attention has been given to other important impact 

categories - including fossil resources depletion, acidification, eutrophication, ozone 

depletion, and photochemical oxidant formation. Furthermore, previous LCA research 

lacks explicit interpretation of sensitivity and uncertainty in LCA findings.  An 

interesting research direction is to further explore the LCA data quality based on 

statistical methods to enable robust evidences for decision-making and comparative 

assertions on novel protein technologies.    

2. Limited publicly available TEA studies hinder the understanding of the scalability and 

viability of waste-to-protein technologies. Computational experiments based on process 

design and simulation would save empirical efforts at lab or pilot scales and guide 

research and development to focus on performance-limiting steps.  Thus, waste-to-

protein process simulation and optimisation represent another research frontier to 

accelerate novel protein technology scaling-up.  
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