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Abstract 
 
Projections indicate that solar energy will constitute 55% of total electricity capacity by 2050 in the 
US. Despite solar energy’s growing importance, few studies have analyzed the risks of country-
wide deployments of solar infrastructure due to extreme weather events such as hurricanes. This 
paper presents a probabilistic framework to evaluate the performance of solar infrastructure to 
generate energy during hurricanes, which often cause significant outages in the US. Our novel 
framework integrates recent data-driven models that capture two critical and compounding factors: 
transient cloud conditions that decrease irradiance and high winds that can cause permanent panel 
damage. We apply the framework to the 2694 counties in the 38 Central and Eastern US states to 
elucidate the risk landscape of solar generation during hurricanes. Our results show that hurricane 
impacts are significant, compounding, and strikingly disproportional in the US. We show that in 
Florida and Louisiana, clouds rapidly reduce solar generation to 32% and 65%, respectively, of 
their normal levels with a return period of 100 years. Our results also show that damage to panels 
can induce more acute and permanent energy losses a few days after landfall, especially in rarer 
storms, e.g., causing 80% more losses than hurricane clouds two days after landfall for 200-year 
events. 
 
Synopsis: A new methodology to model solar generation during hurricanes shows substantial 
regional variability in the environmental risk landscape of solar infrastructure in the US. 
 
Keywords: solar panels; energy resilience; hurricane risk; solar irradiance; wind damage. 
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Introduction  

 
Ensuring continuous electricity delivery is key to supporting communities in responding and 
recovering from extreme natural events. Nevertheless, the grid is far from resilient. Hurricane Maria 
in 2017, for example, caused one of the longest and largest power outages in modern United States 
(US), which left half of Puerto Rico without power for at least four months.1 Last year, Hurricane 
Ida damaged 30,000 utility poles, leaving 1.2 million customers without power across eight states2, 
ranking as the costliest disaster in the world in 2021.3 
 
Governments are investing aggressively in upgrading the grid to enhance resilience. Through the 
Bipartisan Infrastructure Law, the US Department of Energy (DOE) will provide USD 2.3 billion over 
the next five years to strengthen US power systems against extreme weather.4 Furthermore, 
through the Bipartisan Infrastructure Law and the 2022 Energy Act, the US will invest even more 
ambitiously (USD 62 billion) in accelerating renewable adoption, including solar energy, to achieve 
net-zero electricity by 2035 and become a net-zero economy by 2050.5 Motivated by the need to 
plan for these large-scale investments holistically, this paper studies the large-scale risk landscape 
of solar generation to hurricanes across the entire Central and Eastern US. 
 
We focus on solar panels because the US Energy Information Administration (EIA) projects them 
to constitute 55% of total electricity capacity by 20506 and also because they have a high potential 
to increase resilience when deployed as a distributed energy resource. In fact, the USD 2.3-billion 
investments to modernize the grid include utilizing distributed energy resources as a key pillar to 
enhance resilience4. For example, rooftop solar panels and behind-the-meter batteries together 
can provide continuous energy to communities in an outage in the main grid.7,8 Despite these 
opportunities, little is known about the ability of panels to generate electricity during hurricanes. 
 
Extensive energy system models can assess disruptions in power systems,9–11 enabling the design 
of strategies for risk mitigation (e.g., grid hardening) or emergency response (e.g., grid operations 
and repairs).12–19 Nevertheless, these studies build on critical assumptions about electricity 
generation during extreme weather events, especially for solar energy during hurricanes. Many 
studies focus on damage to the distribution lines, not considering that extreme weather events also 
damage infrastructure for energy generation.15,17–19 Recent observations have shown extensive 
wind-induced failures in rooftop and ground-mounted panels after Hurricane Irma, Maria, and 
Dorian in 2017 and 2019.20–22 Other system models assume that energy sources remain constant 
during extreme weather events, neglecting transient environmental effects.12–14,16,23 Yet, hurricanes 
bring optically-thick clouds that can absorb and reflect light and thus decrease generation 
drastically, e.g., to a fifth,24 during a hurricane emergency.25 
 
Current system models cannot capture these effects because no existing quantitative methods take 
them into account. These effects are complex as they are compounding and dynamic, i.e., they co-
occur with conditions that vary rapidly over a storm’s lifespans. DOE, energy regulators, and utility 
companies must account for these acute effects to assess the risk of solar generation losses and 
strategize a risk-informed response to outages and an effective deployment of solar energy for grid 
resilience. 
 
To address this research gap, we present a probabilistic framework to quantify solar generation 
during hurricanes. This framework integrates recently developed data-driven models to capture the 
stochasticity in panels’ structural performance and the intermittency of solar generation during 
hurricanes. We first apply the framework to study Miami-Dade, Florida, which faces high hurricane 
hazards26,27 and large-scale hurricane-triggered outages.28 Then, we extend the study to the 38 
Central and Eastern US states at the county level to elucidate the risk landscape of solar 
generation. We reveal considerable variability in solar generation risks, highlighting where and 
when wind-induced panel failures and cloud-driven irradiance reduction are critical.  Performing 
energy system studies to assess the implications of these energy losses on power delivery falls 
outside this paper’s scope. Instead, we apply the proposed methodology to the US to create risk 
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maps of solar generation to help inform the response of utility operators during hurricanes and long-
term investments in solar panels for grid resilience.  

Materials and Methods  

Compounding solar energy losses due to storms. We assess the time series of solar generation 
during hurricanes (Figure 1). Consider that 𝑃 is the solar power generated during a storm and 𝐸 is 

the total harvested energy until time 𝑡𝑓 in the hurricane emergency. Thus, 

 
𝐸 = ∫ 𝑃𝑑𝑡

𝑡𝑓

0

 
(1) 

 

If 𝐸̅ is the counterfactual energy, i.e., the harvested energy that would have been collected at the 
same site and time in the absence of the hurricane, then  
 𝐸̅ = 𝐸 + Δ𝐸𝑐 + Δ𝐸𝑑 (2) 

where Δ𝐸𝑐 and Δ𝐸𝑑 are the energy losses due to could conditions and damage to the panels, 
respectively. Power generation is first affected by the cloud conditions brought by hurricanes25, 
reducing the irradiance that reaches the panel according to hurricane intensity and proximity. When 
the hurricane leaves and it is at a sufficient distance away from the site, 𝑃 will bounce back to 
normal levels. Thus, Δ𝐸𝑐  is transient.  In contrast, if wind conditions are high enough, the panel will 

be damaged and remain unfunctional, driving power generation 𝑃 to be permanently 0, starting at 

𝑡 = 𝑡𝑑, until the panel is repaired or replaced.29 Thus, Δ𝐸𝑑 grows indefinitely, and the cumulative 
electricity generation 𝐸 will become flat at 𝑡 = 𝑡𝑑 until the panel is functional again. If there is no 

failure, Δ𝐸𝑑 will always be 0. 
 

  

Figure 1. Conceptual illustration of solar generation losses during hurricanes. Left: Instantaneous solar 
power generation. Right: Cumulative solar energy. The dashed blue line shows solar power and 
accumulated energy in a non-damaged solar panel during five days, i.e., from 𝑡 = 0 to 𝑡 = 𝑡𝑓. The dotted 

black lines show the counterfactual scenario, energy in the absence of the hurricane, highlighting the 
reduction in losses from hurricane cloud conditions 𝛥𝐸𝑐 – area in black in left figure and difference between 
ordinates in right figure.  The solid blue line shows the generation and power for a panel the is damaged at 
𝑡 = 𝑡𝑑 due to high hurricane winds. The panel is unable to generate energy after 𝑡 = 𝑡𝑑, generating 

additional energy losses 𝛥𝐸𝑑 – area in blue in left figure and difference between ordinates in right figure. 
Notice that generation will bounce back to normal levels as soon as the hurricane leaves if the panel is 
undamaged. If the panel is damaged, generation will be 0 after 𝑡 = 𝑡𝑑 until it is repaired or replaced. Notice 
this conceptualization is valid for either small residential rooftop panel arrays or large ground-mounted 
arrays for utility companies. 

 
To assess the relative effect of these two factors on the total solar generation, we use two 
multiplicative factors to characterize solar generation during hurricanes 
 

𝐸 =
𝐸̅

𝐴𝑐𝐴𝑑
 

(3) 

where 𝐴𝑐 is a reduction factor that accounts for the energy losses due to the optically thick clouds 
reducing irradiance and is given by 
 

𝐴𝑐 =
𝐸̅

𝐸̅ − 𝛥𝐸𝑐
 

(4) 
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and 𝐴𝑑 is the reduction factor that accounts for the energy losses due to failures in the solar panel 
structural system and is given by   
 

𝐴𝑑 =
𝐸̅ − 𝛥𝐸𝑐

𝐸
 

(5) 

Framework for simulating time-series of solar generation during storms. To evaluate these 
compounding effects, we model solar generation during storms in four stages (Figure 2). We based 
our assessment on ~50,0000 Monte Carlo simulations to capture the spatiotemporal complexities 
in the factors affecting generation. We first used simulations of landfalling synthetic hurricanes 
representative of the current climate in the Atlantic Basin30. These simulations of synthetic 
hurricanes track the maximum wind (and thus category 𝐶), storm size, and location of the 

hurricane’s center, which enables the computation of its distance 𝑑 to any site. This information is 
modeled at a fine temporal resolution of 2 hours, critical to capture intra-day variations of solar 
irradiance and rapid wind intensifications that can damage panels. In the second stage, we assess 

solar irradiance during hurricanes (𝐼ℎ) using a recently developed mixed-regression model.25 To 
capture the physics of irradiance decay with hurricanes, this model estimates irradiance decay as 
a function of hurricane category 𝐶 and distance 𝑑 normalized by storm size. In the third stage, solar 

panel functionality 𝐹 (1 if there is no structural damage and 0 otherwise) and time-to-damage 𝑡𝑑 
are estimated stochastically. To account for these impacts on the panels’ structural system, we use 
a study29 that linked the likelihood of panel damage to varying winds (𝑊) in hurricanes. We further 

detail stage 1, 2, and 3’s models in the following subsections. In the fourth stage, we use 𝐼ℎ, 𝐹, and 
𝑡𝑑 to compute the synthetic time-series of instantaneous solar generation 𝑃 and cumulative energy 

𝐸.  

 

Figure 2. Overview of proposed probabilistic framework to estimate the times series of solar generation 

during hurricanes. The analysis builds on the probabilistic modeling of hurricane hazards, solar damage 

due to high winds, and irradiance decays under hurricane cloud conditions to estimate the resulting solar 

generation. 

 
For a panel, with efficiency 𝜂 (the ratio of energy that is converted into electricity form the solar 

energy reaching the panel) and area 𝑎, the instantaneous solar generation is  
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 𝑃 = 𝐹𝐼ℎ𝑎𝜂 (6) 

 
If we isolate the effect of hurricane clouds (not considering panel failure), then 𝐹 = 1  and 
 
 𝑃 = 𝐼ℎ𝑎𝜂 (7) 

 
Additionally, in regular conditions,  
 
 
 𝑃̅ = 𝐼𝑎𝜂 (8) 

 
where 𝐼 is irradiance in the absence of a hurricane. Thus,  
 
 

𝛥𝐸𝑐 = 𝑎𝜂∫ (𝐼 − 𝐼ℎ)𝑑𝑡
𝑡𝑓

0

 
(9) 

 
We then estimate our metrics for compounding effects reducing solar generation through the 
factors 𝐴𝑐 and  𝐴𝑑. From Equation (4),  
 
 

𝐴𝑐 =
𝑎𝜂 ∫ 𝐼𝑑𝑡

𝑡𝑓
0

𝑎𝜂 ∫ 𝐼𝑑𝑡
𝑡𝑓
0

− 𝑎𝜂 ∫ (𝐼 − 𝐼ℎ)
𝑡𝑓
0

𝑑𝑡
=

∫ 𝐼
𝑡𝑓
0

𝑑𝑡

∫ 𝐼ℎ
𝑡𝑓
𝑡0

𝑑𝑡
 

(10) 

 
Similarly, from Equation (5), 
 
 
 

𝐴𝑑 =
𝑎𝜂 ∫ 𝐼𝑑𝑡

𝑡𝑓
0

− 𝑎𝜂 ∫ (𝐼 − 𝐼ℎ)
𝑡𝑓
0

𝑑𝑡

𝑎𝜂 ∫ 𝐹𝐼ℎ𝑑𝑡
𝑡𝑓
0

=
∫ 𝐼ℎ𝑑𝑡
𝑡𝑓
0

∫ 𝐹𝐼ℎ𝑑𝑡
𝑡𝑓
0

=
∫ 𝐼ℎ𝑑𝑡
𝑡𝑓
0

∫ 𝐼ℎ𝑑𝑡
min⁡(𝑡𝑑,𝑡𝑓)

0

 
(11) 

 
Limiting behavior of compounding factors. Using L’ Hospital’s rule for the limiting behavior of 
𝐴𝑐,  
 
 

lim
𝑡𝑓→∞

⁡⁡𝐴𝑐 =
∫ 𝐼
𝑡𝑓
0

𝑑𝑡

∫ 𝐼ℎ
𝑡𝑓
𝑡0

𝑑𝑡
= lim

𝑡𝑓→∞

𝐼

𝐼ℎ
 

(12) 

 
Because the hurricane eventually leaves or gets dissipated,  
 
 lim

𝑡𝑓→∞
𝐼ℎ = lim

𝑡𝑓→∞
𝐼 (13) 

 
Thus,  
 lim

𝑡𝑓→∞
⁡⁡𝐴𝑐 = 1 (14) 

 
In the case of 𝐴𝑑, if the panel does not fail, then 𝐹 = 1, and 𝑡𝑑 = ∞. Thus, 
 
 

𝐴𝑑 =
∫ 𝐼ℎ𝑑𝑡
𝑡𝑓
0

∫ 𝐼ℎ𝑑𝑡
𝑡𝑓
0

= 1 
(15) 

 
If the panel fails, 𝑡𝑑 < ∞ and 
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lim
𝑡𝑓→∞

⁡𝐴𝑑 =

lim
𝑡𝑓→∞

∫ 𝐼ℎ𝑑𝑡
𝑡𝑓
0

∫ 𝐼ℎ𝑑𝑡
𝑡𝑑
0

= ∞ 

(16) 

 

Solar Irradiance during storms. 𝐼ℎ is the irradiance, e.g., Global Horizontal Irradiance, during 
hurricane conditions and can be estimated as 
 
 𝐼ℎ = 𝐼𝑒𝑓(𝑅,𝐶) (17) 

where 𝐼 is irradiance under normal conditions, i.e., without a hurricane, at the time and location of 

interest. 𝑓(𝑅, 𝐶) is an irradiance decay equation as a function of the normalized proximity from the 

site to the hurricane center 𝑅 and hurricane intensity 𝐶. This irradiance model was recently 

calibrated to ~0.75 M data points25 from the 20-years of intense storm activity archived in the 

Atlantic hurricane dataset (HURDAT2)31 and high-resolution spatiotemporal dataset of Global 

Horizontal Irradiance (GHI) from the National Renewable Energy Laboratory (NREL)32. Notice that 

𝑅 and 𝐶 are highly variable in time, thus 𝐼ℎ is highly dynamic. Furthermore, 𝐼ℎ is stochastic as 𝐼 is 

also random. Equation (17) implies that if 𝐼 is modeled with a lognormal distribution, 𝐼ℎ is also 

lognormally distributed, with a logarithmic mean that is reduced by the factor 𝑓(𝑅, 𝐶). Empirically, 

this factor can be assessed as25 

 

𝑓 = {
(0.0965𝐶 + 1.97)𝑙𝑛⁡(

𝑅 + (−0.126𝐶 + 1.15)

2.48 − 0.139𝐶
)

𝑅 + (1.15 − 0.126𝐶)

2.48 − 0.139𝐶
≤ 1

1
𝑅 + (1.15 − 0.126𝐶)

2.48 − 0.139𝐶
> 1

 

(18) 

 

where 𝐶 is the hurricane intensity in the Saffir-Simpson wind scale and 𝑅 is the distance from the 

site of interest to the hurricane center, normalized by the hurricane’s radius of the outermost closed 

isobar (ROCI). ROCI is estimated from the synthetic storms’ size using an empirical equation25. 

Supplementary Figure 1 shows 𝑓 for multiple values of 𝐶 and 𝑅. Following the procedure in Ceferino 

et al., 202225, irradiance at the site is sampled using a lognormal distribution fitted to each county’s 

20-year history of irradiance32, for every two hours during the lifespan of each synthetic hurricane. 

Damage to panels during storms. High hurricane winds increase the likelihood of panels’ 
structural failure and loss of functionality. The functional form of damage likelihood, i.e., fragility 
function, is typically defined as a cumulative density function of the logarithm, and it uses natural 
hazards’ intensities as input, like maximum wind for hurricanes or spectral acceleration for 
earthquakes. Accordingly, we utilized the following fragility function recently calibrated29 with a 
ground-truth data on panel structural performance after Hurricane Irma and Maria in 2017 and 
Dorian in 201920–22 
  
 

𝑞 = 𝛷 (
𝑙𝑛⁡(𝑊) − 𝑙𝑛⁡(80)

0.32
) 

(19) 

 

where 𝑊 (m/s) is 3-second gusts at a site. Supplementary Figure 2 shows 𝑞 for multiple values of 

𝑊. Damage is only caused by high-intensity hurricanes. For hurricanes reaching a category of 1, 

𝑊 is 42 m/s (after transforming 1-m sustained winds to 3-second gusts with an empirical formula33), 

and 𝑞 is only 0.02. It takes an intensity of 4 (𝑊 = 74⁡m/s) to increase the probability of failure to 

0.4. In our model 𝐹 equal 1 until 𝑡𝑑 and 0 after. If the panel is undamaged, then the time to failure 

𝑡𝑑 = ∞. Thus, 𝑡 = ∞ with probability of 1 − 𝑞𝑚𝑎𝑥, where 𝑞𝑚𝑎𝑥 is the maximum 𝑞 induced at the site 

of interest during the lifespan of the hurricane. Otherwise, if 𝑡𝑑 < ∞, i.e., there is a failure.  
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We modeled the time to failure stochastically, with probability of failure at time 𝑡⁡proportional to the 

varying values of 𝑞 during the hurricane’s lifespan. While high-resolution and high-fidelity structural 

analysis models may better capture 𝑡𝑑, this simplified approach accounts for the fact that it is more 

likely to have failures during the highest wind conditions imposed by hurricanes. 

Hurricane Simulation. We used a synthetic hurricane database with 5018 landfalling storms in 
the United States’ Atlantic Coast, and simulated 10 time series of solar generation for each storm, 
reaching to ~50,000 simulations. The synthetic hurricanes were generated in a previous study30 
using a statistical-deterministic tropical cyclone model. These synthetic hurricanes account for 
current climate conditions, representative of hurricane activity from 1980 to 2005 according to the 
National Center for Environmental Prediction (NCEP) reanalysis. The model that generates these 
storms consists of three stages: a probabilistic genesis model; a probabilistic beta-advection motion 
model; and a deterministic model that captures how environmental factors influence storm 
development and intensity.34 The model solves the synthetic storms’ tracks, maximum sustained 
winds, and radii of maximum winds, and we use its results at 2-hour intervals. We estimated the 
total wind fields with a complete wind profile model35 and background winds.36 According to the 
current hurricane occurrence rate, the total ~50,000 simulations are representative of ~15,000 
years of simulation of solar generation during storms. 
 
 

Results and Discussion 
 
We studied the impact of a large number of synthetic storms30 making landfall on the US Atlantic 

Coast. The storm simulations account for current climate conditions and include the assessment of 

the synthetic storms’ tracks, sizes, and wind fields at 2-hour intervals. We determined 𝐴𝑐 and 𝐴𝑑 at 

this high temporal resolution to capture intermittency of solar generation within a day and its 

seasonal variability during storms, which occur at different monthly rates.37  

To capture different risk levels, we use our probabilistic approach to estimate the return periods 

(𝑅𝑃𝑠) for the total reduction factor, 𝐴𝑐𝐴𝑑, as the inverse of the annual exceedance rates 𝜆. Using 

the 𝑛 Monte Carlo simulations, we computed the empirical estimate of this rate as 

 
𝜆̂(𝐴𝑐𝐴𝑑 > 𝑥) =

∑ 1{𝐴𝑐
𝑖𝐴𝑑

𝑖 ⁡> 𝑥}𝑛
𝑖=1

𝑇
⁡ 

(20) 

where 𝑥 is the threshold of interest. The summation computes the number of simulations (with 

index 𝑖) that exceed the threshold, and 𝑇 is the equivalent number of years of simulation. We 

followed a similar procedure to calculate the 𝑅𝑃s for 𝐴𝑐 and 𝐴𝑑. 

Risk of Solar Generation in Miami-Dade. We utilized our proposed framework to first generate 
~50,000 Monte Carlo simulations of the time series of 𝑃 and 𝐸 in Miami-Dade, Florida 
(Supplementary Figure 3).  We characterized the occurrence of energy losses probabilistically, 
estimating different levels of total reduction factor, i.e., 𝐴𝑐𝐴𝑑 ⁡(Equation (3)), and their associated 

return periods 𝑅𝑃 (Equation (20(3)). The total reduction factor was assessed for the total harvested 

solar energy starting the day before hurricane landfall, i.e., 𝑡 = 0, because important energy losses 
also occur when the hurricane’s center is still on the ocean but nearing the coastline 25,38.  
 
Our simulations capture how more extreme events (longer 𝑅𝑃) trigger larger solar energy losses, 

i.e., large total reduction factors 𝐴𝑐𝐴𝑑, across the wide range of return periods at landfall, and one 

(𝑡𝑓 = 24ℎ), two (𝑡𝑓 = 48ℎ) and three (𝑡𝑓 = 96ℎ) days after (Figure 3a). We show that frequent events 

will induce large energy generation losses, with total reduction factors increasing sharply in the 
initial return period range. Miami-Dade will lose 70, 63, 52, and 40% of its solar generation, i.e., 
𝐴𝑐𝐴𝑑 of 3.3, 2.7, 2.1, and 1.67, at landfall, and one, two and three days after, respectively, for 
hurricane emergencies happening on average every 50 years (𝑅𝑃 = 50 years).  
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Figure 3. Return periods for different levels of relative energy loss due to hurricanes for Miami-Dade, 

Florida. Left: The relative energy loss is depicted through total reduction factors, 𝐴𝑐 × 𝐴𝑑, equal to the 

cumulative energy harvested by the panel until landfall and one, two and three days after (𝑡𝑓 =

24, 48, 72, 96ℎ) compared to the counterfactual event, i.e., generation in the absence of a hurricane. 95-% 

Confidence are estimated using 𝜒2 distributions for Poisson rate estimates39 and are shown as shaded 

areas. Right: The total reduction factor is decomposed in its two factors, 𝐴𝑐 and 𝐴𝑑, for cumulative energy 

until 72 hours after landfall (𝑡𝑓 = 96ℎ) to highlight the contributions of cloud conditions and panel damage 

in the energy losses for different return periods. 

 
Time-variant contributions of reduction factors. We observe that the total reduction factor is 
bigger at landfall than three days after for the “frequent” events (Figure 3a). However, they reach 
similar values, 𝐴𝑐𝐴𝑑 of ~3.4 for hurricanes with 𝑅𝑃 of ~90 years. For rarer events, the order flips, 
and energy losses increase over time after landfall in Miami-Dade, due to the varying contributions 
of the factors 𝐴𝑐 and 𝐴𝑑 through the wide range of return periods (Figure 3b). 𝐴𝑐 is initially bigger 

than 𝐴𝑑 until they reach a similar value of 1.7 for a 𝑅𝑃 of ~90 years for 𝑡𝑓 = 96ℎ. This 𝑅𝑃 threshold 

coincides with the transition from increasing to decreasing values of 𝐴𝑐𝐴𝑑 as a function of 𝑡𝑓. 

Empirically, we demonstrate that this transition is dominated by the change in the energy loss 
mode, from predominantly transient and cloud-induced to permanent and damage-induced losses.  
 

We also observe transient but strong cloud-induced energy losses especially for small 𝑡𝑓. For 

example, at 𝑡𝑓 = 6ℎ, i.e.,⁡18 hours before landfall, hurricanes with 𝑅𝑃 of 200 years will trigger losses 

of 68% (Figure 4a), almost entirely due to the hurricane clouds (𝐴𝑐 = 3.1 and 𝐴𝑑 = ~1). Cloud-

induced losses will reach their maximum values of 77% (𝐴𝑐 = 4.4) for 24 < 𝑡𝑓 < 36ℎ (between 

landfall and the 12 hours after). This observation is consistent with presence of optically thick cloud 
structures (with high moisture levels and vertical depths) in the hurricane eyewalls40 that will cover 
Miami-Dade after landfall. More frequent events can also induce large energy losses. Clouds from 

storms with 𝑅𝑃 of only 9 years will induce losses of 50% (𝐴𝑐 = 2) at 𝑡𝑓 = 6ℎ. These strong cloud 

effects are transient. Thirteen days after landfall, 𝐴𝑐 is only 1.19, which is a modest energy loss of 
11% for an extreme event with return period of 200 years (Figure 4a). Notice that in the limit, cloud-
induced losses will be negligible, i.e., 𝐴𝑐 = 1 (Equation (14)). 
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Figure 4. Time-varying behavior of compounding factors 𝐴𝑐 and 𝐴𝑑 across different return periods. Left: 

Reduction factor due to cloud conditions (𝐴𝑐). Right: Reduction factor due solar panel damage (𝐴𝑑). The 
reduction factors are estimated for cumulative energy losses starting at 24 hours after landfall until different 
𝑡𝑓 values, i.e., the values of 𝐴𝑐 and 𝐴𝑑 for 𝑡𝑓 = 6ℎ correspond to cumulative since 24 hours before landfall 

until 18 hours before landfall. 

 
Less frequent events (𝑅𝑃 > ~90 years) can have permanent effects on energy (Figure 4b). 𝐴𝑑 is 

close to 1 for⁡𝑅𝑃 < ~90 years for all values of⁡𝑡𝑓, and then, it grows steadily as a function of the 

return period given that these extreme events will induce higher solar panel damage likelihoods 

(Supplementary Figure 2). In contrast to 𝐴𝑐, 𝐴𝑑 is close to 1 (below 1.03), i.e., no effects, until 𝑡𝑓 =

36ℎ (12 hours after landfall) even for very extreme events with 𝑅𝑃 of 1,000 years, demonstrating 
that storms require additional time to be near the site and damage panels. If the panel is damaged, 
then energy losses will grow to infinite unless the panel is repaired or replaced (Equation (16)). 

Accordingly, the factor 𝐴𝑑 becomes rapidly dominant for damaged panels. For storms with 𝑅𝑃 of 

200 years, the ratio between 𝐴𝑑 and 𝐴𝑐 is 0.4 at 𝑡𝑓 = 48ℎ, but it increases to 1.8 only 48ℎ after 

(Figure 4). These results demonstrate that structural reliability is critical for generation reliability 
during a hurricane emergency. 
 
Storms’ features driving bigger energy losses: We de-aggregated the storm simulations to 
assess the storm features driving large energy losses quantitatively. We analyzed the joint 
probability distribution of category 𝐶 and distance to the site 𝑑, empirically, utilizing 500,000 Monte 
Carlo simulations instead of 50,000 to estimate these joint distributions more smoothly. We 
analyzed the drivers for energy losses of 33% and 50%, i.e., 𝐴𝑐𝐴𝑑 of 1.3 (𝑅𝑃 of 12 years) and 2 

(𝑅𝑃 of 58 years), at 𝑡𝑓 = 96ℎ (Figure 5). The average hurricane categories that caused these losses 

were 3.1 and 3.6, and the average closest distances are 66 and 33 km, respectively. Hurricane 
cloud conditions rather than high winds drove the reduction factor of 1.3 as 88% of the events did 
not cause panel failure. 33% of these synthetic storms did not reach hurricane categories beyond 
two, and 44% were more than 50 km away, indicating that the 1.3 reduction factor can be caused 
by events distant from the site. For the reduction factor of 2, panels experienced failures in 69% of 
the simulations, indicating that significant panel damage can occur even at return periods lower 
than 90 years, as discussed above. Moreover, 72% of the simulations had storms with categories 
above three, and 90% had distances from the track to the site of 50 km or less. These results are 
consistent with frequent observations of hurricane’s maximum winds at radii between 20 and 80 
km.41 
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Figure 5. Analysis of the drivers of energy capacity loss through de-aggregation of the simulations for 
Miami-Dade, Florida. Left: 𝐴1𝐴2 = 1.3⁡(𝐴𝑐 = 1.29, 𝐴𝑑 = 1.01, 𝑅𝑃 = 12⁡𝑦𝑒𝑎𝑟𝑠). Right: 𝐴1𝐴2 = 2⁡(𝐴𝑐 =
1.59, 𝐴𝑑 = 1.26, 𝑅𝑃 = 58⁡𝑦𝑒𝑎𝑟𝑠). The plots show histograms of the storms’ features that triggered 
generation losses of 33 and 50%, respectively, or lower. The black portion of the plot represents losses 
associated to structural failures and the white ones represent losses due to hurricane clouds. The plots 
highlight that larger capacity losses are driven by structural failures rather than hurricane cloud conditions.  

 
Annual rates of panel failure in Central and Eastern United States: We extended the analysis 
to the entire Central and Eastern United States and generated 50,000 Monte Carlo simulations for 
their 2694 counties in 38 states. We first focused on simulations of structural damage to assess 
the spatial distribution of 𝑅𝑃⁡and reliability indexes of panel failures. As defined in the ASCE7-1642, 

the structural index 𝛽 is estimated as the cumulative distribution function for a standard normal 
random variable evaluated on the probability of infrastructure survival (the complementary of 
failure) in 50 years. Thus, 
 

 𝛽 = Φ−1(exp(−50𝜆𝑓)) (21) 

 
where 𝜆𝑓 is the annual probability of panel failure, equal to the inverse of 𝑅𝑃. We estimated 𝜆𝑓 

empirically from the 50,000 Monte Carlo simulations in the 38 states, as in a Maximum Likelihood 

Estimation of a Poisson distribution’s rate, and then computed 𝑅𝑃 (Figure 6a) and 𝛽 (Figure 6b). 

We show that Florida and Louisiana face the highest failure risks due to hurricanes, with average 

𝑅𝑃 of 174 years and 265 years across all their counties. 55% and 41% of the counties in Florida 

and Louisiana have 𝑅𝑃 of panel failure below 200 years. Our results also show that Texas, 

Mississippi, Alabama, Georgia, and Southern and Northern Carolina also have high risks, where 

installed solar panels will experience failures with 𝑅𝑃 below 600 years in 19%, 22%, 19%, 26%, 

24%, and 12% of their counties, respectively.  
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Figure 6. Spatial distribution of return period of structural failure and reliability index for solar panels located 
on different counties in Central and Eastern United States. Left: Return Period. Right: Structural Reliability 
Index. The plot highlights that Southern United States have significantly lower reliability than threshold. 

 
Using results from a recent reliability study that assessed wind loads and capacities according to 
ASCE7-1643, we estimated that a structure well designed for Risk Category II (winds with a 700-
year return period) should have a 𝛽 at or above 2.3.42 For the Risk category I (winds with a 300-
year return period), the lowest design standard in ASCE7-16, a well-designed structure should 
achieve a 𝛽 value at or above 1.9.29,42,43 Our results indicate that the panel installations in Texas, 
Louisiana, Mississippi, Alabama, Florida, Georgia, and Southern and Northern Carolina have 𝛽 
values below 1.9 in 62% of their counties. Thus, these results reveal extensive structural 
vulnerabilities and highlight that panels are below all ASCE7-16 standards for resilience in large 
regions in Southern US (Figure 6b). 
 
Spatial Distribution of Solar Generation Losses in Central and Eastern United States: Next, 
we assessed generation during storms in Central and Eastern US. We generated 50,000 Monte 
Carlo Simulations of the time series of 𝑃 and 𝐸 for panels in the 2694 counties’ centroids (see 
example in Texas and North Carolina in Supplementary Figure 4). Similar to the analysis in Miami-
Dade, we determined the reduction factors 𝐴𝑐 and 𝐴𝑑 at different return periods. We focused on 

cumulative energy at 𝑡𝑓 = 24⁡ℎ (Figure 7), 48⁡ℎ (Supplementary Figure 5), 72⁡ℎ (Figure 8) and 96⁡ℎ 

(Supplementary Figure 6). 
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Figure 7. Spatial distribution of energy generation losses for uniform risk targets (associated to return 
periods) in Central and Eastern United States and the compounding factors for energy losses at landfall 
(𝑡𝑓 = 24ℎ). Upper Left: 𝐴𝑐 for events with 100-years of return period. Upper Right: 𝐴𝑐𝐴𝑑 for events with 

100-years of return period. Middle Left: 𝐴𝑐 for events with 300-years of return period. Middle Right: 𝐴𝑐𝐴𝑑 

for events with 300-years of return period. Lower Left: 𝐴𝑐 for events with 700-years of return period. Lower 

Right: 𝐴𝑐𝐴𝑑 for events with 700-years of return period. 

 
The spatial distribution of 𝐴𝑐 at 𝑡𝑓 = 24ℎ⁡reveals that hurricane clouds will induce significant energy 

losses at landfall even at tens of kilometers away from the Southern and Eastern coastline (Figure 
7). For 𝑅𝑃 of 100 years, Florida and Louisiana will only harvest 32% (𝐴𝑐 = 3.13) and 65% (𝐴𝑐 =
1.54) of their regular solar energy on average across all their counties, with hardest-hit counties 

generating only at 23% (𝐴𝑐 = 4.27) and 27% (𝐴𝑐 = 3.65), respectively. More extreme events will 

increase the intensity and the spatial extent of high energy losses. For 𝑅𝑃⁡of 300 years, Florida and 
Louisiana will only harvest 21% (𝐴𝑐 = 4.80) and 50% (𝐴𝑐 = 2.01) on average across all their 

counties. For 𝑅𝑃⁡of 700 years, they will only harvest 25% (𝐴𝑐 = 4) and 54% (𝐴𝑐 = 1.84), with 

hardest-hit counties generating only at 17% (𝐴𝑐 = 5.83) and 18% (𝐴𝑐 = 5.46) of regular capacity, 
respectively. All Southern and Central counties near the coastline up to the ones in Virginia, 
Maryland and Delaware will have reduced generation equal or below 33% due to the storm clouds 
(𝐴𝑐 > ~3).  
 

Our results show that compounding effects will be critical only after 𝑡𝑓 = 24ℎ, i.e., at landfall. Before, 

𝐴𝑐𝐴𝑑 is almost equivalent to 𝐴𝑐 across the different levels of storms’ return periods for all counties 

(Figure 7). However, at 𝑡𝑓 = 72ℎ (two days after landfall), we start observing important contributions 

of solar damage to the energy losses (Figure 8). At this time, Florida and Louisiana already 
experience 26% and 15% less energy losses than at landfall, thanks to the recovery of regular 
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irradiance levels after the hurricane leaves, and damage-induced losses will start dominating the 
total energy losses. In counties in the coastline, this transition can happen as early as 24 hours 
after landfall (Supplementary Figure 4). For 𝑅𝑃 of 300 years, 𝐴𝑑 across all of Florida and 

Louisiana’s counties are 2.03 and 1.13 at 𝑡𝑓 = 72ℎ (two days after landfall), inducing energy losses 

that are 25% and 9% higher than those when panels do not fail, respectively. For 𝑅𝑃 of 700 years, 
the compounding effect of damage becomes stronger since 𝐴𝑑 increases to 3.48 and 1.39 for 
Florida and Louisiana, respectively, inducing 38 and 25% higher losses, which will become even 

stronger for longer 𝑡𝑓 (Supplementary Figure 5).  

 

 

  

  

  

 
Figure 8. Spatial distribution of energy generation losses for uniform risk targets (associated to return 
periods) in Central and Eastern United States and the compounding factors for energy losses 48 hours 

after landfall (𝑡𝑓 = 72ℎ). Upper Left: 𝐴𝑐 for events with 100-years of return period. Upper Right: 𝐴𝑐𝐴𝑑 for 

events with 100-years of return period. Middle Left: 𝐴𝑐 for events with 300-years of return period. Middle 
Right: 𝐴𝑐𝐴𝑑 for events with 300-years of return period. Lower Left: 𝐴𝑐 for events with 700-years of return 

period. Lower Right: 𝐴𝑐𝐴𝑑 for events with 700-years of return period. 

 
Discussion. In sum, our results show that hurricane’s impacts on solar generation are significant, 
compounding and strikingly disproportional in the United States. Clouds can induce losses above 
66% in extensive regions in Southern and Eastern United States (see 𝑅𝑃⁡of 100 years in Figure 7), 
but fortunately, these effects are only transient. In contrast, damage to solar panels will induce 
more acute and permanent energy losses but fortunately in smaller extents (see counties with 
highest risk of panel failure in Figure 6). When these two effects are compounded, solar generation 
risk will induce large energy losses throughout the entire hurricane emergency.  
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A direct implication of this study is that the naïve adoption of panels in the current conditions will 
create electricity generating infrastructure with high risks, especially in Louisiana and Florida, which 
have experienced massive hurricane outages in the last few years.2,44,45 Building stronger panels 
can help prevent panel damage, i.e., making 𝐴𝑑 = 1. Thus, this paper advocates installing stronger 
panels, at least up to the ASCE-7 standards for infrastructure with risk category I. Existing studies 
point out that cheap solutions can increase the performance of solar installation’s structural system, 
e.g., torque check on bolts.20,22 If panels do not fail, all solar energy reductions (𝐴𝑐) will be driven 
by hurricane clouds only, making solar energy losses only transient. 
 
These results underscore that massive investments in resilience and clean energy in power 
infrastructure will pay off if their deployment is risk-informed. Placing panels on coastlines in the 
Southern or Eastern US can make the grid lose (sometimes permanently) solar generation during 
hurricane emergencies (Figure 7 and Figure 8). Power system models can optimize the deployment 
of new solar farms, maximizing profits for regulators, power utility companies, and consumers. But 
they should also assess resilience to consider the trade-off between costs and risks, especially in 
Florida and Louisiana, where generation potential is high, but risks are also high.  
 
Additionally, for communities exposed to high risks, like those in Miami-Dade or New Orleans 
(Louisiana) installing decentralized resources, such as rooftop panels and behind-the-meter 
batteries must account for the potential high reduction in energy generation. Even if they have 
continuous power supply even in case of a main grid’s outage, they should still plan for only using 
necessary building functions in a hurricane emergency, e.g., refrigeration for food or even cooling 
especially if heatwaves follow storms.46 
      
This paper also advocates risk-informed utility companies’ contingency planning during extreme 
events. We provide a framework to account for these losses quantitatively so that utility companies 
can plan for offsetting the large losses in solar generation from other sources. In the context of 
disaster, additional difficulties might arise from failures in transmission lines that prevent the use of 
other functional electricity sources. Thus, it is critical for utility companies to install robust generating 
infrastructure to ensure the resilience of our future grids, especially since global warming is 
projected to intensify hurricanes in the future climate.47 
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