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Abstract 
The alkali-silica reaction (ASR) in concrete is a significant issue in civil 

engineering, affecting concrete structures worldwide, resulting in expensive 

maintenance and reconstruction. The presence of ASR in several concrete facilities 

around the world highlights the necessity for research into early detection and 

subsequent mitigation strategies in structures. This article aims to provide an 

extensive literature review of the recent and relevant studies on the reaction 

mechanisms, conditioning factors (e.g., reactive aggregates content, alkalis and 

soluble calcium source, humidity), and mitigation measures of ASR. Despite the major 

technical progress in understanding and preventing ASR, the need for further research 

is emphasized. 
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1 Introduction 

Globally, concrete is undebatable, the most used construction material. As a 

result, research contributing to the extension of the service life of reinforced concrete 

structures are effective contributions to the sustainability of non-renewable natural 

resources, improving their environmental impact. The choice of concrete as a 

construction material is primarily justified by its durability, high fire resistance, low cost-

benefit ratio, and low maintenance requirement. However, hostile conditions can 

cause concrete early deterioration and loss of structural integrity. The deterioration of 

concrete is a complex process influenced by several factors, such as the physical and 

chemical properties and the exposed condition of the concrete. The main processes 

that cause the deterioration of concrete include carbonation (Raupach and Schiessl 

1997), alkali-silica reaction (ASR) (Diamond 1975), ingress of chloride ions (Rita B. 

Figueira et al. 2017), oxygen depletion (Böhni 2005), corrosion of steel (Bertolini 

2008), spalling of concrete (Böhni 2005). 

The ASR, first identified in 1940 (Stanton 2008), is an adverse reaction 

between the alkaline pore solution of concrete and several metastable forms of silica 

contained in many natural and manufactured aggregates (Poole 1991). Several 

research works have been carried out to better understand the physico-chemical 

mechanisms involved in ASR (Diamond 1975; 1976; Chatterji 1979; Urhan 1987; Hu 

et al. 2018; Kawabata and Yamada 2017; Saha et al. 2018; Rajabipour et al. 2015), 

including reviewing the state-of-the-art (Fournier and Bérubé 2000; Thomas 2011; 

Lindgård et al. 2012; C. Shi et al. 2015). 

Mitigation measures have been widely studied, including controlling the alkali 

content in concrete, the use of supplementary cementitious materials (SCMs) such as 

fly ashes (FA), granulated blast-furnace slag (BFS), and silica fume (SF) (Saha et al. 

2018; Kawabata and Yamada 2017; Joshaghani 2017; Z. Shi et al. 2018; Turk, Kina, 

and Bagdiken 2017), and lithium compounds (Feng et al. 2010; Lourdes M. S. Souza, 

Polder, and Çopuroğlu 2017). Despite the mitigation advancements, the continued 

existence of ASR in several concrete structures, including bridges, dams, spillways, 

and buildings globally (Saha et al. 2018; Carse and Dux 1990), highlights the need for 

research in early identification and mitigation in structures. 
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2 Objectives 

This paper aims to review the current and significant achievements as well as 

existing knowledge concerning ASR reaction mechanisms, factors influencing ASR, 

and measures to mitigate ASR. 

 

3 Reaction mechanisms 
ASR damage is caused by a series of reactions, including (1) dissolution of 

metastable silica, (2) formation of nano-colloidal silica sol, (3) gelation of the sol, and 

(4) swelling of the gel (Rajabipour et al. 2015): 

(𝑆𝑆𝑆𝑆𝑂𝑂2)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
→ (𝑆𝑆𝑆𝑆𝑂𝑂2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

2
→ (𝑆𝑆𝑆𝑆𝑂𝑂2)𝑠𝑠𝑠𝑠𝑠𝑠

3
→ (𝑆𝑆𝑆𝑆𝑂𝑂2)𝑔𝑔𝑔𝑔𝑔𝑔

4
→ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔                               [1] 

3.1 Dissolution of metastable silica 
Silicates are mainly composed of a three-dimensional (3D) network of 

tetrahedral silica (SiO2) units, with one Si atom in the center and four oxygen atoms 

around it (Varshneya 2013). Also, pure silica (SiO2) frequently contains hydrogen or 

metallic elements such as sodium (Na), potassium (K), and calcium (Ca) that are 

linked to oxygen atoms. Silica structures exist as crystalline (Fig. 1a) or amorphous 

(Fig. 1b). Several articles have been published on silica dissolution in water for over 

a century (Iler 1979; Bunker 1994; Clark and Yen-Bower 1980). Most of the available 

research, on the other hand, focuses on pure silica and moderate alkalinity levels (pH 

< 11). It is generally known that in an alkaline environment, hydroxyl (OH) ions 

gradually attack the (Si-O-) bonds, leading to silica network dissolution: 

Network dissolution: (≡ Si − OH)s + 3(OH−)aq ↔ (Si(OH)4)aq                                      [2a] 

where (Si-OH) denotes the silanol groups found at the silica-water interface (Powers 

and Steinour 1955).. Eq. (2a) can also be expressed as Eq. (2b), which is more easily 

described thermodynamically but does not reflect the actual dissolution mechanism at 

high pH: 

Network dissolution: (SiO2)s + 2H2O ↔ (Si(OH)4)aq                                                [2b] 

Walther and Helgeson (1977) reported the solubility product of reaction (2b) for 

different polymorphs of (SiO2) solid and at different temperatures. For example, at 

25⁰C, logKsp = 3.999 and 2.714 have been observed for α-quartz (crystalline and 

stable) and amorphous silica, respectively. As shown in Table 1, this information can 
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be utilized to compute the equilibrium solubility limit of SiO2 in neutral water. The 

solubility increases with increasing temperature and decreasing silica crystallinity 

(Molchanov and Prikhidko 1957). At high pH, ionization of Si(OH)4 occurs, leading to 

the formation of highly soluble ions (Sjöberg 1996): 

Ionization: (Si(OH)4)aq ↔ (H3SiO4
−)aq + H+       LogKI = -9.473                      [3a]  

        (Si(OH)4)aq ↔ (H2SiO4
2−)aq + 2H+       LogKII = -22.12                         [3b]  

The equilibrium solubility of silica species in an aqueous solution can be 

determined as a function of pH using the solubility products of processes (3a) and 

(3b), as illustrated in Fig. 2. It is observed that at high pH, the apparent solubility of 

silica increases by several orders of magnitude. It is also worth noting that at high pH, 

processes (2a), (3a), and (3b) continue in the direction of pH reduction. Furthermore, 

ion exchange reactions could occur to further lower the pH, for example: 

Ion exchange: (Si(OH)4)aq + Na+ ↔ ((𝐻𝐻𝐻𝐻)3 ≡ Si − 𝑂𝑂− …𝑁𝑁𝑁𝑁+)𝑎𝑎𝑎𝑎 + H+
𝑎𝑎𝑎𝑎                   [4] 

where O...Na+ denotes that the bond is most likely a strong Van der Waals type. These 

reactions indicate that as ASR proceeds, the concrete pore solution's pH generally 

decreases. However, alkalis are recycled back into concrete pore solution (Eq.(5a)) 

as some alkalis included in the silica gel (gel mechanism discussed below) may be 

replaced by calcium ions. The resulting calcium deficit pore solution accelerates the 

dissolution of solid portlandite (Eq. (5b)) and increases the pH: 

Alkali recycling: 2((HO)3 ≡ Si − O … Na)aq + Ca2+ ↔  +2Na+                                         [5a] 

      ((HO)3 ≡ Si − O … Ca … O − Si ≡ (OH)3) 

                          Ca(OH)2 ↔ Ca2+ + 2OH−                                                                 [5b] 

The above discussion is on the thermodynamics of silica dissolution. The 

dissolution rate of silica in pore solution is also critical to the overall rate of ASR. 

Although, limited literature on this subject, batch reactors (e.g., ASTM C1285 (ASTM 

Committee 2002)) have been employed in the few studies that have been done to 

quantify the dissolution rate of silica (e.g., quartz or fused silica glass) in water 

(Douglas and El-Shamy 1967; Dove and Crerar 1990). 

3.2 Formation and gelation of colloidal silica 
The dissolved species remain in the solution as long as the pH and temperature 

are maintained to avoid supersaturation with respect to aqueous silica, and there are 
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no Ca ions present (Gaboriaud et al. 1999). At high pH, aqueous silica species are 

negatively charged (Eqs. (3a) and (3b) and Fig. 2), and the resulting electrostatic 

repulsion precludes gelation. The aggregate dissolution diminishes and halts when 

aqueous silica reaches its solubility limit (Dent Glasser and Kataoka 1981). However, 

in portland cement (PC) concrete, this practically never occurs due to the presence of 

calcium ions in the pore solution leading to the formation of poly-metasilicates (Iler 

1979). 

Precipitation: 2((𝐻𝐻𝐻𝐻)3 ≡ Si − 𝑂𝑂−)𝑎𝑎𝑎𝑎 

+𝐶𝐶𝐶𝐶2+𝑎𝑎𝑎𝑎 ↔ ((HO)3 ≡ Si − O … Ca … O − Si ≡ (OH)3)𝑠𝑠𝑠𝑠𝑠𝑠               [6] 

Once a critical-size nucleus has been created, subsequent condensation 

converts it to nano-colloidal silica sol (Brantley, Kubicki, and White 2008). Larger metal 

silicate structures are formed when colloidal particles clump together in 2 or 3 

dimensions, forming either a continuous and space-filling silicate (ASR) gel or more 

compact macro-scale precipitates (Scherer 1999; Hou et al. 2005). 

3.3 Swelling of the gel 
Many factors can explain the considerable absorptivity and swelling of ASR. The 

silica gel is porous and has a large surface area, and it contains many hydrophilic 

groups (e.g., -OH, -O…Na, and -O) (Fig. 1c) (Hench and Clark 1978). This leads to 

Osmosis, water adsorption, and gel swelling (Powers and Steinour 1955). According 

to Chatterji et al. (1986), the swelling is caused by differential kinetics of fast inward 

diffusion of detrimental ions such as Na+, Ca2+, and OH- into reactive sites and the 

slow outward diffusion of silica ions from these sites. Swelling has also been linked to 

the electrical double-layer repulsive forces that form on the gel’s solid particles 

charged surface (Prezzi, Monteiro, and Sposito 1997; Rodrigues, Monteiro, and 

Sposito 1999). Swelling has also been related to an increase in the aggregate pore 

volume during the transition (Garcia-Diaz et al. 2006) and gel stiffness (Gholizadeh 

Vayghan, Rajabipour, and Rosenberger 2016). 

 

4 Factors influencing ASR 
ASR occurs only in specific conditions. The main requirements that must be met 

at the same time for the development of ASR in concrete are: (i) the presence of 
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reactive aggregates at a critical concentration range (ii) a high concentration of alkalis 

(iii) soluble calcium source (e.g., portlandite) (iv) high humidity conditions (Rajabipour 

et al. 2015; Hobbs 1988; Bérubé, Duchesne, et al. 2002). 

4.1 Reactive aggregate content 
The existence of reactive aggregates to alkalis is a prerequisite for ASR to occur. 

In theory, any aggregate containing silica can engage in ASR (Kurtis and Monteiro 

2003). Reactive aggregates contain both reactive forms of silica that react quickly with 

sodium and potassium hydroxides (e.g., opal, tridymite, cristobalite, acid volcanic 

glass) and those which react slowly (e.g., chalcedony, cryptocrystalline quartz, and 

strained quartz) (Zapała-Sławeta and Owsiak 2016; Taylor 1997; Kurdowski 2014). 

The most popular methods for detecting aggregate reactivity to alkalis are based 

mainly on petrographic tests combined with mortar prism expansion tests (LNEC, 

2007). 

4.2 Alkalis and soluble calcium source 
When Portland cement (PC) is hydrated, an interstitial concrete pore solution is 

formed, which is mostly constituted of calcium hydroxide (Ca(OH)2), potassium 

hydroxide (KOH), and sodium hydroxide(NaOH). Although the majority of alkalis in 

concrete are from cement, alkalis from other sources such as de-icing salts, additives 

(e.g., pozzolanic materials (Ichikawa 2009), Silica Fume (M. C. G Juenger and 

Ostertag 2004), Fly Ash (Saha et al. 2018), and mixing water can also contribute to 

the alkalinity of the concrete interstitial solution. The influence of Alkali in ASR is 

already discussed in section 3 above. Also, several published articles (H. Wang and 

Gillott 1991; Kim, Olek, and Jeong 2015; Kandasamy and Shehata 2014; Leemann et 

al. 2011; Myadraboina, Setunge, and Patnaikuni 2017; Maraghechi et al. 2016), has 

shown that Ca(OH)2 has a key role in ASR as a source of calcium ions (Ca2+) that 

react with dissolved silica to generate the deleterious calcium-rich ASR gel rim around 

aggregate particles (Fig. 3). 

4.3 Humidity 
The impact of water on ASR expansions have received much attention in the 

literature (Multon and Toutlemonde 2010; Deschenes et al. 2018; Gholizadeh-

Vayghan and Rajabipour 2017; Poyet et al. 2006; Larive, Laplaud, and Coussy 2000). 
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According to Larive et al. (2000), water appears to have a dual effect on ASR: as a 

reactive agent, influencing the rate of expansion at the creation of the reaction product, 

and as a transport agent for various reactive species. Reducing water exposure can 

slow or stop the process. The expansion, however, will resume at a quick pace after 

the concrete has held the required RH (relative humidity). According to Fournier and 

Bérubé (1993), for ASR development, concrete must be exposed to high humidity, 

greater than 80–85 % RH. 

 
5 ASR mitigation 

The mitigation measures of ASR aim to eliminate at least one of the four 

requirements (e.g., source of reactive silica, high alkalis concentration, a source of 

soluble calcium, and high humidity). The significant accomplishments in terms of 

controlling each requirement are discussed below: 

5.1 Reduction of the alkalinity of the interstitial solution of the concrete 
Cement is the primary source of alkalis in concrete. As a result, the alkali content 

of the concrete is calculated by multiplying the cement's alkali content (expressed as 

Na2Oeq by the cement dose and adding a factor that converts the amount from other 

constituents (R. B. Figueira et al. 2019). Alkali content control assumes that the 

cement manufacturers or suppliers certify the average alkali content and its variability. 

The alkali content of the interstitial concrete pore solution can be reduced by (i) limiting 

the alkali content in concrete by controlling the content of concrete soluble alkalis or 

using suitable binders; (ii) using a low alkali cement (e.g., total alkali content < 0.6% 

Na2Oeq); and (iii) addition of mineral to the concrete (Lindgård et al. 2012). According 

to ASTM C150 (C01 Committee 2019),  0.6% Na2Oeq is accepted as the limit for 

cement to be used with reactive agents and is an optional limit when concrete contains 

deleteriously reactive aggregate. However, Leemann and Lothenbach (2008) showed 

that concrete mixtures prepared with cements with same Na2Oeq but differing K/Na 

ratios can expand differentially. Therefore, Na2Oeq parameter should be carefully 

considered when used to evaluate the possible reactivity of concrete mixtures (R. B. 

Figueira et al. 2019). 
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5.2 Use of non-reactive aggregates 
Not all aggregates are prone to ASR, and this process can be reduced by using 

non-reactive aggregates. Aggregates are divided into three reactivity classes: class I 

– aggregates are not alkali reactive; class II – aggregates are potentially reactive to 

alkalis; and class III – aggregates are very likely to be alkali reactive. Aggregates that 

are primarily siliceous, or carbonates with possibly reactive silica content, are 

classified as class II-S or class III-S. Class II-C or III-C aggregates are mainly 

carbonate or combinations of potentially reactive carbonate types (Nixon and Sims 

2016). The reactivity of an aggregate or mixture of aggregates is often determined by 

results from different tests such as petrographic characterization (C09 Committee 

2019), measurement of silica dissolved, and expansion tests (Wallau et al. 2018). 

5.3 Concrete moisture control 
As previously stated, RH (above 80%) is required to induce ASR in concrete 

(Bérubé and Fournier 1993). Several research studies have investigated the impacts 

of moisture conditions (Multon and Toutlemonde 2010; Deschenes et al. 2018; W. 

Zhang, Min, and Gu 2016). Multon and Toutlemonde (2010) showed that if water is 

added, regardless of the age of an ASR damaged structure, it swells if the ASR gel is 

already formed. It was also speculated that the ASR reaction could have been halted 

by a lack of water in particular portions of the structure (Multon and Toutlemonde 

2010). Therefore, any methodology that restricts water availability to concrete using 

reactive materials reduces the probability of ASR development. Several papers 

(Bérubé, Chouinard, et al. 2002; Richard A. Deschenes Jr, Murray, and Hale 2017; R. 

A. Deschenes Jr et al. 2018) have demonstrated the usefulness of silanes in delaying 

the development of ASR and thereby increasing the service life of concrete structures. 

5.4 Modification of expandable properties of ASR gel 
McCoy and Caldwell published the first report on lithium salts to prevent ASR in 

1951, and was reported to be the most effective compound (McCoy and Caldwell 

1951). Subsequent studies concerning the effectiveness of lithium compounds to 

mitigate ASR were conducted (Fournier and Bérubé 2000; Collins et al. 2004). The 

capacity of lithium to substitute calcium in ASR gel rather than K+ and Na+ was 

reported to explain the lithium ASR mitigation mechanism (Leemann et al. 2014; 
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Tremblay et al. 2010). Table 2 summarizes the most representative research on the 

use of lithium compounds to minimize ASR that has been published in recent years.  

5.5 Mineral additives 
Mineral additives have played a significant role in the construction industry, 

contributing to the technological advancement of concrete and mortars. Mineral 

additives with pozzolanic properties, such as ground blast furnace slag (Angulo-

Ramírez, Mejía de Gutiérrez, and Medeiros 2018; D. Wang et al. 2018), fly ash 

(Gholizadeh Vayghan, Wright, and Rajabipour 2016; Schafer et al. 2019), silica fume 

(Ramezanianpour and Moeini 2018; Rostami and Behfarnia 2017), and Metakaolin 

(MK) (Shen et al. 2017; Z. Shi et al. 2018), as well as other minerals (Maria C. G. 

Juenger and Siddique 2015), have been proposed as useful in preventing ASR. Table 
3, 4, 5, and 6 shows the most relevant manuscripts published in recent years 

concerning the use of BFS, FA, SF, and MK to mitigate ASR, respectively. 

 

6 Conclusion and prospects 
The alkali-silica reaction (ASR) is one of the crucial concrete durability concerns 

in recent decades. Multiple factors influence the complexity of ASR chemical 

reactions. An overview of recent and relevant studies on the reaction mechanisms, 

conditioning factors, and mitigation strategies of ASR is presented in this paper. Three 

primary reaction mechanisms, including dissolution of metastable silica, formation and 

gelation of colloidal silica, and gel swelling, were discussed. Three conditioning factors 

were also debated: the reactive aggregates content, alkalis and soluble calcium 

source, and humidity conditions. The information gathered shows that several efforts 

had been devoted to understanding the fundamentals of ASR, which is reflected by 

the considerable amount of data published in the last few decades.  

Five preventive measures were proposed, including silanes to control concrete 

moisture. Lithium compounds and mineral additives have also been employed to 

prevent ASR. Despite the major technological advancement in understanding and 

mitigating ASR, the capacity to fully understand and describe the development of ASR 

remains incomplete. Therefore, the need for systems to provide more information on 

ASR initiation process and further progression is of utmost importance. 
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Tables: 
Table 1 
Thermodynamic solubility limit (mM) of various SiO2 polymorphs in neutral water. 

Calculated using data from (Walther and Helgeson 1977). Source: (Rajabipour et al. 

2015) 
T (°C) α-Quartz Chalcedony α-Cristobalite β-Cristobalite Amorphous silica 

0 0.03 0.06 0.13 0.42 1.01 

25 0.10 0.19 0.36 0.99 1.93 

50 0.24 0.42 0.74 1.81 3.12 

75 0.46 0.79 1.32 2.88 4.57 

100 0.80 1.32 2.11 4.22 6.30 

 

Table 2 
The most relevant manuscripts published since 2011 concerning the use of lithium 

compounds to mitigate ASR. Source: (R. B. Figueira et al. 2019) 

Year Source Li 
compounds Main results and conclusions 

2013 (Demir and 
Arslan 
2013) 

Li2SO4, 
LiNO3, 
Li2CO3, LiBr 

Li compounds applied at the ratio 0.5–3.0% proved to be 
effective in reducing length changes. The lowest changes were 
obtained with 3% of Li2CO3. 

2014 (Leemann 
et al. 2014) 

LiNO3 Li decreased the ASR expansion and bound preferentially 
leading to a faster depletion in the pore solution. 

 
(W. C. 
Wang 
2014) 

LiOH and 
LiNO3 

Changes of water-soluble alkali and Li content were 
studied to understand the effect on ASR by adding FA and 
lithium compounds simultaneously. LiNO3 addition 
exhibited improved performance in increasing water-
soluble Li/(Na + K) ratio compared to LiOH addition. 

2015 (Leemann 
et al. 2015) 

LiNO3, 
Aluminium 

The effect of aluminium (from metakaolin (MK) and calcium 
aluminate clinker) and LiNO3 on the mitigation of ASR was 
investigated. MK lead to a slower SiO2 dissolution and 
formation of reaction products. LiNO3 suppressed ASR. 

2016 (Kim and 
Olek 2016) 

LiNO3 Li prevented the dissolution of reactive silica. The ASR 
control was explained by the formation of physical barrier 
in certain areas of the reactive aggregate exposed 
surface. ASR was dependent on the dosage of LiNO3. 

 
(Islam and 
Ghafoori 
2016) 

LiNO3 LiNO3 was more and less effective in the presence of highly and 
less reactive aggregates, respectively. A good agreement was 
found between the required optimum experimental and 
analytical Li dosages to inhibit the excessive mortar expansion. 
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(Zapała-
Sławeta 
and Owsiak 
2016) 

LiNO4 The addition of a molar ratio of Li/(Na + K) = 0.74 
decreased the expansion of mortars made with reactive 
gravel aggregate until reach the safe and non-destructive 
level. 

2017 (Lourdes 
M. S. 
Souza, 
Polder, and 
Çopuroğlu 
2017) 

LiOH Studies on the influence of Li+ migration on different levels 
of ASR development. Na+ and K+ removal, Li+ migration 
(combined with Na+ and K+ removal) and Li+ diffusion on 
ASR expansion were assessed. Li+ migration led to the 
lowest post- treatment expansion levels. 

2018 (L. M. S. 
Souza, 
Polder, and 
Çopuroğlu 
2018) 

Li2CO3, 
LiOH and 
LiNO3 

Type and concentration of Li compounds in the anolyte to 
be used on electrochemical migration repair technique 
were studied. The concentration of the solution, rather 
than the type of Li salt, affected migration. 

 
(Demir, 
Sevim, and 
Kalkan 
2018) 

Li2SO4, 
LiNO3, 
Li2CO3, 
LiBr, LiF 

The optimum amount of Li additives changed according to 
the compound (e.g. 3% Li2SO4, 1.5–3% LiNO3, 0.5–3% 
Li2CO3, 0.5–3% LiF). ASR was affected by the type and 
additive ratio. 

 
Table 3 
The most relevant manuscripts published since 2011 concerning the use of BFS to 

mitigate ASR. Source: (R. B. Figueira et al. 2019) 

Year Source Main results and conclusions BFS/Cement 
(wt %) 

2011 (Karakurt 
and Topçu 
2011) 

The influence of blended cements and sulphate resistance of 
concrete on ASR were studied. FA and BFS reduced ASR and 
sulphate damages compared to PC. BFS showed improved 
results. 

10, 20, 30, 
40 and 45 

2014 (Beglarigal
e and 
Yazici 
2014) 

Study on the combination of brass-coated steel microfiber and 
BFS on ASR mitigation. ASR expansion was reduced and 
BFS was effective at preventing the mechanical property loss. 

20 and 40 

2017 (Z. Shi et 
al. 2017) 

Study of alkali dosages impact on ASR in activated slag 
mortars. Alkali activated slag mortars showed improved 
performance compared to PC under accelerating condition. 

NR 

2018 (Angulo-
Ramírez, 
Mejía de 
Gutiérrez, 
and 
Medeiros 
2018) 

Alkali-activated Portland hybrid blended cement and a 
Portland blended cement were compared to 100% ordinary 
PC. The material based on PC had highest susceptibility to 
ASR, followed by the alkali-activated hybrid material and the 
blended cement with 80% ground BFS. 

80 
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Table 4 
The most relevant manuscripts published since 2011 concerning the use of FA for 

mitigation of ASR. Source: (R. B. Figueira et al. 2019) 

Year Source Main results and conclusions FA/Cement 
(wt %) 

2011 (Thomas et al. 
2011) 

Concrete blocks with reactive aggregates, different 
levels of high-alkali cement and two sources of FA were 
assessed outdoor. All blocks without FA showed 
excessive expansion and cracking within 5–10 years of 
production. FA replacement levels of 25% or 40% were 
effective in reducing ASR expansion. 

25, 40 

 
(Esteves et al. 
2012) 

Study on the influence of blended cements with different 
types of pozzolans on ASR. NZ, FA, and ground BFS 
were used. NZ, FA, and ground BFS reduced the ASR 
expansion. 

10, 20, 30, 
40, 45 

2012 (Shafaatian et al. 
2013) 

Study on the effect of FA from biomass combustion in 
ASR mitigation. The biomass FA incorporation mitigates 
the ASR. Expansion decreased with the increasing 
content of FA. 

20, 30 

2013 (Kizhakkumodom 
Venkatanarayana
n and Rangaraju 
2013) 

FA fineness influenced the ASR within the range of the 
average particle size (APS) of FA (~10–30 μm). ASR had 
an exponential 
relation with SiO2, CaO, SiO2 + Al2O3 + Fe2O3, CaO + 
MgO + SO3, SiO2equi and CaOequi for FA with 
APS<~10 μm. Expansion was a linear function of CaO, 
CaO + MgO + SO3, and CaOequi and a logarithmic 
function of SiO2, SiO2 + Al2O3 + Fe2O3 and SiO2equi 
for FA with APS < 5 μm 

25 

 
 Study on the contribution of different mechanisms for 

ASR mitigation by FA using ASTM C1567 test. 
Experimental and computer simulation were combined. 

15, 20, 25, 
30, 35 

2014 (Wright, 
Shafaatian, and 
Rajabipour 2014) 

FA ability to control ASR generated by recycled glass 
sand. Capacity of CIM [312] to predict the FA dosage for 
ASR was assessed. It was concluded that the model 
parameters must be revised. 

10, 15, 20, 
25, 30, 35 

 
(Kandasamy and 
Shehata 2014) 

Ternary blends of high-calcium FA and slag for ASR 
mitigation were studied. Ternary blends did not offered 
advantage over binary blends and of individual material 
for the same SCM. Capacity to retain alkalis increased 
with the blend ability to consume Ca(OH)2. The alkali 
leaching test was proposed as a tool to compare the 
efficiency of different blends. 

20, 30, 40, 
50 

 
(Yıldırım and 
Sümer 2014) 

FA’s effect was studied by ASTM C 227, ASTM C 1260 
and autoclave methods. The 12-month results agree with 
the AMBT. Samples whose mixing water was pure were 
in a good correlation on the basis of 12-month results. 

10, 20, 30, 
40, 50 

2015 (Schumacher and 
Ideker 2015) 

The ability of high CaO and/or high-alkali (Na2Oeq) FA 
to mitigate ASR in mortar was assessed. Low and 

25, 35, 45 
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moderate CaO content FA were more effective 
compared to higher CaO and Na2Oeq FA. The 
methodology worked for low CaO and alkali FA. It was 
concluded that to predict replacement levels of moderate 
to high-alkali FA adjustments were necessary. 

 
(S. Wang 2015) Expansion, pore solution, compressive strength and 

alkali leaching of biomass and coal FA were investigated. 
Class F mixes showed improved behaviour. Class C 
reduced expansion with restricted efficiency. Biomass 
FA showed equivalent expansion reduction to that of 
Class C. 

15, 25, 35 

2016 (Gholizadeh 
Vayghan, Wright, 
and Rajabipour 
2016) 

Extended CIM was developed to predict the FA dosage 
for ASR mitigation. Extended CIM offered acceptable 
prediction accuracies for both Class C and F FA. 

N.A. 

 
(Williamson and 
Juenger 2016) 

Alkali-activated FA concrete showed promising 
performance compared to ordinary PC concrete in ASR 
mitigation. 

45 

2017 (Kawabata and 
Yamada 2017) 

Study on the role of FA in ASR mitigation and at 
pessimum proportion. ASR was reduced at pessimum 
proportion. FA increased the latency time. 

10, 20, 30 

 
(Joshaghani 
2017) 

Study on the effect of trass and FA under short- and long-
term experiments. FA was more effective than trass in 
strength development. 20% FA was the optimum 
content. 

10, 20, 30 

 
(Turk, Kina, and 
Bagdiken 2017) 

Study of binary and ternary systems (FA and LSP) on 
ASR. ASR decreased with FA increase. Ternary blend of 
20% FA/LSP was the most effective. 

10, 15, 20, 
30 

2018 (Z. Shi et al. 
2018) 

Study on effect of FA and MK on ASR in water–glass-
activated slag mortars. Both FA and MK mitigated the 
ASR of the waterglass-activated slag mortars. 

30 

 
Table 5 
The most relevant manuscripts published since 2005 concerning the use of SF for 

mitigation of ASR. Source: (R. B. Figueira et al. 2019) 

Year Source Main results and conclusions FA/Cement 
(wt %) 

2005 (Bektas, 
Turanli, 
and 
Monteir
o 2005) 

Expansion of mortar bars containing various amounts of SF, 
expanded perlite, and natural perlite were studied. Both expanded 
and natural perlite showed potential to suppress the ASR. 
Expansion decreased with increased SF content. 8% and 12% SF 
had a similar expansion rate. Samples with 16% SF met ASTM 
C1260 limit. 

4, 8, 12 and 
16 

2007 (Maas, 
Ideker, 
and 
Juenger 
2007) 

Three types of SF using reactive and non-reactive aggregates 
were tested. Large SF agglomerates were not linked to ASR 
cracking. When SF was alkali silica reactive, there was a 
pessimum effect with expansion related to the percentage of SF 
used. Lower amounts resulted in higher expansions. 

2, 4, 6 and 
10 
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2008 (C. 
Zhang 
and 
Wang 
2008) 

Influence of SF, BFS and FA on ASR at 70 °C was studied. SF, 
BFS and FA inhibited the ASR only under appropriate content. SF 
contents < 10% did not influenced the ASR, between 15%  20% 
delayed the expansion. 

5, 10, 15 
and 20 

 
Table 6 
The most relevant manuscripts published since 2011 concerning the use of MK for 

mitigation of ASR. Source: (R. B. Figueira et al. 2019) 

Year Source Main results and conclusions FA/Cement 
(wt %) 

2012 (Esteve
s et al. 
2012) 

The use of MK was effective in limiting the AMBT expansion when 
used with biomass FA (20% FA + 10% MK). The effectiveness of 
MK was justified by the finer particle size and the chemical 
composition. 

10 

2014 (Yazıcı, 
Arel, 
and 
Anuk 
2014) 

Studies on the effects of cement replacement by MK on 
mechanical properties, ASR, resistance to sulphate, absorption 
capacity and permeability. 10–20% of MK increased the ASR 
resistance. Enhanced results were obtained for mortars 
containing 15–20%. 

5, 10, 15, 20 

2015 (Pouhet 
and Cyr 
2015) 

ASR of geopolymer mortars containing only MK in the presence 
of six different sands were studied. Sands in MK based 
geopolymer mortars activated by sodium silicate did not lead to 
ASR characteristic of PC mortars. 

NR 

2018 (Z. Shi 
et al. 
2018) 

Mitigation effects of FA and MK on ASR in water-glass-activated 
slag mortars were investigated. Both mitigated the ASR. Optimum 
dosage of FA was 30%. Expansion decreased with MK increase 
and was suppressed when the slag was replaced by 70% of MK. 

10, 30, 50, 
70 
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Figures 
 

 
Fig. 1. (a) 2D ball and stick representation of quartz (a common form of crystalline 

solid SiO2) (b) amorphous solid SiO2 (c) alkali-silica (ASR) gel composed of clustering 

of colloidal silica particles surrounded by the gel's pore solution. Source: (Rajabipour 

et al. 2015) 

 

(c) 

(b) (a) 
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Fig. 2. The calculated solubility limit of amorphous SiO2 in water as a function of pH 

(T = 25 °C). Source: (Maraghechi 2014) 

 

 

 

Fig. 3. Schematic representation of the mechanism of the ASR in concrete. Source: 

(R. B. Figueira et al. 2019) 
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