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Highlights 

 Using Reduced Order Models derived from CFD simulations can be 
computationally fast and inexpensive 

 Geometric Reduced Order Models incorporating spatial input parameters can 
enhance the applicability of the method 

 Geometric Reduced Order Models coupled with physical Reduced Order Models 
is a relatively recent development 

Abstract 

Reduced Order Models (ROM) derived from CFD simulations has been reported in recent 
years. They can include physical and/or spatial parameter variation in their predictions. 
The integration of spatial parameter variation (geometric ROM) is a relatively new 
approach, and it is exemplified in this short note. 

 

Introduction 

 During the last decades, Reduced Order Models (ROM) has been applied for 
engineering problems tackled by Computational Fluid Dynamics (CFD) (Lang et al., 2009; 
Jung et al., 2011; Ballarin, et al., 2015; Ballarin et al., 2016; Han et al., 2020; Biancolini, et al., 
2020, Zhong et al., 2020; Calka et al, 2021). ROM evolves from the division of a higher order 
problem (Chinesta et al, 2014) into two tasks: one, computationally expensive 
(comprising the ROM object generation), and other, computationally cheaper, related to 
the ROM object consumption. The consumption task can be done in a lighter hardware 
platform, linked to a multiscale model of an industrial plant, or digital twin 
(Laubenbacher, et al. 2021; Sancarlos, et al. 2021; Singh, et al, 2021). 

 The accessibility of the whole solutions fields, e.g., velocities, from the ROM 
object, place them apart  from response surface methods applied to CFD solutions (Myers, 
et al, 2016) since the latter can be summarized by obtaining correlations between a set of 



input and output parameters, e.g., pressure drop (output parameter) and inlet velocity 
(input parameter). A brief mathematical detailing of the ROM technique is present in the 
appendix. 

 In general terms, the ROM object generation starts from the learning of the physics 
of a given model (Maquart et al., 2020). Referring to Figure 1, the LEARNING SUBSET is 
chosen from the whole field of solutions available from the CFD SIMULATION DATA SET . 
Each element of the CFD SIMULATION DATA SET corresponds to the solution for a list of 
input parameters values (design point). The generation of the list of input parameters 
employs techniques from the Design of Experiments (Montgomery, 2013; Almeida et al., 
2020). For each design point , the CFDs solution field for each variable is stored in a so 
called snapshot file. The remaining subset of snapshots (VALIDATION SUBSET in Figure 1) 
is used in numerical verification (ROM ACCURACY CHECK). 

 For the physical ROM, the input parameters consists of fluid properties or 
boundary condition values. Additionally, for geometric ROM, the input parameters 
consists of geometric spatial values. An important requirement for the geometric ROM 
construction, is mesh generation for the modified geometric values must be 
isotopological, i.e., keeps the same number of nodes. This mesh’s feature make 
compression techniques readily applicable.  

 In this short note is detailed the steps depicted in Figure 1, for the generation of 
geometric ROM and its posterior use combined with a physical ROM. The schematized 
steps were recently implemented using the CFD solver ANSYS FLUENT 2021R1 and 
Twin Builder 2021R1.  For isotopological mesh generations, related to the 
geometric ROM construction, were employed the RBF Morph for Fluent v. 2.12 package. 
A primer on package’s numerics can be found in Biancolini (2017). 

 

 
Figure 1 – ROM from CFD simulations 

 

Methodology 

Figure2(a) illustrates the geometry and coordinate system used as a starting point for 
CFD simulations. It represents an existing lab-scale stirred tank mixer with inclined 



blades(Moro,2016). To simulate the rotating domain, the moving reference frame (MRF)  
approach was used. The polyhedrals generated in the ANSYS Meshing 2021R1 software 
was constituted by 251,897 cells .Figure 2(b) presents a section detail of the mesh. As 
this refinement level was demonstrated adequate (Moro, 2016), no further mesh 
refinement was done. 

 

(a) (b) 
  

Figure 2 (a) Mixer geometry and (b) detail of polyhedral mesh for half domain 
The standard k- turbulence model was adopted. The CFD solver used was pressure-

based and with coupled equations (PBCS), available in ANSYS Fluent 2021R1 software. 
The pseudo-transient approach was also adopted with explicit relaxation factors of 1, 1, 
0.75, 0.5, 0.5 (density, turbulent kinetic energy, specific turbulent kinetic energy 
dissipation, momentum, pressure). The spatial discretization scheme was second-order 
upwind for pressure, momentum, turbulent kinetic energy, and specific dissipation of 
turbulent kinetic energy. 

For the construction of the ROM, 100 CFD simulations were generated. For such 
simulations, the physical input parameters depicted in Table 1 could vary in the following 
ranges: fluid density ρ (1000-1400 kg/m3); viscosity μ (10-3-10-2 kg/(m.s)); blade rotation 
speed  (40-400 rad/s). Accordingly, it is emphasized that permitted ranges of variation 
of parameters followed the actual limits of rotation (Moro, 2016); and the density and 
viscosity to aqueous solutions (Melinder, 2010). Furthermore, the geometric input 
parameter, the blade diameter D could vary in the range 0.160-0.175 [m]. The diameter 
change was attained by using the RBF Morph software for Fluent. 

 
  



 

Table 1. Summary of Simulation Points for ROM generation. 
 

Design 
Point # 

ρ 
(kg m-3) 

        µ 
(kg m-1 s-1) 

 
(rad/s) 

D 
(m) 

Design 
Point # 

ρ 
(kg m-3) 

      µ 
(kg m-1 s-1) 

 
(rad/s) 

D 
(m) 

1 1325.889 0.00246 271.9545 0.160894 51 1110.41 0.004755 386.7119 0.164522 
2 1362.317 0.008149 176.2994 0.17023 52 1271.881 0.001447 236.8501 0.170516 
3 1050.795 0.003801 332.169 0.160635 53 1262.039 0.009124 227.6089 0.169995 
4 1365.35 0.005757 231.8172 0.161072 54 1065.045 0.009503 123.374 0.168087 
5 1252.944 0.002491 166.2618 0.167825 55 1047.599 0.005418 216.0032 0.170472 
6 1039.016 0.006418 378.0406 0.161451 56 1199.346 0.005403 264.6616 0.169998 
7 1111.399 0.003367 355.3394 0.172272 57 1383.898 0.004039 284.4888 0.162672 
8 1218.753 0.006887 238.0563 0.172263 58 1136.154 0.0091 182.3855 0.16192 
9 1383.003 0.007203 264.091 0.170837 59 1234.107 0.004323 172.2772 0.174986 

10 1385.955 0.007733 251.3361 0.162248 60 1089.525 0.002001 395.6735 0.162567 
11 1063.045 0.005055 114.7872 0.169894 61 1300.507 0.008022 53.58599 0.160489 
12 1388.237 0.001754 148.4487 0.167779 62 1102.038 0.004508 358.6605 0.168418 
13 1382.867 0.003061 209.5324 0.174595 63 1202.383 0.003175 368.7833 0.173228 
14 1194.15 0.00922 122.9757 0.169735 64 1279.631 0.004635 326.6262 0.170038 
15 1320.112 0.002371 343.9512 0.172005 65 1356.361 0.001868 75.53642 0.162856 
16 1056.755 0.008432 110.1151 0.166807 66 1383.717 0.002188 134.2736 0.165534 
17 1168.705 0.005845 121.3318 0.166486 67 1218.886 0.009478 160.7285 0.166911 
18 1366.294 0.009965 101.4549 0.17238 68 1055.45 0.009605 284.7021 0.174725 
19 1316.883 0.001704 121.9591 0.161252 69 1059.718 0.006177 89.15913 0.162346 
20 1383.797 0.004984 196.8515 0.161998 70 1103.003 0.001538 299.6419 0.172833 
21 1262.296 0.00196 151.9968 0.162601 71 1336.287 0.003113 78.43427 0.169671 
22 1014.285 0.009657 372.4167 0.165864 72 1101.713 0.004178 275.3526 0.165644 
23 1339.652 0.001042 194.8747 0.172471 73 1325.714 0.008391 217.9026 0.162864 
24 1373.597 0.007974 106.5339 0.17205 74 1097.41 0.001139 320.4586 0.166424 
25 1271.494 0.008356 365.7571 0.160907 75 1371.705 0.001387 297.4133 0.16723 
26 1303.096 0.008818 392.7094 0.165989 76 1139.994 0.002521 365.3394 0.161809 
27 1297.253 0.00176 197.9932 0.167903 77 1078.638 0.006842 360.7321 0.168843 
28 1156.891 0.004598 80.00292 0.166252 78 1100.434 0.007586 160.2987 0.163393 
29 1262.191 0.003339 132.9033 0.169853 79 1246.418 0.00683 291.5485 0.165769 
30 1068.475 0.008201 187.1391 0.16942 80 1189.316 0.005058 111.2115 0.168745 
31 1282.418 0.004883 254.1626 0.16438 81 1140.664 0.005923 50.99474 0.163777 
32 1012.733 0.009196 134.3962 0.166475 82 1332.331 0.003667 307.8667 0.164357 
33 1110.769 0.002637 257.0235 0.160232 83 1234.106 0.007702 220.0081 0.169256 
34 1018.469 0.003374 296.0377 0.174761 84 1219.889 0.002701 212.772 0.163979 
35 1038.853 0.00231 119.8288 0.162508 85 1366.877 0.007181 365.7 0.172366 
36 1329.383 0.002225 82.27035 0.161593 86 1114.336 0.002652 259.552 0.17474 
37 1277.931 0.008824 146.8033 0.165586 87 1302.88 0.004316 262.3599 0.170954 
38 1126.84 0.006217 154.7602 0.162972 88 1301.492 0.006631 349.3992 0.165158 
39 1380.089 0.005949 192.7 0.167345 89 1152.178 0.008022 329.9762 0.168761 
40 1013.778 0.002305 222.829 0.165092 90 1227.129 0.00173 247.6197 0.161617 
41 1175.498 0.008677 70.78569 0.174274 91 1030.342 0.009364 105.8521 0.173595 
42 1152.623 0.006598 134.4936 0.173805 92 1021.58 0.007981 126.3755 0.173195 
43 1306.207 0.004159 328.3653 0.16079 93 1212.319 0.005381 359.1443 0.172266 
44 1318.08 0.005619 50.5193 0.171068 94 1311.667 0.004923 50.32269 0.163911 
 45 1074.749 0.004616 374.3875 0.164037 95 1373.604 0.005021 216.3645 0.168915 
46 1195.906 0.001684 302.9191 0.166343 96 1051.962 0.003757 100.4538 0.160338 
47 1178.234 0.003159 215.8992 0.168218 97 1227.529 0.005577 392.325 0.166379 
48 1258.525 0.00211 248.269 0.174141 98 1187.756 0.005597 296.57 0.164691 
49 1283.746 0.002655 125.4221 0.166266 99 1004.761 0.008359 220.1698 0.162422 
50 1301.875 0.00316 205.1856 0.174746 100 1134.849 0.008153 209.5918 0.162681 

 
The use of ROM Builder Preprocessing extension inside the ANSYS Fluent 

standalone solver, allowed to automate the running of the multiple CFD simulations in 
Table 1. A Scheme language script was used to program the RBF Morph callings during 
these snapshots generations. Subsequentely,  geometric and physical ROM generation is 
performed inside the Static ROM Builder called inside the Twin Builder – Electronics 
Desktop 2021R1. 

In the next section some key aspects related to the ROM objects will be discussed. 
  



RESULTS AND DISCUSSION 
 
The ROM objects were produced and analysed for the solutions fields: Velocity, 

Velocity Magnitude, Turbulent Kinetic Energy, Specific Dissipation Rate and Wall Shear 
Stress. In the appendix/supplement is presented a series of short videos showing the effect 
of the input parameters in the solution fields from the ROM objects. 

Following the mathematical definitions of Appendix A, an error analysis was 
performed next. The error analysis was planned from Figure 3, relating the number of 
learning snapshots (50, 75 and 100) and the number of modes. 

 

 

Figure 3 - Combination between number of snapshots and number of modes for the simulated 
fields 

 
It was noticeable that the increase in the number of modes and the number of learning 

snapshots has a direct impact on the computational cost. However, for the considered 
problem, this extra computational cost did not make the procedure unfeasible. 
      Figure 4 presents the errors as a function of the number of modes considered in the 
construction of the ROM. For all the solution fields, there is a tendency to decrease the 
error with the increase in the number of modes considered. With the exception of the 
specific dissipation rate for the case of 100 snapshots, where both errors have the same 
value, it is also possible to verify that the ROM Relative Error (Eq. 03, from the appendix) 
is always greater than the Reduction Relative Error (Eq. 04, from the appendix). The 
ROM Relative Error is generated after the construction of the ROM, while the Reduction 
Relative Error is generated right after choosing the number of modes to be considered for 
the ROM construction, that is, the Reduction Relative Error is calculated before the ROM 
Relative Error. 

The increase in the number of modes implies in decrease of errors shown in Figure 5. 
The behavior is valid for all solution fields. Despite a more significant decrease in errors 
for the Reduction Relative Error, ranging between 44% and 58% (14 percentage points), 
the ROM Relative Error has a more accentuated rate of change, ranging between 25% 
and 48% (23 percentage points) depending on the chosen number of modes. 

Therefore, the use of a greater number of learning snapshots and modes is justified, 
even with the increase in computational cost, especially when the error obtained is greater 
than expected. For this study, a target error below 7% was chosen, a value that was 
reached for all solutions fields (smaller values of the green lines in figure 4). 



 
Figure 4. ROM Relative Errors and Reduction Relative Errors versus number of modes for 50, 75 and 100 learning 

100 snapshots, in the (a) SDR, (b) TKE, (c) VEL, (d) VEL_MAG and (e) WSS. 
 

 
 



 

Figure 5. Error decrease versus number of modes considered in solutions fields for Reduction 
Relative Error (RRE) and ROM Relative Error (ROM). 

 
CONCLUSIONS 

 In this short note the steps for geometric and physical ROM object generation 
from CFD simulations were presented. Recent development incorporating spatial 
parameter variation for geometric ROM objects adds extra flexibility to the range of 
engineering applications that can benefit from the ROM technique. The errors associated 
to the use of results from the ROM object instead the full CFD simulations were due to 
the number of the learning snapshots and the number of modes. For each variable field, 
those numbers can be selected by the user for reaching a given target error. Conversely 
to the CFD simulations, all the tasks involved in the ROM object generation are 
computationally fast. At last, the ROM object consumption requires a lighter hardware 
platform than the CFD simulations. 

 

SUPPLEMENT 

Videos available DOI: 10.5281/zenodo.7075312 
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Appendix.  Reduced Order Model Fundamentals 
The ROM construction method derives from the singular value decomposition technique (c.f. 

Driscoll and Braun, 2018 ;Carlberg et al., 2013) of variable’s fields obtained from CFD solutions. 
Initially, a vector basis for the solution field of variable X is built. Such base is dependent on the 
selected input parameters. The building follows Eq. (1). 

*M U V   
In the previous equation, M is a rectangular matrix whose columns, each corresponding to a 

snapshot, are composed of the solution fields of the variable X for several values of the input 
parameters. The   is a diagonal matrix, whose elements σ0,...,σn are called singular values. In Eq. 
(1) U and V are unitary matrices, where the columns of U and V are composed respectively of the 

(1) 



left singular vectors Ui and the right singular vectors Vi of the matrix M. Also, it must be noticed that 
the columns of U, termed as modes, represents a basis for the columns of M, and the product *V
can be viewed as mode coefficients. V* denotes the complex conjugate of V. 

In the next step, the solution field of the variable X is approximated as X ,a linear 
combination of r vectors Ui, by means of Eq. (2). 

 


1

r

i i
i

X U


  
(2) 

The αi interpolation coefficients are approximated by the genetic aggregation meta-model 
(Viana et al., 2009; Acar, 2010; Ben Salem and Tomaso, 2018). 

To evaluate the accuracy of ROM approximation two relative errors can be defined: The 
ROM error total  and the reduction error reduction  , given by: 


total

X X

X



       (3) 

 

r
reduction

X X

X



       (4) 

 

 In Eq(4), each column of Xr corresponds to the vector of values of the projection of the 
i-th snapshot onto the subspace based on the chosen r first modes of the SVD. Can be decreased 
by increasing the number of modes considered and/or increasing the learning dataset (c.f. Fig. 
1) 

 When the ROM Reduction Error is subtracted from the ROM error the interpolation 
error is acquired. This error is related to the uncertainty in determination of the mode 
coefficients αi . It can decreased  by increasing the learning data set. 


