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Abstract
One of the greatest obstacles in the exploitation of wind
and solar resources is the uncertainty in their availabil-
ity, usually known as intermittency effects. These ef-
fects can be greatly diminished by combining wind and
solar resources from different locations. In this article
we study the temporal variability of solar irradiance and
wind speeds in Argentina, focusing on current projects
and those included in GENREN and RENOVAR tenders.
We also converted two year wind speeds and irradiance
time series into power production, analyzing its compat-
ibility with demand. Finally we numerically search the
best distribution of additional capacity that minimizes a
basic measure of the intermittency effect.

Resumen
La falta de certeza en la disponibilidad es uno de los may-
ores obstáculos que se presentan a la hora de aprovechar
las energı́as eólica y solar. Esta caracterı́stica, usualmente
conocida como efectos de intermitencia, puede ser miti-
gada integrando ambas fuentes y en distintos sitios. En
este trabajo estudiamos la variabilidad temporal del re-
curso eólico y solar en Argentina, enfocándonos en los
proyectos ofrecidos en las licitaciones GENREN y REN-
OVAR. Luego convertimos las series temporales horarias
de viento y sol en potencia, durante el perı́do 2015-2016,
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estudiando como hubiera sido el recurso de los parques
eólicos y solares operativos y próximos a entrar en servi-
cio. Por último analizamos la mejor distribución de po-
tencia adicional a la proyectada tal que su impacto sobre
la intermitencia sea mı́nimo.

Introduction
Worldwide, energy systems are likely to become more
dependent on weather due to the growing share of re-
newable power sources such as wind and solar [58, 59,
16, 53]. Wind power production exhibits variations on
all timescales [1, 20]. Van Der Hoven [55] identified
three distinct peaks of wind speeds variability and their
most important timescales: i) the turbulent peak in the
subsecond to minute range, ii) the diurnal peak, driven
by the heating and cooling of the earth surface, and iii)
the synoptic peak which depends on changing weather
patterns with a scale of variation which ranging from
days to weeks [40, 8, 16]. Annual and inter-annual (or
decadal) represent important peaks of variability as well
[47, 27]. Thus, the variability of wind power produc-
tion might be classified into regular cycles (diurnal and
seasonal/annual), and irregular cycles (synoptic, inter-
annual). In constrast to wind speed, solar irradiation
presents more defined annual and daily cycles [8]. The
observable irregular variations (synoptic and inter-annual)
are related to the movement and persistence of clouds and
to temperature gradients and drifts.[17, 19, 36, 32]. In
addition, the system load usually shows well defined an-



nual, daily and weekly cycles [57, 8] plus inter-annual and
weekly variations [57, 60] associated with economic ac-
tivity and changing weather patterns.

For the reasons described above, the integration of
these resources into a power grid may affect several stages
of its operation and planning, such as the load frequency
control (within the second to minute range), the load fol-
lowing operations (within the minutes to hours range)
and the unit commitment scheduling (over the weekly
timescale). It may increase the margin of spinning re-
serves to protect the system against sudden load or re-
newable power generation fluctuations and the need for
flexibility in order to cope with higher ramping rates
[58, 50, 40, 59, 24]

Besides the temporal variations described above, wind
and solar resources also fluctuate geographically [58].
Studying these spatial variations of the wind and solar
outputs is important for two reasons. Firstly, the ag-
gregation of disperse intermittent power sources reduce
their overall variability [3, 57, 31, 11, 21, 59, 38]. Sec-
ondly, it may help to optimize the complementarity be-
tween different renewable power sources and the system
load. [58, 59, 38, 16]

The smoothing effect from geographical dispersion has
been widely studied for wind power [57, 18, 59]. It is
well known that a wider geographical distribution of wind
farms reduce their overall variability [35, 46, 13]. This
smoothing effect is proportional to the size of the catch-
ment area [2], since the correlation between wind patterns
decrease as the distance between sites increase [56, 47].
In contrast, fewer studies have addressed the effect of the
dispersion of solar generation [59]. Several studies show
that there is also a smoothing effect on the aggregation of
dispersed solar power units, but less pronounced than for
wind power [29, 36, 11, 59].

Studying the complementarity of different renewable
sources (along with the system load) is a complex mat-
ter. Some authors claim that solar generation, in contrast
with wind generation, usually correlates better with de-
mand over the diurnal [58, 40, 8] and seasonal timescales
[58] because it shows well defined cycles. The corre-
lations between wind generation and power demand, on
the contrary, are less certain and site-dependent. There-
fore, the managerial implications might be different de-
pending on the timescale that is analyzed, since wind and
solar generation, and system load timeseries show dis-

tinct temporal behaviors [8]. Holttinen [20] found differ-
ent seasonal and daily average variations in wind power
production over distinct regions in Europe. Grams [16]
suggested that deploying wind farms in the Balkans in-
stead of the North Sea would reduce synoptic-scale fluc-
tuations over Europe. Heide [18] proposes an optimal sea-
sonal mix of 55% wind and 45% solar generation for Eu-
rope since wind correlates better with the seasonal load
curve than solar generation. Coker [8] also found that
wind generation in UK correlates better with the seasonal
load curve than solar generation. Finally, Widen [59] and
Monforti [38] studied the complementarity over different
timescales of wind and solar generation over Sweden and
Italy, respectively. They found negative distance indepen-
dent correlations between solar and wind power over all
timescales, but stronger for monthly averages.

The aim of this article is to assess the complemen-
tarity of wind and solar generation over Argentina and
its compatibility with demand. Argentina has an ap-
preciable potential for wind and solar power generation
[23, 10, 34, 12]. The share of wind and solar power
is likely to increase in the incoming years. Law 27191
signed in 2015 has set targets to the share of renewable en-
ergies (which also account for biomass, biogas and small
hydraulic exploitations): the country is committed to rise
the share of renewables up to 12% for the year 2019, and
up to 20% by the year 2025. Several tenders have been
celebrated: 1470 MW of solar and 3020 MW of wind
power were awarded with PPA (power purchase agree-
ment) contracts up to RENOVAR 2.0. Also, other drivers
encourage growth of wind and solar power along with ten-
ders. Private initiatives currently account over 500MW,
and recently the law to regulate distributed generation has
been approved, which leaves place to distributed rooftop
photovoltaic generation. Besides the high quality of the
wind solar power resources, Argentina has the additional
advantage of its wide geographical extension which de-
termines the existence of very distinct climatic regimes
[43, 15] (and, hence, distinct cloudiness and wind vari-
ability patterns) which should be considered when plan-
ning the deployment of wind and solar generation facil-
ities. Hence, understanding the properties of local vari-
ations of these power sources is crucial for the develop-
ment, optimization and operation of harvesting infrastruc-
ture. In particular, mixing the sources in accordance with
the temporal structure of their variations can lead to power
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generation following the demand curve. In the first part
of this paper we analyzed the spatial variability and com-
plementarity of the current and planned wind and power
plants over Argentina. In the second part of the paper we
propose an optimization of future deployments of wind
and solar facilities that minimizes the dispersion of the
residual demand, i.e., demand minus wind and solar gen-
eration.

Methodology

This study is focused on resources from wind and so-
lar projects already in service and others that have been
offered in the tenders GENREN, RENOVAR 1, RENO-
VAR 1.5 and RENOVAR 2.0, and resolutions 108/11 and
202/16.This amounts to a total of 46 wind sites and 21
solar sites that are resumed in tables (4) and (5). Their
location can be quickly identified using Fig. (1). The dis-
tribution of these sites span a great portion of the country
where not only there are strong winds or high solar irradi-
ance; but also have proven some degree of feasibility: for
instance in terms of proximity to the electric grid, acces-
sibility or environmental impact concerns.

We analyzed wind and solar resources for each site us-
ing wind speeds and irradiance data retrieved from the
Modern Era Reanalysis for Research and Applications
2 [37] [39] during the 1980-2016 period. This reanal-
ysis dataset has been widely used to assess the integra-
tion of renewable energies [6, 41, 42] because of its time
resolution of 1 hour in a spatial grid with 0.5o latitude
by 0.625o longitude resolution. MERRA2 provides short
wave ground solar irradiance and top of the atmosphere
short wave irradiance; and wind speed is available at 2, 10
and 50 m above the ground. From these values we com-
puted wind speeds at 100 m height (the typical hub-height
of current wind generators) assuming a logarithmic wind
profile, by regressing wind speed against the logarithm of
height according to the following expression:

w(h) = (
u∗

k
) log(

h− d
z

) (1)

Where h is the height, u∗ is the friction velocity,k(=
0.4) is the Von Karman constant, d is the displacement
height and z is the surface roughness.

We then simulated two years of power production, us-
ing data from reanalysis except for 12 wind park loca-
tions where the resource seems to be underestimated by
MERRA2 reanalysis. Specifically, we performed the sim-
ulations where MERRA2-derived capacity factors were
below 0.4 In these sites we performed simulations us-
ing the Weather Research and Forecasting (WRF) model.
WRF is a state-of-the-art nonhydrostatic high resolution
mesoscale model [49, 48]. It was developed (and is regu-
larly updated) by several institutes including the National
Center for Environmental Prediction (NCEP) and the Na-
tional Center for Atmospheric Researches (NCAR). The
initial and 6 hour boundary conditions were taken from
the Global Forecast System (GFS) operational 0.5o×0.5o

resolution global analysis [5, 45]. The outer boundary
conditions were updated every 6 hour during the simu-
lation period. Nudging of the solution inside the domain
is performed every 12 hours. We implemented two in-
teractive nested domains with grid resolutions of 18 and
6 km and time steps of 90 s and 30 s respectively. The
number of vertical levels was set to 55. Vertical levels
were placed close together in the low levels and rela-
tively coarsely spaced above. We used the WSM3 [22]
and the Thompson [54] microphysics schemes (the latter
in the inner domain), the RRTMG long-wave and short-
wave physics schemes [26], the MYJ planetary bound-
ary layer scheme [28], the Kain–Fritsch cumulus scheme
[30], and the NOAH scheme for land surface physics
[7]. An overview of the model domain configuration and
physics schemes used are shown in Table 1.

Spatial aggregation and complementarity
We calculated the correlation matrix from the 46 eolic and
21 solar sites, using the hourly data from 1980 to 2017
from MERRA reanalysis both for wind and irradiation.
Sites ID are sorted by correlation between themselves, in
order to classify them in 10 groups, 9 for wind and solar
sites in the 10th group. This grouping of sites was per-
formed ad-hoc, aided with information from the different
temporal behavior and distance between them. The results
can be seen in Fig. 1.

Then hourly, daily, monthly and annual correlations
were calculated as function of distance between a) indi-
vidual wind farms, b) individual solar farms and c) wind
farms and solar farms, to assess the effect of spatial ag-
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Table 1: Overview of WRF configuration
Domain 1 Nx x Ny 40 x 39
Domain 1 grid size 16 km
Domain 2 Nx x Ny 16 x 16
Domain 2 grid size 5.33 km
No of vertical levels 55
dynamic solver ARW
period 15 Jan 2015 to 15 Jan 2017
Initial/boundary cond. NCEP GFS analysis (6h int.)
Microphysics model Lin et al. scheme
Radiation physics RRTM scheme
Surface-layer physics Monin-obukhov (Janjic) scheme
Land-surface physics Unified Noah LSM
Cumulus physics Kain-Fritsch (new Eta) scheme
boundary layer option Mellor-Yamada-Janjic TKE sch.

gregation over different timescales.
The temporal behavior of wind and solar resources

were analyzed through daily, monthly and annual heat
plots of the solar and wind power outputs.

Wind power production

A simulation of wind and solar power production encom-
passing a two-year period was performed over the sites
described in tables 4 and 5. A similar approach as the
Virtual Wind Farm (VWF) model developed in [51, 52]
was used to simulate wind power production from wind
speeds at 100 m. height, provided by MERRA2 reanaly-
sis and WRF simulations.

Once data at 100 m height was obtained, wind power
outputs were computed using power curves of three In-
ternational Electrotechnical Commission (IEC) classes,
according to the mean wind speed at each site. We
used three 3.45 MW commercial wind generators power
curves:

• Vestas V126 for mean wind speeds below 8 m/s
(class IIB – IIIA)

• Vestas V117 for mean wind speeds between 8 and
9.75 m/s (class IEC IB – IIA)

• Vestas V112 for mean wind speeds above 10m/s
(class IEC IA)

Before covolving wind speeds with their corresponding
power curve, power curves values were smoothed using a
gaussian filter, as proposed in the VWFM method.

Solar power production
We used the The Global Solar Energy Estimator (GSEE)
developed by Pfenninger and Staffel [42] to calculate the
solar power outputs. For each site, the BRL [44, 33]
model was applied to obtain direct and diffuse irradi-
ances using the short wave ground-level global irradi-
ance variable SWGDN and top of atmosphere irrandi-
ance SWTDN from the closest MERRA2 grid point. The
model then calculates the irradiance on the plane of the
solar panels, whether panels are fixed or have tracking ca-
pabilities. Skin temperature variable is also used by the
model to finally adjust the power output obtained through
temperature-efficiency curves, defined by Huld [25].

Optimization of wind and solar plant geo-
graphical distribution
In a first attempt to diminish intermittency from overall
wind and solar generation, we propose an optimization of
the power distribution focusing on the dispersion to mean
ratio, namely σR

R̄
, where R is the hourly series we are

focusing at. If ai the capacity installed in site i and wi(t)
is the hourly capacity factor of that site (resulting from the
virtual wind farm model or solar power) then the hourly
power series reads

P (t) =

N∑
i=1

aiwi(t), (2)

where N are the number of sites or groups used. Addi-
tionally, if D(t) is the series of demand then the residual
power series is defined as

R(t) = D(t)− P (t) = D(t)−
N∑
i=1

aiwi(t), (3)

which is the remaining power to be supplied after renew-
ables.

The aim of the optimization problem can be stated as:
given a total capacity C =

∑
i ai, find the distribution of

4



capacity at each site {ai} that minimizes the dispersion of
R(t)

To solve this problem numerically we extend wi(t) and
ai variables:

(4)w̃i(t) =

{
wi(t) for i = 1, ..., N
D(t) for i = N + 1

and
(5)ãi(t) =

{
ai(t) for i = 1, ..., N
−1 for i = N + 1 ,

Then the residual power series can be formulated as

R(t) = −
N+1∑
i=1

ãiw̃i(t) (6)

Finally we numerically search the distribution of group
capacities {ai} that minimizes the dispersion of R(t),
forcing the total capacity

∑
i ai to be constant. We use

the relation

Var

(∑
i

ãiw̃i(t)

)
=
∑
i,j

ãiW̃ijaj , (7)

where W̃ij is the covariance between w̃i(t) series.
Focusing on dispersion of residual power series is per-

haps the simplest way to characterize intermittency. Other
methods are for instance studying the ramps plot or hourly
variation, or even more sophisticated methods. This work
is a first approach to present the problem and character-
ize interminttence in the region, we hope to analyze more
realistic intermittence function costs in the future.

1 Results

Spatial aggregation and complementarity
The correlation matrix for hourly data between 1980-2016
is shown in Fig. 1. Sites 1 and 2 (Arauco and El Sos-
neado) do not correlate with any other wind site, so each
one of them will conform a separate group. Group num-
ber 3 gathers the central Argentinian sites, with correla-
tion values between themselves over r = 0.3. This is the
weakest bonded group, and one of the reasons is the rel-
ative longer distances between them compared to other

groups. The remaining 6 wind groups are much more
correlated, with values over r = 0.5. Group 4 extends
through the north-eastern part of Buenos Aires province.
Group 5 gathers wind parks surrounding Bahı́a Blanca.
Group 6 is located in the eastern region of Rı́o Negro
province. Group 7 are parks in the north of Chubut and
group 8 are the remaining sites in southern Chubut and
Santa Cruz. Group 9 are wind parks located in nearby the
border of Rı́o Negro and Neuquén. Finally all solar sites
were included in group 10. This classification will be used
when optimizing power distribution in the next section.

Figure 2 shows the dependence with distance of hourly,
daily, monthly and annual correlations between individual
wind farms, individual solar farms and between wind and
solar farms. Hourly and daily correlations between wind
farms decreases more or less exponentially with distance,
with characteristic distances between 1000 km and 1500
km. Monthly and annual correlations between wind farms
also decreases with distance, in some cases reaching neg-
ative values (up to r = −0.2) for distances between 1000
km and 2000 km. This negative correlations indicate the
existence of somehow opposing annual/seasonal and in-
terannual behavior of wind speeds.

Solar irradiance time series are mainly dominated by
the regular daily and annual cycles. Hourly and monthly
correlations show the well defined earth rotating and or-
biting cycle, slightly decorrelating with distance due to
longitude and latitude incidence in sun altitude. Daily and
annual correlations decorrelate much faster with distance,
since these series express irregular variations (synoptic
scale and interannual) associated with space and time-
varying weather patterns.

Contrary to the wind-wind and solar-solar correlations,
wind-solar correlations do not show a clear dependence
with distance. Instead, the analysis distinguishes between
different wind sites. This might be due to the fact that
solar irradiance time series are mainly dominated by the
regular daily and annual cycles while irregular synoptic
and interannual time variations are more important in the
wind speed time series.

Most hourly correlations are slightly negative, showing
that the daily cycles of solar and wind resources are often
desynchronized. Achiras wind farm (center region) shows
the highest negative correlations with solar parks (around
r = −0.2), while Arauco (north-west) shows the highest
positive correlations (r = 0.4). This feature is analyzed
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a)

b)

Figure 1: a) Hourly correlation matrix between sites.
Proposed groups are shown on the right b) Location
of solar (in yellow) and wind (in red, green and blue)
sites. This information is available online on http:
//dteceolico.unrn.edu.ar/ol3/
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Figure 2: Hourly (a), daily (b), monthly (c) and annual (d)
correlations between individual wind farms (green dots),
individual solar farms (blue dots) and between wind farms
and solar farms (red dots)
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in detail in figure 3, which shows the correlation coeffi-
cients between the averaged hourly solar irradiances and
100 m height wind speeds at each MERRA2 grid point.
Negative correlations dominate in central and eastern Ar-
gentina while western and south-easter Argentina shows
positive correlations.

Figure 3: Correlation coefficients (hourly) between 100 m.
height wind speeds at each MERRA grid node and averaged so-
lar irradiation at solar sites in table 5)

Daily correlations are positive, most values lying
within the r ∈ [0, 0.2] interval. Arauco, again, shows
the stronger positive correlations with solar irradiances
(above r = 0.4). Monthly and annual correlations show a
higher dispersion. Monthly correlations exhibit both pos-
itive and negative values, and this reflects the fact that
wind speeds show very distinct and sometimes opposing
annual/seasonal cycles. Arauco shows the highest cor-
relations with solar irradiances (above r = 0.9). The
particular behavior of this wind farm might be a conse-
quence of its particular location between two mountain
ranges. According to Monforti et al. [38], the Föhn phe-
nomenon on mountainous regions might explain positive
correlations between wind speeds and radiation. Finally,

annual correlations between wind and solar irradiances
are mainly positive, showing that, in general, sunny years
match windy years an vice versa. The lack of a clear rela-
tion with distance between wind and solar resources could
suggest that the smoothing effect of deploying wind and
solar plants might not dependent on distance [59]. But
currently planned solar plants in Argentina, however, are
mostly concentrated in the Cuyo and Northwest regions
where the resource is better (Fig. 1). This relation be-
tween wind and solar resources might change if solar fa-
cilities are installed in other regions and with the expected
growth of rooftop generation.

Hourly, monthly and annual plots of the time signals of
each individual wind and solar power outputs along with
the averaged signal are depicted in Figures 4, 5 and 6.
Solar irradiance, as expected, shows a strong daily vari-
ation (Fig. 4). It reaches a maximum value that triples
the average at around 14:00 local time. Wind power out-
puts show, instead, a much smaller daily amplitude, with
an average range of variation of around±5% with respect
to the average. Broadly, the averaged daily cycle of wind
speeds is opposite to the daily cycle of solar irradiance.
It shows a minimum at around 10:00, and a maximum
at around 21:00. The daily cycles of the different wind
farms are much more heterogeneous though. Wind farms
located in central Argentina and northeastern Patagonia
exhibit two minimums; one during the morning and the
other during the afternoon, while wind farms located in
southern and western Patagonia exhibit minimum values
during the night and morning. Arauco shows a very dif-
ferent daily cycle, with minimum values during the night
and morning, and maximum values at around 17:00; and
a much more pronounced range of variation (−30% to
+60% with respect to the average).

As with the daily cycle, solar irradiance shows a much
stronger annual cycle than wind speeds, with an average
range of annual variation of around±50% with respect to
the average (Fig. 5). This is the case when solar panels
have 1D or 2D tracking capabilities. In the case of fixed
panels maximums occur in autumn and spring equinoxes,
and even showing the lowest capacity factor in summer
for latitudes below 30o.

Wind speeds show again, on average, a moderate an-
nual variation (±5%) that is broadly in phase with the an-
nual solar cycle (with lower values during the cold sea-
son). However, wind speed shows a noticeable spatial
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heterogeneity when analyzed individually. Wind farms
located in central Argentina and northeastern Patago-
nia show an annual cycle contrary to the solar irradi-
ance annual cycle; while Arauco (which also shows a
much greater annual amplitude than the rest of the wind
farms) and other wind farms located in southern Patago-
nia, northwestern and eastern Patagonia exhibit an annual
cycle that broadly matches the solar annual cycle. Three
wind farms located in central Argentina (El Jume, Achi-
ras and Rufino) show maximum values during late winter
and spring.

Both wind power and solar resources show noticeable
interannual variations, as seen in the yearly array plots in
Figure 6. Unlike hourly and monthly averages, the in-
terannual variation of the different wind farms is spatially
homogeneous; windy and still years occur simultaneously
in broadly all wind farms. On average, the amplitude of
wind variations (±10%) is higher than the amplitude of
irradiance variations (±5%). It is interesting to note that
wind and solar resources show low synchrony from 1980
to approximately 2003, and high synchrony from 2003 to
2017. Wind speeds above the average can be observed
in nearly all wind farms during the years 1980, 1990 and
2003. During 2009 and 2010, wind speeds were above the
average only in the wind farms located in southern Patag-
onia. 2016 was a remarkably still year in all wind farms,
and specially in those located in Patagonia. This anomaly
is related to the persistence of positive Sea Level Pres-
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Figure 4: Array plot of hourly individual wind power outputs
(left), individual solar power outputs (right) and averaged wind
and solar power outputs (upper right)

sure (SLP) anomalies over southern Patagonia consistent
with the positive phase of the Antarctic Oscillation . So-
lar irrandiances were above the average during the years
2003, 2009 and 2010 (just as wind speeds), and below
the average during 2015 and 2016. This yearly fluctua-
tions in solar irradiances suggest that this variable might
be also influenced, through variations in cloudiness, by
large-scale climate drivers as El Niño/Southern Oscilla-
tion or the AAO [4].
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WRF simulations and conversion of wind and
irradiation to power
Several wind power sites clearly seem to be underesti-
mated by MERRA2 reanalisys. We compared MERRA2-
derived capacity factors with capacity factors provided
by the national grid administrator; the Compañia Admin-
istradora del Mercado Mayorista Eléctrico de Argentina
(CAMMESA). Regrettably, most of this information is
confidential. We perform a downscaling simulation using
the WRF model. As we have limited computer capabili-
ties, we chose 12 sites, 11 of them with with MERRA2-
derived capacity factotrs below 0.4, as we will see later.
Simulations were performed for the period from 2015-01-
15 00:00:00 to 2016-01-14 23:00:00.

An example of the model domain used in the WRF sim-
ulations is depicted in Fig. 7, in this case for Olavarrı́a
wind site, in central Buenos Aires province. Domains 1
and 2 are centered in the point of interest.

Domain 2

Domain 1
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-36

-34

-38

-58-60-62-64
longitude
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tit
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e

Figure 7: Example of domain used in WRF simulations, in this
case for Olavarrı́a (ID number 9). The box inside denotes the
second domain with 3 times higher resolution.

MERRA2 wind data and WRF simulations are com-
pared in Table 2. In all cases the mean wind velocity
simulated with WRF is higher. A noticeable example is

Arauco, where mean velocity obtained with WRF almost
doubles the value given by MERRA2. The topography
at this location shows a great spatial variability, which is
probably not represented by MERRA2 due to its coarse
resolution (> 50 km)

Overall correlation and root mean square error of
hourly data between results is reasonable, except in
Arauco (site 2). We also see for this site that correlation
with solar sites is lost, as we indicate in Table 3. Look-
ing at the mean daily wind speed we see that the cycle is
delayed by 2 hours (Fig. 8).
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Figure 8: Hourly averages of wind at Arauco, comparing
MERRA2 values with WRF simulations

We also computed the weibull k factor for both
MERRA2 and WRF hourly data, shown in Table 4. WRF
shows lower k values, indicating a higher dispersion in
WRF than in MERRA2.

Finally we converted wind speeds and solar irradiation
into power outputs using the methods described above, us-
ing hourly series from MERRA2 and WRF through years
2015 and 2016. Tables 4 and 5 show the resulting mean
capacity factors.

WRF capacity factors are consistently higher than those
obtained with MERRA2 reanalysis. We checked the re-
sulting simulated capacity factor of Parque Arauco with
the real hourly time series of production during novem-
ber 2016. This information was again provided by
CAMMESA. We supposed an installed capacity of 27
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Table 2: Comparison between WRF results for 100 meters
wind velocity with MERRA2. Wind velocities obtained
by MERRA2 are underestimated in all cases.

id location corr v̄h=100m [m/s] rmse
MERRA2 WRF [m/s]

1 San Rafael 0.61 5.04 8.49 5.23
2 Arauco 0.37 3.98 7.36 3.57
3 El Jume 0.63 6.56 9.91 3.13
4 Achiras 0.42 5.79 8.64 3.94
5 Rufino 0.48 5.72 9.08 4.45
6 Maipú 0.71 7.16 8.80 2.73
9 Olavarrı́a 0.68 6.83 8.59 2.69
10 Gral. Acha 0.66 6.65 8.86 3.05
31 Mles. Behr 0.81 9.88 12.50 3.21
41 Pilcaniyeu 0.71 6.70 8.42 2.80
42 Zapala 0.75 7.24 8.27 3.68
44 Senillosa 0.73 7.05 7.86 2.91

MW. The capacity factor measured using this value is
0.44. Using WRF we obtained a slightly lower capac-
ity factor of 0.41. Using MERRA2 the value for the CF
is 0.09, clearly underestimating the site’s capacity. The
correlation between data is 0.66 and the root mean square
error between measured and simulated power is 7.5 MW,
which is ∼ 65% of the power average.
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Figure 9: Comparison of hourly measured data from par-
que Arauco (provided by CAMMESA) and the hourly
power series obtained using the Virtual Wind Farm
Model[51, 52] and WRF simulations. Installed capacity:
27 MW, measured Capacity Factor: 0.44, simulated ca-
pacity factor: 0.41, Correlation: 0.66, RMSE: 7.5 MW

In the case of solar power generation we compared the
production obtained from irradiation reanalysis data with
the generation of Chimberas Solar Power Plant, a park lo-
cated in San Juan with 7 MW of polycristalline silicon

panels installed capacity, with fixed tilt. This informa-
tion was also provided by CAMMESA . The comparison
is again acceptable, we show the daily values in Figure
10. The capacity factor simulated (0.21) is slightly higher
than measured (0.20). Correlation is very high, with an
hourly value of 0.93, probably dominated by the daily cy-
cle, as we see when we correlate daily values, obtaining
a lower result of 0.69. This can also be seen when calcu-
lating the root mean square error: RMSE between hourly
data is 48% of mean power, and RMSE between daily val-
ues is 23% of mean power.

0

0.05

0.1

0.15

0.2

0.25

da
ily

 C
F

, m
ea

su
re

d

2015-03-21 2015-09-21 2016-03-21 2016-09-21
0

0.05

0.1

0.15

0.2

0.25

days

da
ily

 C
F

, s
im

ul
at

ed

au equi w solst sp equi su solst au equi w solst sp equi su solst

Figure 10: Daily capacity factor of Chimberas solar
power plant: Measured, simulated using MERRA2 irradi-
ation data [42]. CF measured capacity factor: 0.20, sim-
ulated capacity factor: 0.21, hourly correlation = 0.93,
hourly RMSE = 48% of mean, daily correlation = 0.69,
daily RMSE = 23% of mean.

Maximums of power occur during autumn and spring
equinoxes, closely with summer solstices. This is because
solar panels are fixed with a tilt of 28o, which is the value
that maximizes the year round capacity factor. Moreeven,
for latitudes below 30 degrees summer solstice are the pe-
riods with least capacity if fixed panels are used.

1.1 Resources delivered by signed con-
tracts: comparison with demand and
future scenarios

Once wind and solar power time series were obtained, we
analyzed the overall (solar + wind) power time series of
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projected capacity, as described in the last column of Ta-
bles 4 and 5. These values correspond to current installed
and projected facilities up to RENOVAR 1.5, plus private
initiatives in Puerto Madryn and Manantiales Behr, result-
ing in a total 2458 MW of wind capacity and 924.5 MW
for solar capacity (an overall of 3382 MW). These values
certainly are subject to variations, as some of the projects
remain to be confirmed. We did not add power awarded
in RENOVAR 2.0 tender or later.

The resulting total output of the current projected and
existing facilities is shown in Fig. 11. Through the years
2015 and 2016 this distribution yielded a capacity fac-
tor of 47% for wind parks and 28% from solar parks.
The overall capacity factor was 42%, thus delivering 12.4
GWhr per year.

The time series shows maximums between 8hs and
20hs, peaking at 15hs. Monthly average does not show
a regular pattern. Winter 2015 and summer 2016/17 are
periods of high generation, and the hour of maximum pro-
duction occurred the 15th of November 2016 at 14:00hs
local time, where the hourly capacity factor was as high
as 89%.
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Figure 11: Power series from years 2015 and 2016 of
overall 3382.5 MW signed contracts as listed in tables
(4,5), consisting of 2458 MW of wind 924.5 MW of so-
lar. The overall capacity factor of 42%, with a coefficient
of variation of 37%. Solar sites mean capacity factor is
28% (coefficient of variation 110%) and wind parks mean
capacity factor is 47% (coefficient of variation 28%).

On the contrary, both autumns shows minimums. Spe-
cially autumn 2016 is an interesting case, where no wind
nor sun seemed to be present. In this period the Antarctic
Oscillation (AAO) had values much higher than average
affecting the weather of most Argentina. Here the hour of

minimum production occurred the 18th of May at 7:00hs
local time, with an average capacity factor of 6%.

We then compared these power production values
with the overall demand throughout the years 2015 and
2016. To do this we use consumption data provided by
CAMMESA , which is shown in Fig. (12). Demand
shows well defined annual, daily and weekly cycles.
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Figure 12: Power series demand from 2015 and 2016,
provided by CAMMESA. Average demand is 15.1 GW,
with peaks of 23 GW

Analyzing the contribution of current and projected
renewable facilities we see that they would have cov-
ered 8.7% of demand. We also analyzed the compat-
ibility between renewables and demand. Demand it-
self has a dispersion equal to σdemand = 2352 MW.
Subtracting the renewable power production during this
period yields a residual power series with dispersion
σdemand−renewables = 2385 MW. Also we note that
hourly peaks of demand would have been reduced from
23.2 GW to 21.3 GW; and hourly minimum of demand
reduces from 9.6 GW to 7.4 GW.

1.2 Adding further renewable capacity: op-
timizing to diminish intermitency ef-
fects

Next we analyzed how to add further wind and solar
power capacity, while minimizing intermittence effects.
As mentioned above, we have chosen our objective func-
tion to be the standard deviation of the residual power se-
ries, that are defined as demand minus wind and solar re-
newables generation. We chose to perform the optimiza-
tion on the groups described in Fig. 1 instead of individual
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Table 3: Some global characteristics from groups: capac-
ity factor, dispersion to mean relation and hourly correla-
tion with the solar group and demand. Groups 2 and 3 are
the ones most correlated with demand. Group 3 highly
decorrelates with group 10. (Data between 15th of Jan-
uary 2015 and 14th of January 2017)

Group C.F. σ/mean hourly correlation
solar gr. demand

1 0.36 1.01 -0.06 0.09
2 0.41 0.87 -0.06 0.12
3 0.50 0.54 -0.47 -0.12
4 0.47 0.66 -0.17 -0.02
5 0.45 0.62 -0.13 -0.01
6 0.44 0.67 -0.07 -0.03
7 0.46 0.66 -0.09 -0.02
8 0.53 0.58 -0.04 0.00
9 0.43 0.68 -0.17 0.05

10 0.26 1.13 1.00 0.05

facilities. This way allows a more robust method, avoid-
ing possible spurious solutions where most of the power
relies in few sites. It also allows the possibility to increase
capacity both by adding power to already known sites as
well as future new ones at each group, which span almost
all of the region.

In Table 3 the mean capacity factor and coefficient of
variation for each group is shown, as well as the hourly
correlation with demand and group 10 (solar sites).

Groups 10, 1 and 2 are the ones that show the highest
variability. Group 2 (Arauco) has the highest correlation
with demand, while group 3 is the most anticorrelated.
Group 3 is also the most anticorrelated with group 10,
with an impressive value of −0.47, in agreement with re-
sults shown in Fig. 3.

Now we calculated the optimized distribution of dif-
ferent renewable capacity additions in order to match the
residual power (after substracting the production of the
current facilities). Results are depicted in Fig. 13 a) and
b). Behavior of increasing (or decreasing) capacity with
the same distribution as currently projected is shown in
dashed lines. The result of adding further capacity, opti-
mizing the distribution between groups is shown in solid
lines. We describe three different scenarios of optimized
additional capacity: a) (+3.1 GW), b) (+6 GW) and c)

i)
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Figure 13: i) Plot of the standard deviation (σ) of residual
power -demand minus renewables- in different scenarios.
Dashed lines correspond to capacity with constant distri-
bution as currently projected. Red solid line corresponds
to future additional capacity optimized to diminish σ at
each value. Three cases (a, b and c) are analyzed be-
low. ii) Power capacity distribution in proposed groups
as in Fig. (1). As more renewable capacity is added, wind
power in group 3 (which is solar anticorrelated) and solar
capacity predominate.
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(+9.1 GW), and analyzed the distribution in each one of
them.

In a) (blue bars) the optimal solution adds capacity
mainly groups 2 and 1, solar sites (group 10) and group 9.
This combination yields a mean capacity factor of 0.39.
Dispersion of residual power time series results in 2402
MW, slightly above the initial case (2385 MW), showing
that up to this range of capacity there is room to compati-
bilize with current projects and demand.

Optimizing for additional 6 GW of capacity, which is
case b) (red bars), still adds power mainly to group 2
(Arauco), closely followed by groups 10 and 3. Also
groups 8, 4 and 5 are now considered. Capacity factor
is 0.40 and dispersion of residual power increases to 2504
MW. A transition is observed in which dispersion due to
added capacity is starting to prevail.

Finally, the best distribution of additional 9 GW (case
c, green bars) adds power to groups 10, 3 and 2 mainly
(CF = 0.40). In this case dispersion is 2656 MW, and in-
creases almost linearly if further capacity is added, show-
ing that new added capacity is distributed mainly to min-
imize its own dispersion. This explains the amount of ca-
pacity added in group 3, anticorrelating the demand but
compensating solar sites.

From this analysis we found that, focusing on disper-
sion only, the penetration of wind and solar facilities may
increase up to more or less 3 GW while dispersion almost
remains constant. From this point on, optimal distribution
focuses in compensating variations between groups. Here
group 3 stands out, as it compensates the solar cycle.

In Fig. 14 we plot the hourly averages of demand and
groups 3, 2 (Arauco) and 10 (solar sites). Here the an-
ticorrelation of group 3 and solar sites is evident, as it is
also the similarity between group 2 (Arauco) and demand.

Another way to analyze intemittency from a signal is
looking at the ramps plot. In this the hour to hour change
is calculated and with this data an histogram is built, clas-
sifying bins according to the magnitude of the change. In-
formation about the smoothness of the series can be ob-
tained from this histogram.

In Fig. 15 we show the ramps plot of demand, the
residual power after current projects and three hypotheti-
cal cases analyzed in Fig. 13. (Both positive and negative
variations are counted together).

There is a rapid increase in the number of events where
residual power changes is over 2 GW when renewable ca-
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Figure 14: Hourly averages of demand, groups 2 and 3
(from WRF data) and solar sites average (group 10)
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pacity is added. An optimization following this idea could
be developed, although it would be much more suscepti-
ble to spurious results in simulations.

2 Conclusions
This article analyzed the compatibility of wind and so-
lar resources with demand in Argentina, focusing in spe-
cific sites rather than a global study of the region. We
chose sites from locations of projects already in operation,
projects under construction or those awarded in recent
tenders. By working with these sites we assure the most
convenient places in terms of resource abundance, elec-
tricity grid accessibility and other feasibility concerns.
We gathered 46 wind sites and 19 solar sites that span
almost all the country.

In the first part of the article we studied correlation and
variability at the resource of each site. With this informa-
tion we separated sites in ten groups, 9 groups of wind
sites and a group including all solar sites. Within these
groups sites tend to show characteristic hourly, monthly
and annual cycle, although there are exceptions.

We found that distance affects correlation mainly be-
tween wind parks. In solar sites the hourly and seasonal
cycle of the sun prevails, and differences in cloudiness
is noticeable when looking at daily averages at some de-
gree, but only annual averages of irradiation are compara-
ble with wind decorrelation with distance.

Hourly, monthly and annual averages of sites show in-
teresting patterns, distinguishable between groups. Many
features are found analizing temporal variability, we high-
light here the complementarity between solar irradiance
and wind in central Argentina (El Jume, Achiras and
Rufino), and the great diversity between wind regimes.

Wind and solar power simulations during the years
2015 and 2016, based both on MERRA2 data and WRF
simulations. These simulations yielded, for current
projects, a capacity factor of 47% for wind parks and
28% for solar parks, resulting in an overall capacity fac-
tor of 42%. These facilities would have covered 8.7%
of the overall electricity demand in that period. Residual
demand (that is demand minus renewables) would have
slightly increased its dispersion (2385 MW) if compared
with the raw dispersion of demand (2352 MW), showing
good compatibility. Hourly peaks of demand would have

been reduced from 23.2 GW to 21.3 GW; and hourly min-
imum of demand from 9.6 GW to 7.4 GW.

An optimization of the distribution of wind and solar
facilities was performed for three scenarios of capacity
additions a) (+3 GW), b) (+6 GW) and c) (+9 GW). The
objective was to minimize the dispersion of the residual
demand. From this analysis we found that, focusing on
dispersion only, the penetration of wind and solar facili-
ties may increase in an additional of more or less 3 GW
while keeping dispersion almost constant. From this point
on, optimal distribution starts focusing in compensating
variations between groups.

In May 2016 a sharp decrease in resources ocurred. In
this period the set current projects would have reduced the
mean monthly capacity factor in about ∼ 30% respect to
the 2015-2016 average. This suggest a strong connection
between resources and the AAO parameter, as pointed out
in [4].

Overall there is a huge potential of wind and sun re-
sources in Argentina, and the diversity in temporal behav-
ior allows for great reduction on renewables intemitence.
Moreeven, interconnection with Chile Uruguay and Brasil
has the potential to mitigate intermittency even further.
We will investigate these possibilities in a near future.

References
[1] M. Albadi and E. El-Saadany. Overview of wind

power intermittency impacts on power systems.
Electric Power Systems Research, 80(6):627–632,
2010.

[2] C. L. Archer and M. Z. Jacobson. Supply-
ing baseload power and reducing transmission re-
quirements by interconnecting wind farms. Jour-
nal of Applied Meteorology and Climatology,
46(11):1701–1717, 2007.

[3] H. Beyer, J. Luther, and R. Steinberger-Willms.
‘power fluctuations from geographically diverse,
grid coupled wind energy conversion systems. In
European wind energy conference proceedings,
pages 306–310, 1989.

[4] E. Bianchi, A. Solarte, and T. M. Guozden. Large
scale climate drivers for wind resource in southern

14



Table 4: Wind parks installed and projected. Projected power values correspond to tenders up to RENOVAR 1.5, and
are supposed to be operative in 2019. Superscript denote the origin of the project: a: current operational (GENREN
and Resol. 108/11) b: RENOVAR 1, c: RENOVAR 1.5, d: RENOVAR 2, e : Resol. 202/16, f : private initiatives. WRF
values as well as all capacity factors correspond to the period from 2015-01-15 to 2016-01-14. Source: CAMMESA
[9] Online at http://dteceolico.unrn.edu.ar/ol3/

ID Gr. Province Location lat lon v̄h=100m [m/s] weibull k CF Power
MERRA WRF MERRA WRF MERRA WRF [MW]

1 1 Mendoza San Rafael -34.84 -69.33 5.04 8.49 1.77 1.68 0.19 0.36 e50
2 2 La Rioja Arauco -28.75 -66.75 3.98 7.36 2.01 2.00 0.09 0.41 a,b,c272
3 3 S. del Estero El Jume -29.42 -63.71 6.56 9.91 3.98 2.70 0.28 0.55 a8
4 3 Córdoba Achiras -33.14 -64.96 5.79 8.64 3.11 2.20 0.22 0.46 c48
5 3 Santa Fe Rufino -34.20 -62.90 5.72 9.08 3.46 1.80 0.20 0.48 b-
6 4 Buenos Aires Maipú -37.10 -57.80 7.16 8.80 3.29 2.45 0.36 0.50 b-
7 4 Buenos Aires Miramar -38.27 -57.83 8.29 - 2.63 - 0.45 - c98
8 4 Buenos Aires Necochea -38.56 -58.75 7.92 - 2.84 - 0.46 - c38
9 4 Buenos Aires Olavarrı́a -36.64 -60.34 6.83 8.59 3.09 2.43 0.33 0.49 d-
10 5 La Pampa Gral. Acha -37.43 -64.72 6.65 8.86 3.08 2.23 0.31 0.50 c37
11 5 Buenos Aires Tres Arroyos -38.82 -60.32 7.75 - 3.06 - 0.44 - b,c100
12 5 Buenos Aires Bahı́a Blanca -38.61 -62.34 7.84 - 3.02 - 0.45 - b,c,d-
13 5 Buenos Aires Cnel. Rosales -38.71 -62.53 7.87 - 3.02 - 0.45 - c-
14 5 Buenos Aires Bahı́a Blanca -38.36 -62.21 7.87 - 3.02 - 0.45 - b10
15 5 Buenos Aires Tornquist -38.50 -62.00 8.11 - 3.01 - 0.43 - e-
16 5 Buenos Aires Bahı́a Blanca -38.62 -62.02 8.11 - 3.01 - 0.43 - b100
17 5 Buenos Aires Bahı́a Blanca -38.67 -61.96 8.11 - 3.01 - 0.43 - c-
18 5 Buenos Aires Villarino -38.82 -62.70 7.72 - 3.15 - 0.43 - b99
19 5 Buenos Aires Buratovich -39.25 -62.62 7.82 - 3.27 - 0.44 - b50
20 5 Buenos Aires Villalonga -40.03 -62.66 7.93 - 3.18 - 0.45 - a,b50
21 6 Buenos Aires Carmen de Pat. -40.90 -62.83 8.14 - 2.91 - 0.44 - b-
22 6 Rı́o Negro Adolfo Alsina -40.80 -63.87 8.14 - 2.79 - 0.44 - c-
23 6 Rı́o Negro San Antonio -40.80 -65.20 7.74 - 2.48 - 0.44 - b-
24 6 Rı́o Negro Choele Choel -39.35 -65.59 7.50 - 2.88 - 0.41 - c100
25 7 Chubut Trelew -43.12 -65.26 8.58 - 2.68 - 0.48 - a,b,c248
26 7 Chubut Puerto Madryn -42.83 -65.08 8.58 - 2.68 - 0.48 - f300
27 7 Chubut Rawson -43.35 -65.18 8.47 - 2.46 - 0.47 - a101
28 7 Chubut Gastre -42.38 -69.28 9.73 - 2.45 - 0.53 - b-
29 8 Chubut Garayalde -44.71 -66.73 8.97 - 2.89 - 0.50 - b24
30 8 Chubut Malaspina -44.92 -66.99 9.30 - 2.77 - 0.51 - e50
31 8 Chubut Mles. Behr -45.67 -67.81 9.88 12.50 2.58 2.40 0.55 0.69 b,d,f100
32 8 Chubut C. Rivadavia -45.85 -67.50 9.54 - 2.35 - 0.52 - a3
33 8 Chubut C. Rivadavia -45.78 -67.67 9.54 - 2.35 - 0.52 - a6
34 8 Chubut P.del Castillo -45.79 -68.06 9.58 - 2.49 - 0.53 - b24
35 8 Santa Cruz Koluel Kaike -46.70 -68.40 9.13 - 2.52 - 0.51 - e220
36 8 Santa Cruz Las Heras -46.55 -68.95 9.05 - 2.45 - 0.50 - b97
37 8 Santa Cruz Pico Truncado -46.82 -67.94 8.62 - 2.68 - 0.47 - c-
38 8 Santa Cruz Jaramillo -47.18 -67.14 8.89 - 2.76 - 0.50 - c100
39 8 Santa Cruz Puerto Deseado -47.55 -66.18 9.06 - 2.94 - 0.52 - b-
40 8 Santa Cruz Piebra Buena -50.06 -69.12 9.02 - 2.56 - 0.51 - c-
41 9 Rı́o Negro Pilcaniyeu -40.73 -70.58 6.70 8.42 2.13 2.32 0.32 0.46 b50
42 9 Neuquén Zapala -38.86 -70.05 7.24 8.27 2.18 1.69 0.36 0.39 b-
43 9 Rı́o Negro Cerro Policı́a -39.83 -68.63 7.94 - 2.56 - 0.44 - b-
44 9 Neuquén Senillosa -38.93 -68.56 7.05 7.86 2.12 1.80 0.37 0.45 b-
45 9 Neuquén Confluencia -38.87 -68.23 7.41 - 2.37 - 0.40 - b75
46 9 Neuquén Picún Leufú -39.36 -69.04 7.48 - 2.23 - 0.41 - b-
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Table 5: Solar park projects awarded in RENOVAR 1 and RENOVAR 1.5 tenders. All projects are located in the North-
west region of Argentina, where the mean irradiances above 200 W/m2, over 300 W/m2 in two cases. Chimberas (fixed
panels) and San Juan 1 [14] (fixed, 1D and 2D tracking panels) are already operational projects. The rest of the projects
have 1D tracking panels except Cachaurı́ with fixed panels. Source: CAMMESA [9]

ID Name Province lat lon ¯Irr [W/m2] CF Power [MW]
47 Lavalle MENDOZA -32.71 -68.52 249 0.25 17.60
48 Lujan de Cuyo MENDOZA -33.07 -69.05 244 0.24 22.00
49 La Paz MENDOZA -33.48 -67.56 238 0.23 14.08
50 PASIP MENDOZA -33.04 -68.54 244 0.24 1.15
51 General Alvear MENDOZA -35.04 -67.66 232 0.23 17.60
52 Cafayate SALTA -26.03 -65.94 284 0.32 80.00
53 Nonogasta LA RIOJA -29.33 -67.42 262 0.27 35.00
54 Fiambala CATAMARCA -27.74 -67.64 283 0.31 11.00
55 Tinogasta CATAMARCA -28.04 -67.54 268 0.28 15.00
56 Saujil CATAMARCA -28.16 -66.22 264 0.27 22.50
57 Sarmiento SAN JUAN -31.97 -68.48 254 0.26 35.00
58 Anchoris MENDOZA -33.31 -68.89 259 0.26 95.50
59 Caldenes del Oeste SAN LUIS -33.30 -66.39 242 0.24 21.30
60 La Cumbre SAN LUIS -33.32 -66.17 234 0.24 24.75
61 Ullum SAN JUAN -31.30 -68.67 234 0.24 22.00
62 Iglesia- Guañizuli SAN JUAN -30.34 -69.27 280 0.31 80.00
63 Las Lomitas SAN JUAN -30.59 -67.52 255 0.26 1.70
64 La Puna SALTA -24.27 -66.20 304 0.35 100.00
65 Cauchari JUJUY -24.10 -66.73 313 0.27 300.00
66 Chimberas SAN JUAN -31.99 -68.54 246 0.20 7
67 San Juan 1 SAN JUAN -31.39 -68.68 246 0.22 1.2
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