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Abstract

The objective of this research is to develop a numerical model of one widely used bolted
beam splice connection that dissipates energy through the structural damping. The ref-
erence experimental setup is carefully designed such that the highly nonlinear dynamic
response due to the suddenly released load is obtained. The fact that the monolithic beam
with welded connection has a linear response is utilized for the initial calibration of the
numerical and experimental models. Then, the numerical model of bolted beam splice
connection is verified and adopted through an iterative process. The influences of time
and spatial integration, bolt load application, element type, contact formulation, bulk
viscosity, and mass scaling are discussed. A special attention is given to the load appli-
cation and load release functions. After the verification, the Abaqus/Explicit numerical
model is validated through the comparison with experimental data, where an appropriate
friction coefficient is adopted. It is demonstrated that the nonlinear structural damping
occurs due to the complex micro slip behavior at the contact interface.

Keywords: bolted beam splice connection; nonlinear dynamic analysis; structural
damping; frictional contact;

1 Introduction

The design of modern steel and aluminum structures requires various mechanical connec-
tions. One of the most prominent types of these mechanical joints is the bolted splice
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connection (BSC), designed by introducing a large compression force between the ele-
ments in contact interaction. The basic function of a BSC is to connect two elements
and to allow the force transfer between them. The mechanical behavior of these joints
plays an important role in the overall dynamic response of complex engineering structures.
Eigenmodes of vibration and nonlinear structural response heavily depend on contact in-
teractions in BSCs. For example, the stress distribution and slip/stick phenomena in
joints can affect the stiffness, plasticity, and frictional damping [1]. Therefore, a great
amount of research is dedicated to the development of accurate, general, and efficient
computational and experimental models of structures with mechanical connections and
interfaces [2, 3].

Different types of mechanical connections are displayed in Fig. 1. The connection

Figure 1: Typical mechanical connections: a) the simple overlap connection with stick
and slip regions, b) the bolted beam splice connection in steel structures, c) the splice
connection in the aviation industry [4], d) turbine blades with fir-tree connections [5].

shown in Fig. 1a represents a basic scheme of the BSC with its stick and slip regions.
Fig. 1b shows a bolted beam splice connection (BBSC), which is one of the most common
connections in structural engineering. Furthermore, the various BSCs that are predom-
inantly used in the aviation industry are displayed in Fig. 1c. The fir-tree connections
between turbine blades and the mounting disc are shown in Fig. 1d. They require special
attention due to the complexity of the wear, damage, and energy dissipation processes [6,
7].

The standard numerical approach for the analysis and design of mechanical connec-
tions is the finite element (FE) method [8–10]. It can estimate eigenmodes and system
response, therefore allowing the design with respect to a given criterion and material
properties. One of the remaining challenges is to implement uncertainties of geometric
and material properties of the BSC contact interactions in the FE codes. This means
that the problem of accurate and efficient modeling of BSCs during the nonlinear dy-
namic response still open. The main issue is the modeling of structural damping, which is
the prevailing mechanism of energy dissipation in jointed structures. Structural damping
strongly affects the dynamic response and eigenmodes, making the problem of jointed
structures highly nonlinear. Despite its utmost importance, this phenomenon is yet to be
well-understood.

Structural damping of jointed structures largely depends on the properties of surfaces
in contact interactions and on the activation of stick/slip regions during the dynamic
response. A well-designed bolted connection prevents macro slip and a part of micro
slips, but some micro-slipping is always present in real-life working conditions [2, 3]. In
other words, during the motion of a structure, the small regions of contact interface will
move relative to each other, while the majority of contact interface will stay fixed with
respect to each other. The areas where these states exist are defined as the slip and
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the stick regions, respectively. It is evident that the stick region will appear below and
in the close area around the bolt head, see Fig. 1a. Let us emphasize again that, on a
macro level, the parts of a well-designed joint should not move with respect to each other.
The mentioned relative motion occurs over small regions of the interface area and it is
designated as the micro slip. As the intensity of excitation force increases, the micro slip
region increases as well. If the excitation exceeds a threshold value, the entire contact
interface slips, and this phenomenon is designated as the macro slip [11–13].

The lack of proper understanding of jointed structures is discussed by Segelman [2].
Twenty researches were asked: “What are the modeling approaches in which you define
and model mechanical connections?” It was found that there were more ways to describe
mechanical connections than there were survey participants. Hence, there is no uniform
solution or agreement when it comes to the computational modeling of mechanical con-
nections and structural damping.

Let us briefly discuss some of the main factors that influence contact interaction. The
problem is more complex than the pure friction described by Coulomb’s law and the
friction coefficient [14–16]. Additional parameters are material change, plastification, and
degradation [16, 17]. These are followed by unpredictable changes in the total real contact
area involved in the interaction [18] and by changes in stick/slip conditions [19, 20]. An-
other important property is the surface roughness, which is crucial for some engineering
applications. For the definition of contact geometry, Greenwood-Williamson’s and Pers-
son’s models are readily used [21–23]. Contact geometry and the separation are highly
nonlinear and their numerical solution requires a massive computational algorithm [24,
25]. Therefore, accurate modeling of contact geometry is a challenging task, either with
experimental, analytical, or numerical approaches [16, 17, 19, 20, 26–32]. The complexity
of contact modeling increases with a decrease in scale while gaining further insight into
its real nature. The contact interaction of two general bodies at an atomic or nano-level
is a multi-physical problem where several scientific disciplines intertwine [33].

It is fascinating that practically all surfaces found in nature have roughness, with
the exception of some unique materials such as mica, which has a smooth molecular
surface [34]. The influence that contact surface roughness, as a micro scale quantity, has
on the overall macro response of a bolted connection is investigated by Segalman and
Brake [2, 3, 35]. In these studies, the authors emphasize the contact roughness influence
on the jointed structure response and contact pressure distribution. Furthermore, the
dry friction between two stainless steel wedges with a contact interaction surface of only
1 mm2 was examined by Fantetti et al. [36]. Despite the extremely small contact area,
the roughness change in contact surfaces due to the sliding friction caused a significant
change in the eigenmodes of the complete experimental setup that had weight of 22.4 kg!
This experiment clearly indicates the substantial influence that roughness has on dynamic
response.

When we limit the research to dry friction and aim to compare numerical and experi-
mental results, we should consider what dry friction actually is, and whether and in what
way it is possible to achieve ideally dry and clean metal surfaces without the influences
of oxides and humidity [17, 37, 38]. It is remarkable that even an apparently trivial phe-
nomenon, such as air humidity, can significantly affect the friction in joints [39, 40] and
thus, structural damping. Also, oxides and their formation time considerably influence
the friction in mechanical connections [16, 17, 41]. The physical and mechanical char-
acteristics of the oxide and its effect on the friction and overall response of the jointed
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structures are yet to be fully understood [17, 42]. Various experimental procedures have
shown that, after the oxide thickness exceeds the limit of 5− 10 nm, the friction between
steel surfaces reduces due to adhesion reduction [43–45]. For very clean smooth surfaces
and tests performed in a vacuum immediately after cleaning, it has been found that the
friction can increase by several orders of magnitude [41, 46–48]. Furthermore, during the
high frequency micro- and macro-slipping under large pressure, the micro asperities yield
and melt, which requires a proper thermodynamical formulation and further complicates
the dry friction contact modeling. A process of the local heating and melting of micro
asperities is known as flash-heating, and it reduces friction [49–51].

Besides the aforementioned phenomena that are mostly related to dry friction, let
us note additional parameters that affect friction in general: type of material [52–54],
lubrication and presence of different fluids [55–57], and changes in the material phase
and structure caused by heating or radiation [58]. Again, this brief review of the main
parameters that affect contact interactions reveals why the modeling of connections in
engineering structures is an active and challenging research area. In essence, the impact
that processes at the nano and atomic levels have on the macro scale system response
perplexes the accuracy and efficiency of mechanical models [34, 59].

To sum up, there are three main approaches to the study of joint dynamics. The first
approach is to define the exact physics of an interaction of the bolted connection starting
from the micro scale and to consider a variety of uncertainties related to the description of
surfaces that come into contact. The second approach is to investigate the joint dynamics
at the macro scale, thus avoiding the description of micro scale surface geometry and
the conditions of contacting parts. The objective of this approach is to investigate the
dynamic response of the joint as a whole, and to identify crucial parameters that allow the
prediction of structural response. Finally, there is a multi-scale approach that acquires
data from the micro scale and applies it via appropriate parameters to the macro scale
models.

Different experimental and numerical models for joint dynamics at the macro scale
exist [13, 60–65]. Most of these approaches are based on detailed experimental and nu-
merical analyses of simple models. For such models, implicit numerical procedures do not
suffer from convergence issues and can provide satisfactory results. A detailed insight into
the nonlinear response of bolted joints is accomplished through a series of experiments
and by the development of a numerical procedure using a four-parameter Iwan model [2,
3, 66–70]. The importance of scaling between the bolt tightening force and the excitation
force magnitude is observed in these experiments. In the case when the disturbing force
magnitude is small in relation to the bolt tightening force, the connection will not be acti-
vated. In other words, the size of the micro slip regions inside the contact interaction will
not reach a threshold value that triggers the nonlinear dynamic response, i.e. structural
damping. If this is the case, the majority of the contact interaction is in the stick regime
and only material damping will occur. For simple steel structures, such as beams and
brackets, the material damping ratio is around 0.001 [2, 3, 63].

This brief review shows that contact in structural connections is a phenomenon that
requires further investigation. The issues relating to the contact between two bodies
and the description of a process that takes place within the interaction of their contact
surfaces can be classified as an exceedingly nonlinear dynamic problem for which no single
and uniform solution exists [2, 3, 24, 71, 72]. Therefore, the papers dealing with the
structural damping in BBSCs are rare in the literature. The presented research is based
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on a macro scale approach and the secondary phenomena arising in bolted connections
that can significantly influence structural dynamic response.

Motivated by the complexity of contact interactions and their importance for engi-
neering structures, one mechanical joint is studied in detail. Some preliminary findings
are already discussed in [73, 74]. The main contributions of the presented research are
the comprehensive calibration, verification, and validation of a numerical model of one
BBSC. The experiment was carefully designed to trigger a significant nonlinear dynamic
response of an IPE cantilever beam. For the initial verification, a model with welded
connection was utilized. Then, by a deliberate calibration of the numerical model using
Abaqus/Explicit, we obtained a reasonably accurate nonlinear structural response. The
adopted BBSC numerical model allows an insight into the complex stick/slip state, which
is the main cause of structural damping. The Abaqus model has 69 contact pairs, which
presents a complicated problem from the point of view of contact mechanics. Yet, from the
point of view of structural engineering, this joint is a simple and widely used connection.
To bridge this gap, the main issue is the balance between the accuracy and efficiency of
available formulations and tools. For numerical simulations, we utilized several different
computer configurations. For reference, the presented computational times are given for
the configuration with i7-9700K CPU and 32GB RAM.

The paper is organized as follows. The next section presents the experimental setup,
results, and post-processing procedure. The calibration, verification and validation of the
numerical model are given in Section 3. The main findings and conclusions are discussed
in the last section.

2 Experimental analysis

The experimental analysis consists of three steps: (i) design, preparation, and realization
of the experimental testing, (ii) processing of the obtained data, and (iii) analysis of the
results. These steps are discussed in detail in this section. In addition to the experimental
model, an outlook towards the numerical model and its results is given. This kind of
presentation is practically unavoidable since both numerical and experimental analyses
are intertwined.

2.1 Experimental setup

To enable a consistent comparison of the experimental and numerical results, it was nec-
essary to properly define the experimental setup. This includes the design of connections
and load, definition of the loading procedure, and design of the clamped boundary con-
dition.

2.1.1 General considerations

The aim of the experimental analysis was to examine the nonlinear behavior caused by a
sudden release of the load of one commonly utilized IPE 80 beam with a BBSC in real-
life working conditions. Therefore, the experiment ws set up in the open, with relative
air humidity of approximately 70-80%. Besides the BBSC, a model with a welded beam
splice connection (WBSC) was considered as well. Since the WBSC is monolithic, it is
sensible to assume that this beam will oscillate within the linear range. This behavior
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makes the WBSC model ideally suited for the calculation of the material damping and
the initial calibration of the numerical model.

A detailed drawing and an image of the physical model are given in Fig. 2. At the free

Figure 2: Experimental setup. Detailed drawing and physical model.

end, the beam has a fixed mass (M1) and an additional mass (M2). After a sudden removal
of the additional mass, the beam enters the free vibration response. This additional mass
is added monotonically by slowly increasing it in increments of 25 kg. The additional
mass is then released by cutting the attached wire that is 3mm thick. In order to reduce
the effect of wire cutting on the consistency of the experimental results, we also tested
wires that are 1.5 mm and 2 mm thick. However, the 3 mm wire was the thinnest one
that could carry the additional mass. The 3 mm wire was near the yield point,so only
a small amount of damage was required for it to break. This approach is similar to the
modeling of a suddenly released load by Pagnini in [75], where a specially designed test
tube was calibrated to break after the load reaches the desired value.

The structural response was measured with a one-axis accelerometer fixed near the
free end, see Fig. 2. The accelerometer had a sensitivity of 96.6 mV/g and a frequency
range of 0.3–6000 Hz. The sampling rate was set at 128 outputs per second, which was
sufficient to capture the considered acceleration response.

2.1.2 Design of clamped boundary condition

One of the most important initial challenges was the design and construction of the
clamped boundary condition. Failing to properly build the clamped end could result in
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parasitic vibrations due to the rotation of connection plates. Although the final numerical
model is defined later in Section 3, we had to consider an initial numerical model to design
the physical clamped condition.

Therefore, the aim of the initial numerical analysis was to define a beam model with
the clamped boundary condition that can be physically constructed. For comparison, a
beam with an ideally defined fixed boundary condition at the end section had been used,
Fig. 3.

Figure 3: Initial numerical models. Beams with ideal and designed clamped constraints.

The main requirement for the calibration of the model with the designed clamped end
was the agreement between the fundamental frequencies of these two models. Concretely,
we are observing the lowest bending eigenfrequency with respect to the major axis of
inertia. It is actually the third eigenmode of this beam that was the dominantly excited
one in our study. The eigenfrequency of the ideally clamped model is 15.29 Hz.

To define a numerical model that can be constructed, several approaches and parame-
ters were considered and varied. The end results are the numerical model in Fig. 3 and the
appropriate physical model in Fig. 2. The eigenfrequency of this numerical model with
a structurally designed clamped end is 15.27 Hz. The correspondence obtained between
the results gave us clearance to continue with the construction of the physical model.

The beam was welded to a 200× 200× 20 mm connection steel plate via rigid angles
and 4 × 4 mm welds, Fig. 2. This assembly was then welded to a carrying steel plate
with dimensions 550× 350× 30 mm. An approximate weld size between the connection
and carrying steel plates was 10 × 10 mm. The use of oversized steel plates and welds
was intentional, as it ensured an absolutely rigid connection between the beam and the
carrying plate. Finally, the carrying plate was connected to a 300 mm thick concrete
wall with four M20 bolts, as shown in Figs. 2 and 3. With such a construction, we have
achieved an almost ideal clamped boundary condition.

2.1.3 Model with the bolted beam splice connection

As discussed in the introduction, it is crucial to ensure the activation of micro slip re-
gions in the connection to obtain the nonlinear response of the BBSC. Furthermore, to
guarantee consistent results over all tested models, a macro slip had to be allowed during

7



the application of the load. These requirements are achieved by means of careful design
of the connection with respect to the applied load.

The position of the connection was set at 250 mm from the clamped end. To simulate
real-life conditions, the static loading due to the masses M1 and M2 was designed to utilize
50 % of the elastic moment capacity of the observed section [76, 77]. Since the BBSC
model had been analyzed only with respect to the major principal axis, the required mass
was adopted as 125 kg, of which the fixed mass was M1 = 25 kg and the additional M2
= 100 kg.

After defining the static loading, the BBSC was designed, see Figs. 2 and Fig. 4. The

Figure 4: Experimental setup. Images of connections in physical models. a) Bolted beam
splice connection. b) Welded beam splice connection.

connection consisted of two 65 × 46 × 2 mm outer flange splice plates and two pairs
of 65 × 18 × 2 mm inner flange splice plates. Additionally, the web splice plates were
62 × 50 × 2 mm. The tightening was achieved by four M8 bolts for the flanges and six
M6 bolts for the webs. The grade of utilized bolts was 8.8, while the diameters of bolt
holes were 10 mm and 8 mm for M8 and M6 bolts, respectively. The holes were designed
to provide a 1 mm gap around the bolt’s shank. Also, a 1 mm gap was left between the
two parts of the beam that had been joined.

The BBSC model was tested at three levels of the bolt tightening force. The values
of Mr = 25 Nm and Mr = 10 Nm were adopted as the maximum tightening torques for
the M8 and M6 bolts, respectively. These torques resulted in respective tightening forces
of Fp = 16 kN and Fp = 8 kN [78, 79], Table 1. The considered levels of bolt tightening

Table 1: Approximate values of the bolt tightening forces for the three BBSC models.

Model
Tightening
force M8 [kN ]

Tightening
force M6 [kN ]

Percentage of max-
imum force [%]

BBSC100 16 8 100
BBSC50 8 4 50
BBSC30 5 2.5 30

forces were measured with respect to these maximum values. The appropriate models
were designated as BBSC100, BBSC50, and BBSC30, and they refer to 100 %, 50 %, and
30 % of the respective maximum tightening force.

With such a design, the requirements for the nonlinear response and the consistent
results across different models were satisfied. The macro slip had been anticipated during
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the quasi-static application of the additional mass, and the micro slip during the free vi-
bration response. Furthermore, due to the macro-slipping, a complex stress state emerged
at the connection. We will discuss this issue further in Subsection 3.4.2 and Section 4.

2.1.4 Model with welded beam splice connection

The WBSC consists of two 65×45×4 mm outer flange splice plates and two 62×50×2 mm
web splice plates. Let us note that the two flange splice plates 2 mm thick are applied
to the BBSC, while only one flange splice plate 4 mm thick is used for the WBSC.
Nevertheless, the moment capacity of both connections is similar if the reduction of the
cross-sectional area is neglected due to the bolt holes, Fig. 4.

The bending of the WBSC was examined with respect to both principal axes of inertia.
For the loading case with respect to the major principal axis, the masses are the same
as for the BBSC: M1 = 25 kg and M2 = 100 kg. Regarding the loading case with
respect to the minor principal axis, we have set a requirement that the maximum normal
stresses due to the gravity should be close for both loading cases. Since the elastic section
moduli with respect to the principal axes of the IPE 80 section are Wel,y = 20.03 cm3

and Wel,z = 3.69 cm3, the masses M1= 0 kg and M2= 25 kg are adopted for the case of
bending with respect to the minor principal axis.

2.2 Experimental results

The experiment was based on the free vibration response approach, during which the
acceleration time history was recorded [80]. Then, the auto spectrum response (ASR)
was obtained from the recorded accelerations via the Fast Fourier Transform, [81–83].
The advantage of this approach is that a structure can be analyzed in real-life conditions.
On the other hand, the free vibration response does not guarantee the excitation of all
eigenmodes, in contrast to the experimental modal analysis in controlled conditions using
the modal hammer. The number of the recorded modes with the free vibration response
depends on the experimental setup, number and positions of accelerometers, load, etc.
For the purpose of our analyses, the lowest bending mode in the plane of the load and
the beam axis was of the most importance.

As mentioned in Subsection 2.1, the WBSC was tested with respect to both principal
axes, and the BBSC only with respect to the major principal axis. The experimental
acceleration time histories and the ASRs are presented in this paper, along with the
numerical results for the WBSC model.

2.2.1 Model with bolted beam splice connection

The measured acceleration time history responses and ASRs for the models with three
different bolt tightening forces are displayed in Figs. 5 and 6. Evidently, the differences
in the acceleration amplitudes across the models are significant and the values approxi-
mately follow the corresponding tightening force. For example, during the initial 0.5 s,
the difference between BBSC100 and BBSC50 is nearly 50%. Next, the difference in am-
plitudes between BBSC100 and BBSC50 is more pronounced than the difference between
BBSC50 and BBSC30. This suggests that the bolts are quite loose for 50%, while for
the 30% of the tightening force the connection does not have any slipping resistance left.
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Figure 5: Bolted beam splice connection. Experimental acceleration time histories and
their envelopes for the models with three different bolt tightening forces.

Figure 6: Bolted beam splice connection. Auto spectrum response.

Furthermore, the differences in the periods/frequencies of oscillations are visible and in
line with the expectations.

When the full response of 5 s is observed, the beating effect can be noticed. We will
discuss this phenomenon thoroughly in Subsection 2.4.1. An important observation is that
the first amplitude of acceleration is practically invariant to the value of the tightening
force. This fact will be employed to define the load release function of the numerical
model in Subsection 3.4.1.

Regarding the ASRs, all three models return similar eigenfrequencies and the differ-
ences correspond to the respective bolt tightening forces. As discussed in Subsection
2.1.2, the observed frequency is not the lowest one, but the lowest bending frequency in
the plane of the load and the beam axis. Additionally, the ASRs suggest that the damping
increases with the reduction of the bolt tightening force.
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2.2.2 Model with welded beam splice connection

During the analysis of the WBSC experimental results, a lot of noise was found for the
loading case with respect to the major principal axes of inertia. The ASR can be extracted,
but the acceleration results were unusable for our analysis and are omitted here. Regarding
the loading with respect to the minor principal axis, the acceleration response is shown in
Fig. 7. Again, the beating effect is present and it will be discussed later in Subsection 2.4.1.

Figure 7: Welded beam splice connection. Experimental and numerical acceleration time
histories, and the envelope of a linear single-degree-of-freedom system.

An approximate envelope of amplitudes is plotted on the same graph using the standard
exponential law for the amplitude decay of the linear single degree-of-freedom (SDOF)
system. Evidently, the acceleration amplitudes are well-described with this envelope. It
follows that the WBSC oscillates in a linear range and that it can be approximated with
an SDOF. This confirms our assumption from Subsection 2.1.1: the WBSC is practically
monolithic and it can dissipate energy only via material damping. This linear response of
the WBSC model allows us to estimate the damping ratio that is close to 0.0011, which
is in line with the commonly found values of material damping for steel [2, 3, 63].

The adopted numerical model is considered in Section 3. However, for the sake of
coherence, some aspects and results of the numerical analysis should be discussed here.
First, our adopted numerical model was analyzed using linear modal dynamic analysis
and the acceleration response is given in Fig. 7. The numerical and experimental results
agree well, which validates the numerical model. This fact allowed us to further calibrate
the numerical model and to post-process the experimental results. Second, a lot of noise
is detected in the acceleration response during the nonlinear explicit numerical analysis.
In order to avoid this issue, the application of filters and high sampling rates would have
been required. On the other hand, in comparison with the accelerations, the velocities are
significantly less sensitive to sampling rates and high-frequency noise. Hence, the velocity
field was referenced almost exclusively in the present research. The calculation of the
velocities from the measured acceleration response is discussed in the next subsection.

The ASR responses for the loading with respect to both principal axes are shown
in Fig. 8. The lowest eigenfrequency for the case of bending with respect to the major
principal axis is smaller than the one with respect to the minor axis, due to their respective
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Figure 8: Welded beam splice connection. Auto spectrum responses for two cases of
loading.

fixed masses of M1= 25 kg and M1= 0 kg.

2.3 Post-processing of experimental results

2.3.1 Motivation

The low-frequency response is often the focus of structural dynamic simulations. This
poses a problem in the numerical analysis when explicit time integration is employed.
Namely, the stability requirement of the explicit procedure is that the integration time
step should be small enough to capture the highest frequency wave traveling through
the mesh. For highly nonlinear problems and fine meshes, this time increment can be
extremely small.

When it comes to retrieving the outputs from explicit simulations, the recording of
results at every increment produces large output files and has high computational costs.
This approach is not optimal when only the low- frequency response is of interest, as in our
case. The common solution is to calculate output variables at each nout integration steps
or each tout intervals of time. This procedure is needed to optimally utilize computational
resources, but can lead to aliasing problems. Aliasing occurs when a signal is sampled at
discrete points, but not enough data points are saved to correctly describe the original
signal [84, 85]. Different variables have different sensitivities to aliasing. The variables
with high frequencies and large amplitudes, such as the accelerations and the reaction
forces, are the most susceptible to aliasing [86]. The NASA Technical Memorandum [87]
shows that even 104 outputs per second are not enough to avoid aliasing in drop test
simulations. One way to mitigate aliasing is to use Abaqus real-time filtering capability
which requires less disc space than taking output at every increment. This approach has
a few drawbacks, such as the choice of an appropriate output rate and filter, which is left
at the user’s discretion. [88, 89].

Based on these considerations, the outputs in our numerical model were taken every
0.00781 s, which returns the sampling rate of 128 results per second. This rate is the same
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as in the experimental analysis, cf. Subsection 2.1.1. The time period considered with
numerical analysis was approximately 6.5 s. For the adopted numerical model, Abaqus
required approximately 53 h of computational time during which 3× 107 increments were
calculated. To meet the recommendations from [87], the acceleration response needs to
be sampled at a 100 times higher rate, which would highly affect computational cost and
memory requirements. Our numerical tests confirm that appropriate results can be ob-
tained with 5× 104 outputs per second for sensitive analysis outputs like the acceleration
and the contact forces. To avoid these issues, we have numerically integrated the exper-
imental acceleration responses and obtained velocities that are less sensitive to the low
sampling rates. With this approach, we can consistently compare the experimental and
numerical data.

2.3.2 Numerical integration of discrete function

Through the numerical integration of a discrete signal, we aim to find the new value vi+1

based on the known value vi. This is achieved by calculating the area under a curve being
integrated, between the points i and i+1. There are many ways to choose an appropriate
integration rule for the integral at hand: One can use the linear interpolation between the
points i and i+1, and then integrate using the trapezoidal rule, or use spline interpolation
through several discrete points in order to decrease the integration step and lower the
error. In this work, we have calculated the experimental velocities by approximating the
discrete acceleration data with a cubic polynomial, and then integrating it with Simpson’s
3/8 rule [90].

In order to validate the described procedure for the calculation of experimental veloc-
ities, we first integrated the experimental acceleration response of the WBSC model. It
is discussed in Subsections 2.1.1 and 2.2.2 that this model has a linear response and can
be used for calibrating the numerical model and the post-processing of the experimental
results. Therefore, we have compared these WBSC experimental velocities with the ve-
locities obtained by the modal dynamic procedure in Abaqus. The results agree well and
they are omitted for the sake of brevity.

By means of this analysis, the applied cubic numerical integration is validated. The
procedure is then utilized to find the velocity time histories of the experimental BBSC
models with three levels of bolt tightening force. The results will be shown and discussed
later in the paper.

2.4 Approximate calculation of damping

As discussed in Subsection 2.2.2, the WBSC amplitude decay follows an exponential
law, meaning that the system response and the damping can be considered linear. By
knowing the eigenmodes, the amplitude decay and the energy dissipation of such a system
can be described with one parameter - material damping. On the other hand, the BBSC
model dissipates energy through a nonlinear mechanism due to the friction between the
contacting surfaces. The amplitude decay of such a system cannot, in general, be described
with only one parameter.

There is a variety of methods that can be used to identify damping characteristics
of a nonlinear system with multiple DOFs. The peak amplitude method is applied for
the nonlinear response of shear lap joints in [62]. Damping of structures with bolted
connections was considered by Goyder et al. [63, 91, 92]. Their algorithm is based on
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fitting the decaying amplitudes along short time intervals using the sine function. Here,
we are using an approach similar to the one in [91].

2.4.1 Experimental damping of the beam with welded connection

Since the WBSC model is linear, it is well-suited for the verification of the algorithm for
the extraction of damping. Let us assume that the decay rate between two consecutive
amplitudes with the same sign is small enough to allow an approximation using the linear
oscillator with viscous damping [91]. This is a reasonable assumption for small time
increments between amplitudes. Therefore, a discrete set of logarithmic decrements δi
between two consecutive positive or negative velocity amplitudes was calculated. The
damping ratio is then found by the standard expression ξi = δi/

√
4π2 + δ2i . In this way,

a set of approximate discrete damping ratios is obtained for a complete system response.
Envelopes of the velocity and the calculated discrete damping ratios for the WBSC

model are shown in Fig. 9. Due to the presence of beating, the discrete damping ratios

Figure 9: Welded beam splice connection. Velocity amplitudes, discrete damping ratios
and linear approximation of damping ratio.

oscillate between positive and negative values. The beating phenomenon occurs when the
body oscillates in two different eigenmodes with slightly different frequencies. Manufac-
turing imperfections, the eccentricity of mass, and similar values of two eigenfrequencies
can cause a beam to beat. The beam then oscillates with respect to both of its principal
axes and thus in more than one frequency [3]. During such vibrations, the signal appears
to be modulated. This is evident in Fig. 9 where the velocity amplitudes decrease, but
oscillate in regular intervals. One typical part of the response is marked in Fig. 9 and one
period of beating is observed (AC segment). Between points A and B, the nonphysical
negative values of the discrete damping ratio occur, because the amplitudes increase in
that segment due to beating. Point B is the local maximum of velocity where the discrete
damping ratio is zero. The amplitudes decrease in the segment BC and the damping is
positive. The discrete damping ratio reaches the maximum just before point C where the
beating cycle starts again.

Therefore, due to the beating effect, the discrete damping ratios do not correspond
to the true values of damping. This problem is solved by fitting the damping curve
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through the discrete set of damping data. Since the WBSC is linear, a simple mean
value data fitting is suitable and the result is displayed in Fig. 9. The realistic value
of damping is obtained, ξ = 0.00106, which agrees with the value calculated using the
decaying envelope for the SDOF system with viscous damping, ξ = 0.0011, cf. Subsection
2.2.2. This analysis shows that the beating phenomenon has a negligible influence on the
damping ratio.

2.4.2 Experimental damping of the beam with bolted connection

As discussed previously, the damping ratio of the BBSC model is not constant during the
free vibration response. A straightforward approach for the quasi-viscous approximation
of damping is illustrated in Fig. 10 where the velocity amplitude decay for the BBSC100
model is considered. Two envelopes of the linear viscous SDOF system are utilized to

Figure 10: Bolted beam splice connection with 100 % of bolt tightening force. Approxi-
mation of damping with two decaying envelopes of the SDOF system.

estimate the damping. The first envelope approximates the energy dissipation during the
short initial part of the response for t < 0.4 s with an approximate damping ratio of
ξ = 0.012. The other envelope corresponds to the damping ratio of ξ = 0.002 and it fits
the response for t > 1.45 s, which is linear. The middle part of the time history can
be considered as a transition interval between the nonlinear and the linear response. We
can improve the accuracy of this approximation by increasing the number of envelopes,
and the limit case corresponds to the method for the calculation of the discrete damping
ratios, described in Subsection 2.4.1.

To approximate the nonlinear damping characteristics of the BBSC, a function that fits
the discrete damping data is required. This function is found by solving the corresponding
optimization problem using the Matlab Optimization Toolbox [93]. The adopted model
function consists of two decaying exponential functions, fm = b1e

a1t + b2e
a2t. Coefficients

ai and bi are found in a least-squares sense by minimizing the square error between the
measured input data and the model function. The lower bound for the ai coefficients is
set to zero. In this way, the adopted model function can represent both the nonlinear
and constant parts of damping [62]. In order to get the global optimum, the multistart
procedure is applied and the optimization problem is solved for 100 different initial starting
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points. More details about the theory and the application of this algorithm can be found
in [94].

In this way, the functions that fit the discrete damping ratios are found and the
results are displayed in Figs. 11a, 11b, and 11c, while the obtained damping ratios for all
experimental models are compared in Fig. 11d. The obtained results clearly illustrate the

Figure 11: Velocity amplitudes, discrete damping ratios and nonlinear function of damping
ratio for: a) BBSC100, b) BBSC50, c) BBSC30. d) Comparison of damping ratios for all
experimental models.

strong influence that the bolt tightening forces have on structural damping. Furthermore,
the nonlinear change of the damping is clearly pronounced during the initial part of the
time history. As time elapses, all models slowly approach the constant value of damping.
Thus, after enough energy is dissipated through the structural damping, the slipping in
the BBSC deactivates, and the beam continues to oscillate with material damping.

3 Numerical analysis

3.1 Introduction

A well-known commercial FE software Abaqus is used for the numerical analysis. There
are several different methods available in Abaqus for performing dynamic simulations.
The linear modal analysis is sufficient for the calibration and verification of the numerical
WBSC model. For the nonlinear dynamic analysis of the BBSC model, two methods
are available: Abaqus/Standard which uses an implicit, and Abaqus/Explicit which uses
an explicit time integration algorithm. The explicit approach was utilized here for the
reasons discussed below.

An implicit dynamic procedure requires an iteration process to find the equilibrium at
an unknown configuration. For complex contact problems with many interacting parts,
the implicit method is usually not recommended [8, 88, 89]. The main issue is the change
in contact status during a single time increment, which negatively affects the convergence
of the nonlinear solver and yields small-time increments. For an analysis with many
contact conditions, this issue makes the implicit algorithm computationally expensive.
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The considered BBSC model falls into this category due to the contacts between its beam
parts, bolts, nuts, washers, and splice plates.

Unlike the implicit, the explicit dynamic analysis efficiently calculates large numbers
of small-time increments using the central difference rule. In comparison with the implicit
analysis, each increment is relatively inexpensive since the formation and inversion of the
tangent stiffness matrix are not required. An important feature is that contact conditions
are not of significant concern in an explicit analysis. The contact surfaces can be left in a
non-contact state, rigid body movements are acceptable, and the algorithm automatically
picks up the stiffness when contact is detected.

The stability limit of a time increment is the main issue of an explicit solver. The time
increment is usually adopted as the smallest time required for the stress wave to travel
through the smallest element dimension in the model. To satisfy this condition for fine
meshes and high-speed wave propagation, the time increment must be very small. When
dealing with the BBSC model, it was important to find a balance between the accuracy
and the computational time because: (i) the numerical model is relatively large with a
lot of contacting surfaces that require fine meshes, (ii) the response time is 6.5 s, which is
quite long for an explicit simulation. For this, we had to optimize the FE mesh and find
an appropriate stable time increment.

One standard method for limiting the value of the stable time increment is mass scal-
ing. When applied properly, the method can significantly improve efficiency by increasing
the time increment. In order to minimize the error, mass scaling must be carefully applied
to a set of elements that control the increment size. Failure to do so can result in large
artificial inertial forces that can significantly affect structural response.

The reliability of explicit nonlinear simulations is commonly assessed via energy out-
puts. The artificial energy should be small in comparison to internal energy, while the
total energy of the overall model should be approximately constant [88].

Our numerical model is relatively complex, and it was adopted through an iterative
procedure. The most important parameters that were calibrated via this process are: the
FE mesh, boundary conditions, load function, contact formulation, mass scaling, reduced
integration, and bulk viscosity. Furthermore, the explicit analysis does not support the
bolt force option, and the bolts had to be tightened in line with the temperature change.
The calibration and the adoption of these parameters are discussed further in this section.

Regarding the material model, the bilinear stress-strain relationship is adopted. The
beam and the splice plates have the following material properties: modulus of elasticity
E = 200 GPa, Poisson’s ratio ν = 0.3, yield stress fy = 235 MPa, tensile strength
fu = 360 MPa, and ultimate strain ϵu = 26 %. For the bolts, nuts, and washers, the
same values of E and ν are used, while fy = 640 MPa, fu = 800 MPa, and ϵu = 12 %
[79].

3.2 Numerical model

3.2.1 Finite element mesh

To improve the balance between efficiency and accuracy, the mesh optimization and model
reduction are considered. The main steps in these procedures are displayed in Fig. 12.
The reference numerical model (NUM1) had all parts of the real structure. The beam
is connected to the connecting and carrying plates via rigid angles, while the carrying
plate is bolted to the 1 × 1 m section of the concrete wall that is clamped along its
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Figure 12: Optimization of the FE mesh and the model reduction.

edges. This model is meshed with 59000 C3D8R brick elements. To optimize the mesh,
the beam is meshed with S4R shell elements, except for the connection itself, which is
meshed with C3D8R elements. As a result, model NUM2 with 39334 FEs is obtained.
Next, our numerical tests suggest that the concrete wall and the carrying plate can be
removed. However, this requires fixing of the connection plate along its edges and across
10 mm width, which corresponds to the weld width, see Fig. 2. The obtained model has
34528 FEs and it is designated as NUM3. The FE mesh of this model is given in Fig. 13.
Connections between the shell and solid elements are modeled as shell to solid coupling,
while the welds are modeled as tie constraints. The thickness of the welds is taken into
account, and the WBSC model is also shown in Fig. 13.

Finally, by introducing the symmetry conditions and additional mesh refinement, the
NUM4 model with 18373 FEs is obtained, Fig. 12. The initial NUM1 mesh is reduced
approximately by a factor of 3. The adopted NUM4 model is verified through a comparison
with the NUM1 model. The acceleration time histories, obtained using linear modal
analysis, are compared. The agreement between the results is satisfactory, and the NUM4
model is adopted for further consideration. The results are omitted for the sake of brevity.

3.2.2 Contact modeling

The contact modeling is crucial for the analysis of the BBSC model due to contact inter-
actions between different surfaces and associated effects of the local stick/slip behavior. A
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Figure 13: NUM3 model. Types of elements and their approximate dimensions. Applica-
tion of shell to solid coupling and tie constrains between parts of the model.

considerable effort is required for the calibration of interaction properties and master/slave
surfaces. A common algorithm for contact problem solving is the penalty method which
is available in both Abaqus/Explicit and Abaqus/Standard. Other approaches, such as
the Lagrange multiplier method, or the Perturbed and Augmented Lagrangian methods,
are available in Abaqus/Standard only [88, 89].

Abaqus/Explicit offers two contact algorithms: general contact (GC) and contact pair
(CP). Both of them have advantages and disadvantages that depend on the problem
size, required level of detail, expected accuracy, etc. [24, 25, 89]. The main difference
between these two contact algorithms is contact discretization. The GC method uses
node-to-surface, while the CP algorithm employs surface-to-surface discretization. GC is
a robust, accurate, and efficient algorithm that allows straightforward modeling of contact
interactions between multiple bodies. The node-to-surface discretization is a point-to-
surface method where each contact constraint involves a slave node and a master face.
One issue of this approach is the penetration of slave surfaces by master nodes, which
affects the solution. A mesh refinement of slave surfaces is a simple way to tackle this
issue.

On the other hand, the CP algorithm is not as simple to use as GC. It requires an ex-
plicit definition of all interacting surface pairs, along with the properties, constraints, and
master/slave surfaces for each contact pair. The surface-to-surface formulation detects
contact conditions in regions around the slave nodes, rather than only at the individ-
ual slave nodes. These regions are approximately centered around slave nodes, so each
contact constraint predominantly utilizes one node, but also considers the adjacent ones.
The surface-to-surface algorithms do not suffer from the penetration issues between nodes
and master/slave contacting surfaces. Unlike the node-to-surface, the surface-to-surface
algorithms are not sensitive to the master/slave roles between contacting surfaces. Fur-
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thermore, they can reduce local penetrations and improve the accuracy of contact stresses
even for non-matching meshes. However, it is recommended that the slave surface has
denser mesh than the master surface, while the stiffer body should be assigned as a master.

Both the GC and CP algorithms were utilized here for the analysis of the BBSC model
in order to investigate their pros and cons. Contact interaction was defined between
all components of the BBSC: the beam parts, bolts, washers, and splice plates. To
simplify the GC numerical model, the individual surface pairs that are expected to interact
are defined. Since GC supports the definition of multiple interacting surfaces between
different parts, the BBSC was modeled with 24 individual contact pairs. Regarding the
CP approach, each contact interaction pair needs to be defined. Also, contact interaction
can consist of only one surface from each of the two parts. These requirements resulted
in 69 contact surface pairs for the CP model. The balanced master/slave weighting is
applied for both GC and CP, and the weighting factor is set to f = 0.5 for the CP case.

Let us emphasize that we used GC for the major part of our research, due to its
simplicity. Therefore, all the presented results, until Subsection 3.4.4, are given for the
GC contact algorithm.

Contact interaction along the normal direction is defined as normal hard contact,
allowing the separation between the interacting surfaces. The isotropic Coulomb’s law of
friction assumes that there is no relative tangential motion when the frictional shear stress
is less than some critical stress that is proportional to contact pressure. Even for models
without relative sliding, the numerical implementation of the Coulomb friction through
the penalty method allows some elastic slipping in contact interaction due to the finite
stiffness of penalty springs. As mentioned in Section 1, the coefficient of friction has a
crucial role in the analysis of mechanical connections and it can strongly affect nonlinear
structural response. For the friction between steel surfaces, the friction coefficient varies
from 0.1 to 0.8 [15–17, 24, 39–41, 79]. This broad range of values is caused by a variety
of parameters that influence friction, as discussed in Section 1. We conducted detailed
numerical analyses to find the most suitable friction coefficient for the problem at hand,
and the value of µ = 0.155 was adopted. A similar value for the friction between steel
parts can be found in works that investigate bolted connections [15, 39, 95–97]. The
penalty friction method with finite sliding, based on Coulomb’s law of friction, is utilized
for the tangential contact behavior.

3.2.3 Tightening of bolts

A standard bolt connection consists of a bolt, nut, and washer. To limit the number of
contact surfaces, the bolt and nut are here modeled as a single body, Fig. 14a. Abaqus
supports two methods for the modeling of bolt tightening by: applying a bolt force and
adjusting the length of the bolt shank. However, these options are not supported in
Abaqus/Explicit.

Several approaches for the tightening of bolts in Abaqus/Explicit can be found in the
literature. One is called turn-of-nut [98] and it is based on detailed modeling of threads
on the shank and inside the nut. The bolt pretension is then introduced by rotating the
nut. Another approach is to apply a temperature change to either the bolt shank [8] or
to the washer [99, 100]. The latter approach was employed in our numerical model by
applying a temperature change to the washer.

The washer was made from an orthotropic material with a non-zero thermal expansion
coefficient only along the bolt direction, Fig. 14a. Prior to the application of mass M2,
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Figure 14: Tightening of bolts. a) Model of a bolt, nut, and washer. The thermal
expansion coefficients for the washer. b) Distribution of the von Mises stresses for the
bolt force and temperature change methods.

the washer was subjected to the positive a temperature change, causing volume expansion
along the z direction and producing tension in the bolt shank. With proper calibration
of the temperature load, the required tightening force was obtained. For verification
purposes, a numerical model with static bolt force was made in Abaqus/Standard. The
von Mises stress distributions in the bolt at the final step of loading are displayed in
Fig. 14b. The stresses are the same for both the temperature method and the bolt force
procedure.

3.3 Validation of the numerical model

The calibration, verification, and validation of numerical models are complex processes.
They require many iterations in which various properties of the experimental and numer-
ical models must be compared. Details on the calibration and verification are given in
Subsection 3.4. Here, we are presenting the results obtained with the adopted numerical
model and compare them with the experimental data. The first step of the validation is
the modal analysis, while the velocity time histories are compared afterward.

3.3.1 Modal analysis

The experimental ASR results for the BBSC and WBSC models are given in Subsections
2.2.1 and 2.2.2. The numerical BBSC model, adopted in Subsection 3.2.1, has eigenfre-
quencies of 15.61 Hz, 15.58 Hz, and 15.55 Hz for 100 %, 50 %, and 30 % of the bolt
tightening force, respectively. These values are in good correspondence with the experi-
mental results given in Fig. 6, and are a bit higher than that of the initial numerical model,
Fig. 3. Actually, the differences with respect to the experimental results are less than 2.5%.
It should be emphasized that the modal analysis was done in Abaqus/Standard after a
static step for the tightening of bolts. However, the influence of the bolt tightening force
is small because the main nonlinear effects due to the deformation and slipping inside the
connection were not captured with our numerical modal analysis.

Regarding the considered eigenfrequencies of the WBSC model, their experimental
values are given in Fig. 8. Numerically obtained values are 15.7 Hz and 20.5 Hz, and they
differ from the experimental ones for approximately 3% and 6%, which is an acceptable
alignment of results for the free vibration test.
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3.3.2 Velocity time histories

The velocity time histories obtained with the adopted numerical BBSC models are com-
pared with the experimental results in Figs. 15, 16, and 17. The experimental and nu-

Figure 15: Bolted beam splice connection with 100 % of the bolt tightening force -
BBSC100. Comparison of experimental and numerical velocity time histories.

Figure 16: Bolted beam splice connection with 50 % of the bolt tightening force - BBSC50.
Comparison of experimental and numerical velocity time histories.

merical responses agree reasonably well, considering the complexity of the problem. The
excellent correspondence of the first amplitudes is emphasized in the graphs. The agree-
ment of the results deteriorates with the decrease of the bolt tightening force. Further-
more, it is evident that all experimental models oscillate with somewhat higher frequencies
in comparison with the numerical models, which causes a small time shift between the
compared responses. The differences between the eigenfrequencies are already discussed
in the previous subsection. These differences are more pronounced in the velocity time
histories due to the significant nonlinearity of the considered responses.

All in all, the agreement between the experimental and numerical results validates our
adopted numerical model. This is particularly true for the BBSC100 model which is the
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Figure 17: Bolted beam splice connection with 30 % of the bolt tightening force - BBSC30.
Comparison of experimental and numerical velocity time histories.

focus of our research.

3.4 Calibration and verification of the numerical model

In this subsection, the calibration and verification of the main parameters are considered.
First, we are calibrating the load function that is separated into two parts: load application
and load release functions. This is followed by a discussion and verification of proper mass
scaling. Then, the influences of bulk viscosity, order of numerical integration, and contact
formulation on structural response are considered. Finally, the quality of the numerical
solution is assessed through the analysis of the model’s energies.

3.4.1 Load release function

Let us consider the load release function that describes the removal of additional mass M2.
Since the load release time ∆tLR is relatively short, the linear function was adopted. The
experimental results in Fig. 5 suggest that the bolt tightening force does not significantly
affect the first amplitude of acceleration. Due to this fact, the load release time was
calibrated with respect to the first acceleration amplitude. Five different load release time
intervals are tested via the modal dynamic analysis using ξ = 0.012, see Fig. 10. The
envelopes of numerically obtained accelerations and the experimental acceleration time
history are shown in Fig. 18a. The obtained envelopes reveal that the first amplitude
converges with respect to the load release time. Therefore, the value ∆tLR = 0.015 s was
adopted in our numerical model.

The first 0.4 seconds of the acceleration and velocity time histories obtained with the
modal dynamic analysis and compared with the experimental results are displayed in
Figs. 18b and 18c. Using the adopted load release time, ∆tLR = 0.015 s, the numerical
and experimental results agree reasonably well. Additionally, the adopted load release
time is validated by comparing the first velocity amplitudes in Subsection 3.3.2. The
experimental and Abaqus/Explicit results are in good agreement, see Figs. 15, 16, and
17. The relative difference between the first velocity amplitudes for the BBSC100 model
is around 4 %, and increases as the bolt tightening force decreases.
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Figure 18: Calibration of the load release time with respect to the first experimental
amplitude. a) Envelopes of acceleration for different values of the load release time ∆tLR.
b) Acceleration time history with ∆tLR = 0.015. c) Velocity time history with ∆tLR =
0.015.

3.4.2 Load application function

In order to find the balance between efficiency and accuracy, it was necessary to adopt
an appropriate load application function. After several tests, the circular function and
the load application time ∆tLA = 3.5 s were adopted, see Fig. 19. The load function is
defined in the time interval t ∈ [−3.515, 0], while the pretension of bolts takes place for
t ∈ [−3.715,−3.515]. After the load release, the free vibration response occurs during the
interval t ∈ [0, 2.8]. The displacement time history in Fig. 19 clearly indicates a significant
sudden movement after approximately 0.5 s of load application. This large displacement
is caused by the macro slip in the bolted connection, which was also observed in the
experiment, see the numerical and experimental BBSC in Fig. 19. Due to this slip, the
right part of the beam suddenly rotated with respect to the clamped part, causing the
splice plates to bend. The result is a complex stress state in the connection, which will
be presented in Subsection Fig. 3.4.4. After the initial macro slip and the load release,
the beam oscillated with respect to a newly found static equilibrium position.

In order to scrutinize the influence of load application time, the velocity time histories
for three values of ∆tLA are shown in Fig. 20. Regardless of the load application time,
the macro slip occurred. The main difference between obtained responses is that, for
∆tLA = 5.5 s, the velocity amplitudes almost completely dampen before the load release,
in contrast to the other two models. The full damping of the structure before the load
release would be an ideal case, but also non-efficient due to the large load application
time. Actually, the point of this calibration was to test the influence of the vibrations
remaining after the load application on the free vibration response. The obtained results
suggest that the velocity responses of models with ∆tLA = 3.5 s and ∆tLA = 5.5 s, for
t > 0, are practically indistinguishable, while the model with ∆tLA = 2.5 s gives similar
amplitudes but is slightly shifted in time. These observations provided an argument for
adopting the value ∆tLA = 3.5 s.

Regarding the displacement time histories, it is evident that the model with the slowest
application of load, ∆tLA = 5.5 s, had the smallest displacement. Also, the slipping of
this model occurred in two instances, and its value was lower than that of the other
two models. If we focus on the instances when the slipping occurred, it is evident that
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Figure 19: Adopted load function. The velocity and displacement time histories for the
adopted load function. The physical and numerical model of the BBSC before and after
the macro slip.

Figure 20: Calibration of the load application time for BBSC100. Velocity and displace-
ment time histories for: ∆tLA = 2.5 s, ∆tLA = 3.5 s, ∆tLA = 5.5 s.
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the velocity peak increases with the decrease in the ∆tLA. This can cause significant
disturbance of the free vibration response, especially if the load application time reduces
below 1.5 s.

3.4.3 Mass scaling

As already discussed, the crucial parameter of explicit time integration is the stable time
increment. Its correct value is vital for the accuracy of numerical results, and it strongly
affects computational time. Since the adopted numerical model initially required approx-
imately 110 h of computation for 6.5 s of simulation, we employed mass scaling to reduce
computational time. Mass scaling is a standard procedure for the increase of the stable
time increment. This increment is equal to the time required for a wave to propagate
through the smallest element dimension, and we can increase it by deliberately increasing
the mass density of critical FEs. The application of mass scaling requires special attention
in dynamic analysis because it introduces fictitious inertial forces. The task is to carefully
select FEs for mass scaling by balancing the computational time and accuracy.

For the adopted numerical model, the selected FEs are shown in Fig. 21. These are the

Figure 21: Selected set of finite elements for the application of mass scaling.

smallest FEs in the model and they belong to the splice plates, bolts, washers, and parts
of the beam around the bolt holes. The crucial step was to investigate the influence that
mass scaling had on structural response. For this, three values of the stable time increment
were tested: ∆t = 9.83×10−8 s, ∆t = 2.00×10−7 s, and ∆t = 3.40×10−7 s. The reference
model was the one without mass scaling, with the time increment ∆t = 9.83× 10−8 s.

The velocity time histories for these three values of ∆t are shown in Fig. 22. Evidently,
the model with the stable time increment of ∆t = 2.00 × 10−7 s returned the same
results as the reference model without mass scaling. On the contrary, the model with
∆t = 3.40 × 10−7 s gave significantly different results. Following these observations, the
mass scaling that returned the stable time increment of 2.00 × 10−7 was adopted in our
numerical model. As the result, the initial stable time increment was increased by a factor
of 2.03 without significantly influencing the structural response.

Additionally, the mass increase for the whole model and selected elements is depicted
in Fig. 22. The mass increase of the adopted model is 1.73% for the complete structure
and 145% for the selected elements. Although the mass increase of selected elements
was substantial, the mass increase of the whole model was negligible and the influence
of fictitious inertial forces was insignificant. For the model with ∆t = 3.40× 10−7 s, the
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Figure 22: Verification of mass scaling on BBSC100. Velocity time histories and mass
increases for three models with different values of stable time increment ∆t.

whole mass increased by a factor of 3.3, while the mass of selected elements rose by a
factor of 160. This large increase of mass caused evident errors in the numerical response.

The reference numerical model, without mass scaling, required 110 h of computational
time for 6.5 s of simulation. By applying the adopted mass scaling, the computational
time was reduced to approximately 53 h, which greatly improved efficiency. Let us note
in passing that computational time depends on several other parameters besides mass
scaling, the order of numerical integration being the most important. In comparison with
the reduced spatial integration, the full integration increased computational time of our
model, on average, by more than 200%.

3.4.4 Bulk viscosity and order of integration

There are two sources of energy dissipation in our BBSC numerical model: nonlinear
damping due to the friction in the bolted connection and numerical damping. Let us focus
on numerical damping. Two main sources of numerical damping in Abaqus/Explicit are
bulk viscosity and the order of integration. Bulk viscosity represents artificial damping
proportional to volumetric straining. The addition of such a viscous pressure term to the
equation of motion helps to solve high-speed dynamic events. The method is also known
as the von Neuman-Richtmeyer viscosity [101, 102]. Bulk viscosity in Abaqus/Explicit
consists of linear and quadratic terms, and the default values were used for our numerical
model.

In order to model contact in the bolted connection, linear fully-integrated C3D8 ele-
ments were initially used for the splice plates, parts of the beam, washers, etc. Such a
modeling approach causes issues with bending deformations. Concretely, a strong shear
locking effect occurs and artificially increases the stiffness of the structure. This issue is
alleviated by the implementation of the C3D8R elements with reduced integration. How-
ever, an unwanted side effect of the reduced integration is hourglassing, the distortion of
elements that occurs during the bending if the mesh across the thickness dimension is
sparse [88, 103, 104].
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Bearing this in mind, we analyzed the numerical damping that exists in our explicit
simulations. In order to exclude structural damping, the WBSC model was considered.
The adopted numerical model utilizes both the bulk viscosity and C3D8R elements. The
obtained results are omitted for the sake of brevity, and the resulting numerical damping
is close to 0.001. This value is in excellent agreement with the material damping discussed
in Subsection 2.2.2. Therefore, the numerical damping of the adopted numerical model
corresponds to the estimated material damping of the real structure. Due to this fact,
there is no need to explicitly define damping in our numerical model. Moreover, these
values of the material and numerical damping are not crucial for the observed response,
which is dominated by structural damping due to friction, see Fig. 11. The main source
of numerical damping in our case is reduced integration, and its effect can be alleviated
by increasing mesh density along the thickness direction.

Let us consider the influence that bulk viscosity and the order of integration have on
the BBSC100 model response. Both the GC and CP contact formulations are considered,
and the velocity time histories are given in Figs. 23 and 24. Furthermore, the distributions

Figure 23: Influence of bulk viscosity (B) and the order of integration (R) using the
General contact (GC) formulation. Velocity time histories. Stress distributions in the
flange splice plate at the upper part of the section, before the load release.

of Mises stress in the flange splice plate at the upper part of the section, before the load
release, are shown. Different models are marked as RxBx, where x takes the value of 0
or 1, while R and B represent abbreviations for Reduced integration and Bulk viscosity,
respectively. x=1 indicates that a parameter is included, while x=0 designates that a
parameter is excluded.
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Figure 24: Influence of bulk viscosity (B) and the order of integration (R) using the
Contact pair (CP) formulation. Velocity time histories. Stress distributions in the flange
splice plate at the upper part of the section, before the load release.

All the results that were presented until now were obtained with the GC R1B1 model.
The most important observation from the results in Figs. 23 and 24 is that the R1B1
models are invariant with respect to the contact formulation. For the C3D8R elements,
bulk viscosity does not influence velocities, but it does affect stress distributions, which
is more pronounced for the GC formulation.

Regarding the fully integrated C3D8 elements, they return erroneous results. The
dominant eigenfrequency of the C3D8 models is invariant with respect to the contact
formulation and bulk viscosity, and its value is a bit higher than that of the C3D8R
models. This happens due to shear locking. Regarding the velocity amplitudes, they
are higher for the C3D8 elements, with the exception of the GC-R0B0 model. The full
integration strongly affects stresses and the splice plate plastifies. Finally, the stress
distributions obtained with the CP formulation are much smoother than those from the
GC approach. In general, the results from the CP formulation are more reliable and
independent from other parameters. This is mostly due to the issues inherent in the GC
point-to-surface modeling, such as penetration and snugging of master nodes.
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3.4.5 Energy considerations

The energies of a numerical model are important parameters that can quantify the quality
of the numerical solution. To verify the quality of the solution, four energies are observed:
total energy ETOT , internal energy EI , artificial strain energy EA, and work done by
penalties EPW . Some general guidelines are that ETOT should be constant, while the
ratio of EA and EI should be less than approximately 2− 10%, depending on the model
[88, 105, 106].

Both contact formulations are considered, and the energy time histories are shown in
Figs. 25 and 26. Let us first discuss the total energy. For both contact formulations,

Figure 25: Energy time histories of the GC model. Experimental and numerical velocity
time histories.

ETOT increases for a similar value during the bolt tightening in the time interval AB. This
occurs because the internal energy increases as a result of the temperature expansion of
the washer, but there is no external work. Afterward, the total energy is constant for
the GC formulation in the interval BF. However, for the CP formulation, the situation is
different. Due to the significant work done by penalties, EPW significantly increases in the
interval CD, where the macro slipping occurs. The penalty energy is practically constant
in the remaining interval DF, with the exception of small increase at the point of the load
release. This increase in EPW is followed by a decrease in ETOT . If we consider ETOT

without EPW , the obtained energy is practically constant. This inconsistency is specific to
the adopted model with the CP formulation. The problem of non-constant total energy is
often present in contact and impact problems [107, 108]. If there is a significant change in
ETOT , it is important to double-check the results. In our case, the free vibration velocity
time history in the time interval EF is not affected by this phenomenon.

Regarding the ratio between the artificial and internal energy, EA/EI , it is 8.5% for the
CP, and 35% for the GC formulation. Evidently, this ratio is inside the acceptable limits
for the CP, and outside of the limits for the GC formulation. This observation proves that
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Figure 26: Energy time histories of the CP model. Experimental and numerical velocity
time histories.

surface-to-surface contact discretization helps reduce the hourglassing effect. The increase
of the artificial energy dominantly occurs during the bolt tightening (time interval AB)
and the macro-slipping (time interval CD). The relative increases of EA that occur during
these two intervals are similar for both contact formulations, but the absolute value is
higher for the GC formulation by a factor of 5. Since the internal energies are similar
in both contact formulations, this directly affects the observed ratios EA/EI . The most
significant fact is that the relative increase in the artificial energy is negligible during the
free vibration response (interval EF).

To scrutinize these observations, the velocity and displacement time histories for the
adopted numerical model and both contact formulations are juxtaposed in Fig. 27. First,
the free vibration response is not affected by the discussed energy inconsistencies in both
contact formulations. The CP formulation fully dampens the vibrations due to the load
application, while the remaining vibrations for GC do not affect the free vibration re-
sponse, as discussed in Subsection 3.4.2. Importantly, the CP formulation returns better
contact stress distributions, as shown in Subsection 3.4.4. Therefore, CP is the preferable
method for our numerical model, and it is discussed in the following section.
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Figure 27: Comparison of experimental and numerical time histories for both contact
formulations.

4 Discussion and conclusions

In this section, the main results are discussed and the nonlinear energy dissipation mech-
anism of the numerical model is scrutinized. The main conclusions are summarized at the
end.

In order to properly describe experimental tests, the numerical model had to be de-
liberately calibrated and verified, see Subsection 3.4. One of the crucial parameters that
required calibration was mass scaling. It is often desirable to scale the mass of a system in
explicit procedures to allow reasonable calculation times, but this can lead to large errors.
Through a careful verification presented in Subsection 3.4.3, it is shown that the adopted
mass scaling does not produce significant fictitious inertial forces. Another important
parameter of the numerical model is the order of numerical integration. The reduced
integration of the C3D8R elements introduces the numerical damping that is practically
equal to the material damping of our model. Regarding the contact formulations, both of
them return the same velocity time histories, but different stress distributions.

The adopted numerical model is validated through the comparison of the experimental
and numerical velocity time histories in Subsection 3.3.2. The experimental and numerical
results for the BBSC100 model are in agreement. Also, the correspondence of the results
for the BBSC50 and BBSC30 models is satisfactory, considering the complexity of the
models and responses. In the following segment, we will be focusing on the BBSC100
model, since it is the one that is readily found in engineering structures.

The most important result of this research is the successful numerical modeling of
structural damping due to friction in the BBSC model. Friction is a complicated phe-
nomenon that depends on various parameters, as discussed in Section 1. In the adopted
numerical model, friction is introduced via the classic Coulomb’s law. This simplified
approach is not an accurate representation of friction but returns an acceptable approx-
imation. In order to scrutinize the influence of friction on the response of the BBSC100
model, five simulations with different values of the friction coefficient were considered, and
the velocity envelopes are shown in Fig. 28. The model with µ = 0.155 agrees with the ex-
periment, as has been already discussed. Moreover, the results are acceptable for µ = 0.2,
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Figure 28: Bolted beam splice connection and 100 % of tightening force. Velocity time
histories for different values of the friction coefficient. Deformed configurations and stress
distributions in the upper flange are shown for µ = 0.155 and µ = 0.500, at the instance
before the load release.

which is actually the value that Eurocode recommends for non-treated steel surfaces [79].
A possible reason for the smaller value of friction in our model is air humidity, see Section
1 and Subsection 2.1.1. Next, the structural response for µ = 0.25 significantly differs,
and the nonlinear damping effect almost vanishes. For the friction coefficients µ = 0.3
and µ = 0.5, the results are similar and the response is practically linear. This suggests
that, for these friction values, the BBSC does not have a micro slip and it corresponds
to the BWSC. This is also evident from the stress distributions in the upper flange splice
plate for µ = 0.155 and µ = 0.500, Fig. 28. In contrast to the adopted numerical model
with µ = 0.155, the initial macro slip does not occur if friction is considerable and the
flange splice plate practically does not bend.

Friction coefficient strongly influences the local contact state. Actually, the nonlinear
dynamic response is mainly caused by friction between interacting contact surfaces. In
general, two types of slipping exist: macro and micro slip. The macro slip occurs when
the relative displacement between all of the contact point pairs is similar, that is, no stick
regions exist. On the other hand, the micro slip is a transitional process between the
macro slip and stick states, where the relative displacements vanish. This transition is
not immediate, and the stick and slip areas exist simultaneously during the micro-slipping
before the whole contact interface turns into stick. For bolted connections, the stick areas
are expected near the bolt shank. Further away, the stick slowly transitions to the slip,
and the limit is near the edges of the bolt head or washer. As discussed, the micro-
and macro-slipping activations depend on bolt forces and external excitation. With the
reduction of the bolt tightening force, the slip region expands until it is active across the
whole interface, which activates the macro slip. A case with a strong tightening force and
a low excitation force will not result in slipping, as seen in [2]. This corresponds to our
previously analyzed case of µ > 0.3.

To get further insight into the contact interaction, let us consider the upper part of the
splice connection and the three characteristic contact interfaces: the bolt head/washer,
washer/splice plate, and splice plate/flange. The normal contact stress distributions at
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these interfaces, before the load release, are given in Fig. 29. The maximum contact

Figure 29: Deformed configuration of the upper part of the splice connection before
the load release. The normal contact stress distributions at the contact interfaces: bolt
head/washer, washer/splice plate, and splice plate/flange. Six characteristic interacting
contact point pairs are designated with N1-N6.

stresses develop around the edges of the bolt holes and bolt heads, and they are concen-
trated toward the middle of the splice plate. Such a distribution is caused by the bending
of the splice plate due to the initial macro-slipping. The maximum contact stress also
developed in the middle of the washer due to the stress concentration caused by the bolt
head edge.

The deformed configuration in Fig. 29 clearly illustrates that the initial macro slip has
occurred at the splice plate/flange interface. In order to scrutinize the slip mechanism
inside the bolted connection after the load release, slipping at the selected points is ob-
served. The points N1-N4 are selected near the areas with maximum contact stress, while
the points N5 and N6 are defined in the regions with reduced contact stress, symmetri-
cally with respect to the bolt hole, Fig. 29. The slipping between the surfaces at a point
is defined as the relative displacement between the two interacting points.

The time history of the relative displacement at point N5 is shown in Fig. 30. Addition-
ally, differences between the two consecutive amplitudes of opposite signs are calculated
and plotted for all selected points. These graphs represent the envelopes of the estimated
slip amplitudes. It is evident that the relative displacement at point N5 oscillates around
the value close to 1.05 mm. This value is the relative static displacement due to the initial
macro slip. The first slip amplitude is 43 µm, and it sharply reduces to 11.6 µm in the
next cycle. After a few more oscillation cycles, the decay rate reaches a constant value.
Similar behavior is obtained for point N6.

After the first two amplitudes, the slip at points N1-N4 is quite similar, although the
values at points N1 and N2 are noticeably lower. This is due to the maximum contact
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Figure 30: Relative displacement between the characteristic points that are in the contact
interaction. Lower figure shows the time history at point N5, while the upper figure gives
differences between the consecutive amplitudes of opposite sign for all considered points
- slip amplitudes.

stresses that are in the vicinity of points N1 and N2. Nevertheless, the calculated slip
amplitudes at points N1-N4 are less than 0.5 µm, which suggests that these points are
practically in the stick state.

The slip at point N4 is the most intriguing. This point belongs to the same splice
plate/flange contact interface as points N5 and N6. All three points have a similar first
amplitude of slip, which suggests the initial uniform displacement between the splice plate
and the flange. This behavior can be considered as the macro slip. Between the first and
the third amplitudes, the slip value at the point N4 reduces approximately by a factor of
60, and the slip practically vanishes afterwards. On the other hand, the slip amplitudes
at points N5 and N6 decay significantly slower. Therefore, the slip at points N5 and N6
monotonically decays, while it abruptly goes to the stick at point N4. The simultaneous
presence of the stick and slip zones at the same interface is a clear indicator of the micro
slip.

All in all, there are three different types of slipping in our numerical simulation. The
first slip takes place during the application of mass M2, when the whole connection slips
along the splice plate/flange interface. This represents the initial macro slip and has an
approximate amplitude of 1 mm. The second phase occurs immediately after the load
release. Again, it consists of the macro-slipping at the splice plate/flange interface, but
its amplitude is significantly lower than the initial macro slip, equaling approximately
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40 µm. Finally, during the third phase, the stick zone forms at the splice plate/flange
interface near the bolt shank, while the slipping is still present further from this region.
The existence of stick and slip conditions at the same interface can be considered micro-
slipping. As the energy dissipates, the stick region grows steadily until the BBSC becomes
practically monolithic. This micro-slipping mechanism is the main cause of nonlinear
energy dissipation in mechanical connections.

To summarize, the main conclusions of the presented research are:

� Structural damping is a nonlinear phenomenon that is caused by the complex micro
slip state at the contact interfaces of various joints, such as the commonly used
bolted beam splice connections. The modeling of structural damping requires a
well-designed experimental setup and precise post-processing of the measured data.
These are followed by careful calibration, verification, and validation of the numer-
ical model.

� When properly utilized, Abaqus/Explicit is a powerful tool for nonlinear dynamic
simulations of structures with bolted connections. The non-physical parameters
that require calibration and verification are the FE mesh, mass scaling, spatial and
time integration schemes, and contact discretization. To reduce the computational
time required, mass scaling is a crucial parameter that must be implemented with
particular care.

� Proper calibration of the numerical model with respect to the non-physical param-
eters allows us to assess the influence of main physical quantities. When the bolt
tightening forces are given, one just has to adopt the loading function and the
friction coefficient.

� For the adopted numerical model, the friction coefficient is near µ = 0.155, which
matches the values reported in the literature. The numerical and experimental
results are in excellent correspondence for the case with 100 % of the bolt tightening
force, while the agreement of the results slightly deteriorates with the bolt force
reduction. Nevertheless, the adopted numerical model predicts nonlinear structural
damping with reasonably high accuracy.

� Engineering joints are complex, and their proper detailed numerical modeling is still
inefficient for real-life calculations. This fact is the driving force for the development
of accurate and efficient models that can provide approximate relations between
essential engineering parameters, such as contact stresses, friction, and damping.

As a recommendation for future work, it would be valuable to conduct a similar exper-
iment and to test the mentioned observations regarding the calibration of the numerical
model. It is desirable to improve the quality of obtained data by using strain gauges
and more accelerometers. The experiment should include a slip-resistant connection with
various compositions of high-strength bolts, where influences of the roughness, oxidation,
and lubrication would be scrutinized. Furthermore, the position and number of con-
nections and boundary conditions are additional parameters that should be taken into
consideration.
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